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Abstract

In this thesis, an optimized polynomial evaluation algorithm is presented. Compared to

Horner’s Rule which has the least number of computation steps but longest latency, or

parallel evaluation methods like Estrin’s method which are fast but with large hardware

overhead, the proposed algorithm could achieve high level of parallelism with smallest

area, by means of replacing multiplication with sqaure.

To enable the performance gain for the proposed algorithm, an efficient integer squarer

is proposed and implemented in FPGA with fewer DSP blocks. Previous work has

presented tiling method for a double precision squarer which uses the least amount of

DSP blocks so far. However it incurs a large LUT overhead and has a complex and

irregular structure that it is not expandable for higher word size. The circuit proposed

in this thesis can reduce the DSP block usage by an equivalent amount compared to

the tiling method while incurring a much lower LUT overhead: 21.8% fewer LUTs for a

53-bit squarer. The circuit is mapped to Xilinx Virtex 6 FPGA and evaluated for a wide

range of operand word sizes, demonstrating its scalability and efficiency.

With the novel squarer, the proposed polynomial algorithm exhibits 41% latency

reduction over conventional Horner’s Rule for a 5th degree polynomial with 11.9% less area

and 44.8% latency reduction in a 4th degree polynomial with 5% less area on FPGA. In

contrast, Estrin’s method occupies 26% and 16.5% more area compared to Horner’s Rule

to achieve same level of speed improvement for the same 5th and 4th degree polynomial

respectively.
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Chapter 1

Introduction

1.1 Motivation

Polynomials are commonly used in high-performance DSP algorithms to approximate

the computation of functions, or to model systems parametrically. They are found in-

side many basic digital circuits including high-precision elementary functional evaluation

circuits [1] and digital filters [2]. In fact, at a system level, many applications such as

cryptography [3], speech recognition [4] and communications [5], involve the computation

of polynomials.

The problem of polynomial evaluation has been investigated by many researchers,

with the main research challenge usually being the speed of computation. The benefit

of polynomials is that they only require multiplications and additions for the evaluation.

However this does not mean that the computation is simple: High degree polynomial

computation usually involve multiple large wordlength multiplications, which are time

consuming operations. Therefore it is a common objective to reduce the computation

time for polynomial evaluation in low latency applications, either through software or

hardware approaches.

Earlier works focus on parallel schemes for software realization [6–13]. The parallelism

achievable is highly dependent on the number of processing units available. In fact, most

such works present results in terms of trade-off between latency and processing unit
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Chapter 1. Introduction

cost. For example, Estrin’s [12] method needs 2dlog2(k+ 1)e steps with dk/2e processing

units to evaluate a kth order polynomial. Dorn [13] presents a solution with dlog2(k)e

processing units, where dlog2(k)e+dlog2(k+1)e steps are needed to finish the computing.

Several published solutions are closely tied to specific computer architectures, such as

SIMD/MIMD and VLIW hardware, in [10, 11].

When software approaches are not able to meet performance requirements, alterna-

tive hardware implementations of polynomial evaluation algorithms are attractive, since

arbitrary degrees of parallel computation can be easier to achieve. In general, many

limitations restrict further improvement in software performance for general purpose

processors. For example, processors usually support only a fixed operand wordlength

and the number of arithmetic units is capped by the architecture of the processor design.

Similarly, memory size and bandwidth or the cache size and register resources are usu-

ally limited too. With custom circuits, maximum parallelism can be achieved with lower

cost in terms of overall hardware resources. This is partly due to the more flexible word

length in the data paths and the fact that a more suitable architecture can be selected

or customized. In fact, a number of publications present such approaches, implemented

in VLSI [14,15].

Another factor that influences the computation complexity is precision. Algorithms

involving polynomial evaluation often have to consider the accuracy of computation. The

maximum error in the system can be broken down into two components, namely approxi-

mation error and evaluation error [16]. Higher degree polynomials with larger wordlength

in applications like functional evaluation are necessary to reduce approximation error. For

example, to achieve 14 bits accuracy, a 5th degree polynomial is needed for approximating

f(x) = 1/(1 + x) within the range of x between (0, 1) [17]. A 5th degree polynomial with

64 bit operands is required to approximate the function f(x) = log2(1 + 2x) within the

range of x between (0, 2) [18]. However, this requirement often significantly increases

2



Chapter 1. Introduction

the computational complexity and latency. Therefore a certain tolerance of evaluation

error may be allowed, and the designer could implement faithful rounding for coefficients,

and perform truncation in intermediate computations while controlling the total error.

Meanwhile, several other solutions have been proposed in the literature to reduce the com-

plexity of polynomial evaluations based on the approximation requirement. Instead of

using mathematical algorithms to evaluate polynomials, table based methods are fast and

easy, and have been proposed for low degree polynomials in recent implementation [19].

However, this is only applicable to low precision design: to scale to large operand word

length, the table size scales exponentially, which clearly becomes unsuitable for higher

degree polynomials. On the other hand, polynomial degree can be reduced by carefully

selecting the range to be approximated and the approximation methods [16, 20]. Post

processing the coefficients derived from standard approximation methods with faithful

precision loss can also simplify the polynomial. [20] presents a method to reduce the coef-

ficient word length needed for polynomial approximation of a particular function, which

can reduce the total circuit area by 40% and double the speed. [21] proposes a polynomial

with sparse coefficients (several bits fixed to 0) which leads to 40% size reduction.

To satisfy both speed and high-precision computation requirements, reconfigurable

hardware is increasingly being considered. In field programmable gate arrays (FPGA), a

large amount of flexible hardware resources are available for parallelizing algorithms, with

the further advantage of flexibility in the data path wordlength. By contrast, custom

circuits are not feasible to be optimized for large range of coefficients on polynomials, as

they are not re-programmable. Further more, implementing every polynomial algorithm

with a dedicated custom circuit would obviously incur high development and engineering

costs. Compared to custom integrated circuits, the cost of FPGA development is much

lower, and this remains true even when amortized for moderate manufacturing volumes.

Many designs with polynomial evaluation have been implemented in FPGA [17, 22, 23]

3



Chapter 1. Introduction

and naturally, various methods have been proposed to speed up polynomial evaluation

methods in FPGAs [16,20,21,24–26].

However, recent articles have only focussed on complexity reduction when implement-

ing in FPGA. Interestingly, very few articles have described parallel evaluation algorithms

implemented on modern FPGAs to boost the speed further and analyse the trade-offs on

hardware overhead. To investigate parallel polynomial evaluation algorithm implementa-

tion on FPGA, algorithms proposed in the literature has been reviewed, and implemented

Estrin’s method on FPGA. To summarise the result, Estrin’s method implementation

yields half of the latency required by Horner’s Rule. However, the hardware overhead

is large, despite dedicated squarer circuits being used instead of multipliers whenever

possible to reduce area. Nevertheless, this inspired the author to find a better opti-

mized algorithm that utilize more squaring circuits in order to reduce the multiplication

complexity. The resulting novel algorithm is proposed in Chapter 5.

Since the new algorithm relies on dedicated squaring circuits, the next question ob-

viously concerns how good the squarer could be so as to improve the overall polynomial

evaluation circuit.

For higher degree polynomial evaluation, the requirement for computation of a square

occurs quite often, usually to calculate various exponential of x. It is common to imple-

ment this type of squaring operation using a standard multiplier. This may be for reasons

of resource sharing, generalization or simply convenience. However, a dedicated squarer

can be significantly faster, consume less power, and be smaller than when a general

purpose multiplier is used. In fact dedicated squarers are not only used for polynomial

evaluations, but also widely adopted in fixed point computations [27] and in various

floating point arithmetic circuits [28–30]. Many techniques have been proposed in the

literature to improve the performance of squaring circuits for ASIC solutions [31–34]. In

reconfigurable hardware, [35] has presented 22% area savings in terms of configurable
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logic blocks with 36.3% shorter delay and 45.6% less power when implement in Xilinx

4052XL-1 FPGA compared to an array multiplier on the same FPGA. With the newer

DSP enabled FPGAs, squaring units have also been explored in various articles [36–38].

In order to fulfil the requirement for this work (i.e. an efficient squaring circuit for use

within a polynomial evaluator), methods to realize a squarer more efficiently on FPGA

have been further investigated and a novel efficient squarer in has been proposed Chapter

6.

1.2 Scope Definition

The problem of polynomial evaluation can be summarized as follow. Using a general

format for kth degree polynomial evaluation,

f(x) =
k∑

i=0

aix
i (Eq. 1.1)

The fixed point numbers x is defined as the input of the polynomial with a set of coef-

ficients ai of constant value. These coefficients can be obtained by various algorithms.

In most of the system and within the consideration here, the coefficients will not be

changed frequently although they could be updated from time to time. In other words,

a system for which the computation using fixed ai is the limiting factor, rather than the

computation of ai will be considered only.

Although the coefficients can be modified due to different approximation accuracy

requirements or different ranges of input x, one particular set of coefficients could be used

for long strings of different input x and do not change frequently with respect to the data

in most of system implementations [15]. Such a system that could fulfil the requirement

is commonly used in many applications, thus the discussion here is meaningful.

The range of the coefficients and the input x is defined to be [0, 1]. This is mainly for

the ease of accuracy analysis performed later.
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1.3 Contributions

1.3.1 Novel Polynomial Evaluation Algorithm

We propose a novel algorithm in this thesis to address the problem of polynomial evalu-

ation in a fast manner with low hardware cost. The algorithm parallelizes the evaluation

process by grouping different monomials. It then transforms each group into its vertex

format which trades multiplication with square and utilizes the dedicated squarer to re-

duce the hardware cost. The result in this thesis shows that it is able to achieve short

latency while maintaining minimum hardware cost. The general form of the novel design

has been provided as well.

1.3.2 Comparison of Fixed Point Polynomial Evaluation Algo-
rithms Implementation on FPGA

We implement the novel algorithm in FPGA as well as two algorithms from the literature

to compare the performance and hardware utilization using two real applications. The

applications are to approximate elementary functions. In the comparison, only the poly-

nomial evaluation algorithm is different among the three designs and they are designed

to fulfil same requirements. We will show the post-place and route results to prove that

our theoretical findings, and mathematical analysis are applicable to real designs.

1.3.3 Novel Integer Squarer Design on FPGA

We have proposed a dedicated squarer design for implementation on FPGA, not only for

our novel polynomial evaluation algorithm but for other uses as well. The design uses

fewer DSP blocks while trading DSP blocks with limited hardware overhead, and shows

better efficiency in terms of overall hardware utilization in the FPGA than competing

designs. Considering DSP blocks are limited in modern FPGAs, the novel design is useful

to reduce the overall DSP blocks usage and enable larger designs on single FPGA, while

not demanding excessive amounts of additional logic.

6



Chapter 1. Introduction

1.4 Organization of the Thesis

Below is the organization of this thesis.

In Chapter 2, polynomial evaluation algorithms in the literature will be analyzed and

various optimization methods proposed in recent work are described and discussed.

In Chapter 3, modern FPGA architectures are reviewed and multipliers based on

these features are discussed.

In Chapter 4, conventional squarer designs and their FPGA implementation are pre-

sented.

In Chapter 5, the novel polynomial evaluation algorithm is proposed and is compared

with the algorithms in the literature.

In Chapter 6, a novel squarer design is proposed, along with FPGA implementation

details, and its performance will be compared with conventional designs.

In Chapter 7, the novel polynomial evaluation algorithm is implemented for real

applications, and compared with conventional algorithms operating under the same con-

ditions.

Chapter 8 concludes the thesis with discussion on possible improvements that could

be considered in future.

7



Chapter 2

Conventional Polynomial Evaluation
Algorithms, Implementation and
Optimization

2.1 Polynomial Evaluation Algorithms

Polynomial evaluation procedures have been the subject of investigation since the 1950s.

Mainly based on alternative computer architectures, many different software approaches

have been proposed in the literature to optimize or accelerate the evaluation process.

Most of the research focuses on the trade-off between general purpose processing units and

system-level parallelism. A few prominent methods which have been published previously

are presented and discussed below.

2.1.1 Direct Method

Directly computation of polynomials is by far the simplest method to describe. This

involves computing exponentials of x (i.e. xi in the general form) and multiplying each

power with the corresponding coefficient ai. This is most often used for low degree poly-

nomial evaluation [39]. The computing process can be highly parallel, if the resources

permit, but the total number of steps to complete the computation is large. More specif-

ically, that a large number of multiplications are required. Meanwhile, the resultant
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accuracy is relatively low [17]. Therefore it is much less commonly used for higher degree

polynomials.

2.1.2 Horner’s Rule

Horner’s Rule is the most basic and common rule for computing polynomials. It was

developed in the very early days of computation and it is widely used in numerous complex

applications [40, 41]. Horner’s Rule has been proven by Pan [6] and Winograd [22] to

involve the minimum number of steps to evaluate a particular polynomial, i.e. it is

optimum in terms of computational steps. Furthermore, it also has a regular structure

which is easy to be implemented. All these factors lead to widespread adoption of the

methods since it was invented. The rule involves the transformation of the polynomial

into a series of multiply-adds. Considering the polynomial equation stated in (Eq. 1.1),

Horner’s Rule re-writes the formula into

f(x) = {...((ak ·x+ ak−1) ·x+ ak−2) ·x+ ...+ a0} (Eq. 2.1)

One multiply-add unit is used to compute ai ·x+ ai−1 and this can be reused recursively

to complete the overall computation. Therefore, it is an ideal method for processors

containing multiply-add arithmetic (or multiply-accumulate) units. However, Horner’s

Rule is inherently a serial process and consequently the critical path for this method is

long.

2.1.3 Parallel Methods

For low latency designs, especially in communication or cryptography applications, par-

allel processing is desirable. A few such methods are suitable for these applications with

specific computer architectures. Dorn [13] proposes a generalized form of Horner’s rule,

which can be applied on general computing architectures which have more than one
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computational unit. For a kth degree polynomial, this method can reach a nth degree

parallelism, where n ≤ dlog2(k)e. The general format is,

f(x) =
n−1∑

m=0

pm · (xn) ·xm (Eq. 2.2)

where

pm(x) =

log2k∑

i=0

am+jn ·xj (Eq. 2.3)

The latency boost for Dorn’s method is obvious. Compared to the original Horner’s

Rule, approximately 1/n the amount of evaluation time is needed, and the only serial

process involved is to calculate the power of x. The trade-off of this method is circuit

area, with hardware requirements naturally depending upon the degree of parallelism.

In Dorn’s original paper, the parallelism that the system can achieve is based on the

available number of processing units.

Another well-known method which parallels the evaluation process was proposed by

G. Estrin in 1960 [12]. In his famous paper discussing the future of computer system

architecture, he presented a method with a sequence that uses multiple multipliers to

increase the speed of function evaluation. The general format reformed after (Eq. 1.1)

could be shown as below

f(x) =
n∑

i=0

(a2i+1x+ a2i) ·x4 + (a2n+2 ·x2n+2) · (k − 2n− 1) (Eq. 2.4)

where n = [k/2]. An implementation of computer architecture for this algorithm was

presented in the original paper as well (details of it can be found in the graph given in

the appendix [12]). Each sub-sequence can occupy one processor and another processor

can be used to evaluate the powers of x. The proposed architecture can complete the

computation within 2dlog2(k + 1)e steps. Obviously the main trade-off is also the hard-

ware cost. To achieve the maximum level of parallelism, dk/2e processors are needed

10
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for Estrin’s design. This has been used by various applications [17, 42] for fast parallel

evaluation of polynomials.

Other than the two methods mentioned above, tree structures approaches have been

presented in previous works [7–9]. These methods are discussed in the content of ultra

higher degree polynomial computation. Different folding schemes are used to find the

maximum degree of polynomial that could be evaluated by a particular given method in

a certain number of steps with the aim being to achieve the minimum number of steps

required to evaluate a polynomial. Thus, when a higher degree polynomial is broken

into smaller segments, the sub groups still follow the folding scheme that can fully utilize

the schemes capability. Tables are shown in the original articles of such degrees that

individual schemes could achieve, but which are not included here due to limited space.

As these methods only tend to manifest their advantages for polynomials of degree greater

than 20, they are not the main comparison reference in this thesis and thus it is not going

to discuss further details on these methods.

Some previous works have also presented designs targeting alternative computer ar-

chitectures for specific purposes. For example, special grouping schemes are presented

in [10] based on MIMD and SIMD computers. In [11], polynomials are evaluated using

a modern multimedia processors with a MAC unit and parallel execution scheduling. As

they are optimized for a particular architecture rather than being generalised, they are

also not considered in this thesis.

2.2 Polynomial Evaluation Implementation

Polynomial evaluations are not only implemented in software, which is limited by the

computer architecture. Many hardware approaches also adopt similar methods when

building application specific circuits. Horner’s Rule is widely used in many hardware

designs [20, 43]. Dorn’s method has been implemented by Burleson [15] in ASIC, where

11
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arithmetic units are not limited by architecture. For the sake of comparison, simplified

circuit diagrams will be used here to illustrate Horner’s Rule, Dorn’s method and Estrin’s

method. The circuit is broken down into macro blocks of multiplier, squarer and adder.

Area and performance metric of polynomial evaluation algorithms will be discussed on the

level of these macro blocks. As processing resources are virtually unlimited in custom

circuits, only the maximum degree of parallelism of a certain method is going to be

considered. A 5th degree polynomial is used as an example, which can be written as

f(x) = a5 ·x5 + a4 ·x4 + a3 ·x3 + a2 ·x2 + a1 ·x+ a0 (Eq. 2.5)

and this will also be used to compare against the proposed method later. Meanwhile, for

the purpose of performance comparison in theory, a few assumptions are made below.

Assumption 1 Define the following Macros used in theoretical comparison of polyno-

mial evaluation,

Parallel multiplier Mmul

Parallel squarer Msq

Carry propagate adder Madd

and these Macros have the following properties:

Tmul > Tsq >> Tadd

Amul >> Asq >>> Aadd

In the assumption, Tmul is defined as the latency for an optimum pipelined parallel

multiplier and Tadd is defined as the latency of an optimum pipelined adder. Tsq will be

the notation for the latency of an optimum pipelined parallel squarer, and which should

ideally be lower than that of Tmul. A will be the notation used to describe the area of

an individual macro and the a parallel multiplier is much lager than a parallel squarer in

similar architecture. Obviously, the adder is the smallest and fastest macro among three.
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2.2.1 Horner’s Rule

Using Horner’s Rule, the polynomial in (Eq. 2.5) can be transformed into,

f(x) = ((((a5 ·x+ a4) ·x+ a3) ·x+ a2) ·x+ a1) ·x+ a0 (Eq. 2.6)

The evaluation process for implementing (Eq. 2.6) can be illustrated in the graph shown

in Figure 2.1. In Figure 2.1 and subsequent figures of circuit diagram for polynomial
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Chapter 4 Hardware implementation for previous work 

 

Although most of thpe previous published work in this area is application-specific, for the 

sake of comparison, the main referenced methods are re-implemented using general custom 

circuits.  As processing resources are virtually unlimited in custom circuits, only the 

maximum degree of parallelism of a certain method is going to be considered in this project. 

At the moment, only draft implementations have been done on paper. The actual hardware 

validation will be done as future work. 5th degree polynomials are used as examples in the 

reference methods and this will also be used to compare against the proposed novel method 

in the next chapter. Higher degree polynomials, which will involve discussion on better 

architecture and hardware optimization for the computation of various generalized power of 𝑥, 

will be analyzed and discussed in the final thesis.  

For latency calculation, define 𝑇𝑚𝑢𝑙 as the latency of an optimum pipelined parallel multiplier 

and 𝑇𝑎𝑑𝑑  as the latency of an optimum pipelined adder. 𝑇𝑠𝑞𝑟  will be the notation for the 

latency of an optimum pipelined parallel squarer, which will be discussed in the following 

chapter, and which should ideally be lower than that of 𝑇𝑚𝑢𝑙 (otherwise there is no need of a 

separate squarer circuit). 

 

4.1 Horner’s Rule 

Most hardware designs for evaluating 5th degree polynomial equations use Horner’s Rule. In 

this formulation, the polynomial can be transformed into, 

  𝒇(𝒙) = ���(𝒂𝟓𝒙 + 𝒂𝟒)𝒙 + 𝒂𝟑�𝒙 + 𝒂𝟐� 𝒙 + 𝒂𝟏� 𝒙 + 𝒂𝟎     (11) 

f(x)=((((a_{5}x+a_{4})x+a_{3})x+a_{2})x+a_{1})x+a_{0} 

The evaluation process for implementing this can be illustrated in the graph shown in Fig. 4.1. 

In these graphs, we denote sequential operator from left to right, and dependences with 

arrows. 

 

  x  𝑎4  x  𝑎3  x  𝑎2  x  𝑎1  x  𝑎0   
  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓   
𝑎5 → ⨂ → ⊕ → ⨂ → ⊕ → ⨂ → ⊕ → ⨂ → ⊕ → ⨂ → ⊕ → f(𝑥) 

Figure 2.1: Diagram for evaluating 5th degree polynomials using Horner’s Rule.

evaluation, sequential operators will be denoted from left to right, and dependences

denoted with arrows. Using Horner’s Rule, 10 steps of computation are needed, which

are namely five multiplications followed by five additions each. As there is no parallel

execution, the latency of the evaluation largely depends upon how well the multiplier

and adder have been designed. The overall latency using Horner’s rule is 5 · (Tmul +Tadd).

Although, through proper pipelining, the multiplication and the addition can reach high

throughput with a fast system clock rate, the latency is still relatively long due to the

existence of longer pipeline stages. Table 2.1 summarizes the implementation details for

Horner’s Rule

Latency Multiplier Adder
5 · (Tmul + Tadd) 5 5

Table 2.1: Latency and hardware macro count for evaluating 5th degree polynomials
using Horner’s Rule.
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2.2.2 Dorn’s Method

Dorn’s method can be used to achieve 3rd degree parallelism on the same polynomial.

The format of Dorn’s equation to achieve this is shown below,

f(x) = (a2 + a5x
3) ·x2 + (a1 + a4x

3) ·x+ (a0 + a3x
3) (Eq. 2.7)

The whole equation can be subdivided into three subexpressions which can be computed

in parallel. The cube of x can be shared among all three subexpresssions and thus should

be computed upfront. It is obvious that the evaluation process is more complex than

Horner’s Rule (and in general the additional complexity grows with polynomial order).

The evaluation process can be summarized in Figure 2.2 which shows that 12 steps are

necessary, of which 2 steps are needed to compute x3, 6 steps in parallel compute the

three subexpressions, 2 steps are used to multiply with the respective power of x for the

first two subexpressions, and 2 steps to sum all three parts together. Note that the last

addition has to wait for both operands to be ready. With some degree of parallelism

where the help of dedicated squarer, the latency of Dorn’s method is shorter, but it is at

the expense of additional hardware overhead. When this is implemented, the hardware
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  x   x  ܽହ   ܽଶ        
   ↓   ↓   ↓   ↓             
x →  ⨂ →  ⨂ →  ⨂ → ⊕ → ⨂          
            ܽସ   ܽଵ   x          
            ↓   ↓   ↓     ⊕ →  fሺݔሻ
            ⨂ → ⊕ → ⨂ → ⊕      
            ܽଷ   ܽ଴              
            ↓   ↓              
            ⨂ → ⊕              

 
Figure 2.2: Diagram for evaluating 5th degree polynomials using Dorn’s method.

resource summary is as shown in Table 2.2, where one squarer and one multiplier is
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for x3(although one may argue a dedicated cubic operator could also be used in this

case, it is outside the scope of discussion in this thesis), three multipliers followed by

three adders are for three subexpressions, one multiplier is to multiply x with the second

subexpression, one multiplier is to multiply x2 with the first subexpression and two adders

are for the final addition.

Latency Multiplier Squarer Adder
Tsq + 3 ·Tmul + 3 ·Tadd 6 1 5

Table 2.2: Latency and hardware macro count for evaluating 5th degree polynomials
using Dorn’s method.

2.2.3 Estrin’s Method

The converted format for the same polynomial using Estrin’s method is,

f(x) = (a5 ·x+ a4) ·x4 + (a3 ·x+ a2) ·x2 + (a1 ·x+ a0) (Eq. 2.8)

Similar to Dorn’s method, three subexpressions of the equations are able to be computed

individually by one multiplier followed by one adder. Another two multipliers with two

adders are used to multiply subexpressions with power of x and sum them together.

However, different from Dorn’s method, the even powers of x should be computed first,

i.e. x2 followed by (x2)2, which shall be implemented using two squarers. The total

number of evaluation steps is still 12 but it has a shorter latency than Dorn’s method.

The critical path, is determined by the first subexpression in (Eq. 2.8). It contains the

path of two squaring and one multiplication, which is longer than the other two paths

in parallel. The evaluation process can be summarized graphically as shown in Figure

2.3 and the critical path is shown in bold arrow. The amount of hardware resource is

given in Table 2.3. Estrin’s method yields an improvement over Dorn’s method in terms

of latency at the same hardware cost and it will be selected as the parallel evaluation

method to be compared with proposed method later.
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            ܽସ   ܽଵ   x          
            ↓   ↓   ↓     ⊕ →  fሺݔሻ
            ⨂ → ⊕ → ⨂ → ⊕      
            ܽଷ   ܽ଴              
            ↓   ↓              
            ⨂ → ⊕              

 

Figure 2.3: Diagram for evaluating 5th degree polynomials using Estrin’s method.

Latency Multiplier Squarer Adder
2 ·Tsq + Tmul + Tadd 5 2 5

Table 2.3: Latency and hardware macro count for evaluating 5th degree polynomials
using Estrin’s method.

2.3 Polynomial Evaluation Optimization

With the flexibility of hardware circuits, designers are able to not only build the evalu-

ation circuit with custom arithmetic operators, but also customize the polynomial eval-

uation based on the precision requirement and available hardware components (such as

implementation in FPGAs). In function approximation, procedures to derive an opti-

mized polynomial have been proposed [16]. The framework, involving range reduction

and bit-width optimization, is able to produce a design with simplified polynomials. [20]

and [43] have presented similar methodologies, which focus on reducing the complexity

of the polynomials as well.

The degree of polynomial used to approximate the function is largely determined by

the range of the function and it directly links to the area, latency and throughput of the

overall design. It is shown that the area could be half and the latency could be only
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1/10 when range reduction is performed [16]. On the other hand, if designs have to be

approximated across the whole range, sub-intervals could be divided. Although more

memory might be needed for breaking down into segmented ranges, it could significantly

reduce the degree required for the same precision [26]. Figure 2.4 shows the function

before and after range reduction optimization and Figure 2.5 illustrats how the sub-

intervals are formed.5.1 Applicability of Range Reduction

Given a particular function that we want to evaluate, we

can decide whether it is necessary to implement range

reduction or not. In order to make the correct decision, we

need to consider the optimization metric (area, latency, or

throughput), design a function evaluation unit with and

without range reduction, and select the optimal one. A

preliminary study of the applicability of range reduction

has been conducted in [13].

5.2 Approximation Method Selection

There are many possible function evaluation methods, such

as symmetric table addition methods, CORDIC, rational

approximation [14], polynomial-only methods, and table+

polynomial methods. In this paper, we explore six methods:

polynomial-only (po) and table+polynomial methods with

polynomials of degree two to six (tp2-6). The polynomials

are of the form

gðyÞ ¼ cdy
d þ cd�1y

d�1 þ . . .þ c1yþ c0: ð1Þ

We use Horner’s rule [2] to reduce the number of

multiplications:

gðyÞ ¼ ððcdyþ cd�1Þyþ . . .Þyþ c0; ð2Þ

where y is the input, d is the polynomial degree, and c are

the coefficients. For the table+polynomial (tp) approach, the

input interval is split into 2k equally sized segments. The k

leftmost bits of the argument y serve as the index into the

table, which holds the coefficients for that particular

interval. For the polynomial-only approach, there is just

one entry in the table holding the coefficients, hence no

index bits are needed. Segmentation for evaluating logðyÞ
with eight uniform segments (k ¼ 3) is illustrated in Fig. 7.

We observe that the range reduced interval is relatively

linear and, hence, the use of uniform segmentation is

sufficient.
The architecture for an approximation unit with a

tp scheme is depicted in Fig. 8. The tp methods trade off

table area versus polynomial area. A multiply-and-add-

based tree structure can be observed, which follows

Horner’s rule. The polynomial coefficients are found in a

minimax sense that minimizes the maximum absolute error

LEE ET AL.: OPTIMIZING HARDWARE FUNCTION EVALUATION 1523

Fig. 5. Description of range reduction, approximation method, and range

reconstruction for the three functions (a) sinðxÞ, (b) logðxÞ, and (c)
ffiffiffi
x

p
.

TABLE 1
Range Reduction Properties of the Three Functions

Fig. 6. Plots of the three functions over x ¼ ½�0:5; 2�. Range reduced

intervals for each function are shown in thick lines.

Figure 2.4: Function with range reduction

x

lo
g(
x)
 

Figure 2.5: Function with sub-intervals

Rounding the coefficients to the nearest sweet spot numbers within the bound of

evaluation error allowance is another way to simplify the evaluation process. It is obvious

that custom adders and multipliers would be more efficiently fit with these rounded

coefficients, rather than general purpose arithmetic units. Other coefficient optimization

methods, like in [21,25], have been proposed to make the multiplier smaller with more ‘0’s

inside the multiplier operand, which could make one or more rows of partial products in
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the multiplier to be constant ‘0’ and therefore size of multiplier can be shrunk to increase

the speed as well as to reduce area.

As design automation is used in these frameworks, the processing time to generate

polynomial evaluator is negligible compared to the computation of constrained approx-

imation [43]. What’s more, the process is usually performed once for a particular poly-

nomial and the results can be reused over and over (at least until the underlying FPGA

or implementation architecture changes). Therefore, it is often worthwhile to use these

methods to simplify the polynomial evaluation problem, if they are able to map to the

required architecture.
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Chapter 3

Conventional Arithmetic
Implementation on FPGA

3.1 FPGA Background

Field Programmable Gate Array (FPGAs) are semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs) connected via programmable in-

terconnects [44]. In general, FPGAs are more flexible than ASICs as they are able to

programmed easily to desired functions or applications, with the emphasis on the ease

of reprogrammability. This is the feature that makes such devices suitable for building

processing units for polynomials which are likely to have to adapt to parameter changes

from time to time. The fundamental building block of an FPGA is its logic cells. Despite

the different hardware used to realize the logic cell functions, and different input widths

provided by various FPGA vendors, they can be mapped to certain logic functions with

the help of the synthesis and mapping tools. Xilinx Virtex-4 FPGA cells contain a 4

input look up table (LUT), which can also be used for RAMs or as shift registers [45].

While in more recent Virtex-6 and 7 series FPGAs, 6 inputs LUTs are provided, to give

more flexibility [46]. Other than the LUT, multiplexers, flip flops and carry chains are

available as basic items of reconfigurable hardware. A typical CLB that contains all these

basic elements is shown in Figure 3.1. Altera provide similar architectures in their basic
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Figure 3.1: Simplified diagram of LUT, multipliexer, flip flops and carry chains in CLB
in Xilinx Virtex 6 FPGA.

reconfigurable blocks, although they are based on 4 input LUTs. In order to intercon-

nect the CLBs with each other, interconnect blocks have been designed to route different

blocks, and these are programmed automatically by place and route tools.

In recent modern FPGA architectures, more functional blocks are added to optimize

applications. Reconfigurable DSP blocks enable fast digital signal processing. In the

Virtex 6 architecture they contain a 25×18 bit signed multiplier with a programmable

ALU following its multiplication data path [47]. This extension of wordlength is an

improvement from the DSP blocks found in Virtex 4 and previous devices, and was first

supported in the Virtex 5. The simplified DSP48E1 block diagram is shown in Figure

3.2. The DSP block includes an optional pre-adder at one of its inputs. The ALU unit

can be programmed as a 48 bit adder, which can accumulate the multiplier product and

the adjacent DSP result through the dedicated 48 bit routes in a single clock cycle. The

dedicated routes are from the PCOUT ports of the adjacent DSP to the PCIN ports

of the current one. This bus also has an option to perform a 17 bit right shift. The
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input of the adder can be the 48 bit number from input C with an optional associated

CARRYIN, but it is mutually exclusive with the PCIN signals. The DSP48E1 has also

includes internal pipeline registers, allowing it to run at a frequency of up to 450 MHz

(for -1 speed grade Virtex 6 devices) [47]. However, as DSP blocks are combined for

larger operands, further pipelining is required, which is implemented using LUTs and

flip flops in the Slices.

Figure 3.2: Simplified diagram of DSP48E1 in Xilinx Virtex 6 FPGA.

Block RAM has also been included in modern FPGAs to enable large memory im-

plementations. Each RAM block, named RAMB36E1 in the current device, is 36Kb in

size and can be configured as 64K×1, 32K×1, 16K×2, 8K×4, 4K×9, 2K×18, 1K×36 or

512×72. Both read and write operations require one clock cycle.
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3.2 Parallel Multiplier in FPGA

3.2.1 Multiplier Based on LUT

The architecture of parallel multiplier involves partial product generator and adder tree.

For example, a 4×4 bit parallel multiplier with inputs a and b will first generate 16 partial

products shown in Figure 3.3.

The partial product array could be reduced using adder tree into one row of sum and

one row of carry, which could be added using carry propagate adder at last. Parallel
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explain further. In theory, as both inputs are the same, a squarer can reduce the number of 

partial products, compared to a normal multiplier. For example, a 4 bit x 4 bit multiplier with 

input 𝑎3𝑎2𝑎1𝑎0 and 𝑏3𝑏2𝑏1𝑏0, will generate 16 partial products as shown in Figure 3.3,  

 

   𝑎3 𝑎2 𝑎1 𝑎0 
   𝑏3 𝑏2 𝑏1 𝑏0 
   𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0 
  𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1  
 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2   
𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎30𝑏3    

Figure 3.4 

However, for a 4 bit x 4 bit squarer with only one input 𝑎3𝑎2𝑎1𝑎0, the partial products can be 

reduced to 10, as some of them are identical or can simply be added with one bit shift left. 

This is illustrated in Figure 3.5. 

 

 

   𝑎3 𝑎2 𝑎1 𝑎0 
   𝑎3 𝑎2 𝑎1 𝑎0 
   𝒂𝟑𝒂𝟎 𝒂𝟐𝒂𝟎 𝒂𝟏𝒂𝟎 𝑎0𝑎0 
  𝒂𝟑𝒂𝟏 𝒂𝟐𝒂𝟏 𝑎1𝑎1 𝒂𝟎𝒂𝟏  
 𝒂𝟑𝒂𝟐 𝑎2𝑎2 𝒂𝟏𝒂𝟐 𝒂𝟎𝒂𝟐   
𝑎3𝑎3 𝒂𝟐𝒂𝟑 𝒂𝟏𝒂𝟑 𝒂𝟎𝒂𝟑    
𝑎3𝑎3  𝑎2𝑎2 2𝑎0𝑎3 𝑎1𝑎1  𝑎0𝑎0 

 2𝑎2𝑎3 2𝑎1𝑎3 2𝑎1𝑎2 2𝑎0𝑎2 2𝑎0𝑎1  
Figure 3.6 

In [32], a 40% area reduction and 18.6% speed improvement was achieved by a squarer 

compared to the multiplier in an ASIC design. The design utilizes the symmetric partial 

products and applies the method discussed above.   

Several other squarer designs have been reported to have even higher area reductions as well 

as speed improvements [41-43]. These designs have all been implemented in custom circuits 

and are not easy to compare with our designs on FPGAs. None of them compares against a 

similar multiplier design after the implementation as well. Among them [41] has the smallest 

area, shorter delay and least amount of power.  

Figure 3.3: Partial product alignment of 4×4 bit parallel multiplier.

multipliers have been explored for many years and thousands of designs have been im-

plemented in hardware. Booth encoding schemes, Wallace tree [48], Baugh and Wooley’s

method [49] and many more algorithms have been introduced to do fast parallel mul-

tiplication in custom circuits. These circuits can be implemented in FPGAs with little

difficulty, even without specialized DSP functional block being provided. Several works

have proposed multiplier designs purely using LUTs in [50,51].

3.2.2 Multiplier Based on Cascaded Chains of DSP Blocks

In modern FPGAs where DSP blocks are available, multiplication can utilize these func-

tional blocks to reduce latency, rather than relying on LUTs. The cascaded chain through

dedicated routes allows users to build large wordlength multipliers running at high speed.

This decomposition is as follows: take a 35×35 bit multiplication x · y as an example.
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Figure 3.4: Pipeline schematic of general purpose multiplier.

Each of the inputs can be split into two sub operands with smaller wordlength:

x = a0 + a1 · 217 (Eq. 3.1)

y = b0 + b1 · 217 (Eq. 3.2)

Therefore, the full multiplication can be re-written as,

x · y = a0b0 + (a1b0 + a0b1) · 217 + a1b1 · 234 (Eq. 3.3)

which contains four sub products. Note that each operand in these four sub multiplica-

tions is equal to or less than 18 bits (17 bits unsigned numbers for lower splits a0 and

b0 and 18 bits two’s complement signed numbers for the most significant parts a1 and

b1). After the sub multiplications are computed, the products can be added through the

post-adder, one by one, within 4 cycles. No extra LUTs are needed for the addition in

this case. Figure 3.4 shows a detailed implementation.

As either a1 or b1 can be at most 25 bits in size, if an operand exceeds 35 bits, for

example 42 bits, then a1b1 is not able to fit within one DSP and a1 must be split into

sub operands of 17 bits and 8 bits respectively. In this case, an additional DSP would

be chained after the last DSP to perform the multiplication of the 8 msbs of a1 with b1.
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When the wordlength is greater than 43 bits, further splits are required to complete

the addition, and correspondingly more clock cycles being needed to obtain the result.

For a given wordlength w where k splits are needed, the number of DSP blocks needed

for a standard multiplier is:

f(k) =

{
k2 if w − 17k > 1

k2 + 1 if w − 17k ≤ 1
(Eq. 3.4)

It can be seen that, as the wordlength increases, the number of DSP blocks required by

the multiplier grows quadratically. We will revisit this point later when demonstrating

that it is much more efficient to perform squaring using a specialized squarer, especially

as wordlength becomes large. This will be discussed more fully in Chapter 4.

The standard cascaded method has been provided as a IP core from Xilinx CoreGen.

It has been optimized to run at the maximum speed of the DSP, however, it is limited

to a maximum wordlengh of 64 bits.

3.2.3 Multiplier with Fewer DSP Blocks

For complex and computationally intensive algorithms, large multipliers could be de-

signed with fewer DSPs. One method is to use Karatsuba-Ofman algorithm [52]. Classic

Karatsuba-Ofman algorithm reduces the multiplier complexity by exchanging multiplica-

tion with addition and it was extended by [36] to reduce DSP blocks usage for multiplier.

A two split example is shown as,

x · y = a1 · b0 + a0 · b1

= a1 · b1 + a0 · b0 − (a1 − a0) · (b1 − b0) (Eq. 3.5)

Noted that three multiplications, instead of four are needed in (Eq. 3.5). It is reported

in [36] that it could reduce the DSP blocks usage from 4 to 3 in a 34× 34 bit multiplier

at the cost of 68 additional LUTs and from 9 to 6 in a 52× 52 bit multiplier at the cost

of 312 additional LUTs.
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The other method, which is more efficient, is to arrange the DSP in the form of

“tiling” where 25 bits input is available in DSP blocks. [36] has also reported a 58 × 58

bit multiplier with 8 DSP blocks and 388 LUTs where non-standard tiling arrangement

of DSP blocks is used. Due to the special tiling arrangement, asymmetric DSP blocks

are fit into the 58 × 58 bit operand with only one small multiplier in the middle which

must be implemented using LUTs. The diagram of such method is shown in Figure 3.5.

In fact, there are many variations of “tiling like” multiplier design where operands of the

multiplier are not equal. When this happens, for example a 48×34 multiplier, can easily

be mapped to four DSP blocks, by dividing 48 bits into 24 + 24 bits and dividing 34 bits

into 17 + 17 bits. Noted that with the tiling arrangement, it is not simple to chain the

latency freq. slices DSPs
LogiCore 11 353 185 9
LogiCore 6 264 122 9
K-O-3* 6 317 331 6

Table 2. 51x51 multipliers on Virtex-4 (4vlx15sf363-12).

classical presentation of Karatsuba-Ofman is recursive. For
instance, for 68 bits, use two-part splitting to reduce 34x34
sub-multiplier count from 4 to 3, then use it again on each
obtained sub-multiplier, leading to a total of 9 DSPs in-
stead of the initial 16. The problem is that the second
splitting of the DXDY multiplier will entail a second ad-
dition/subtraction before one of the DSP blocks. This could
be managed by careful scheduling, but due to these two ad-
ditions, one of the sub-multipliers will now have to multiply
19-bit numbers, which doesn’t fit well our DSP blocks – it
will entail reducing k. We therefore prefer not to recurse on
the DXDY sub-multiplier, leading to a 10-DSP block im-
plementation.

A reader interested in even larger multipliers should read
Montgomery’s study [4].

3.5. Issues with the most recent devices

The Karatsuba-Ofman algorithm is useful on Virtex-II to
Virtex-4 as well as Stratix-II devices, to implement single
and double precision floating-point multiplication.

The larger (36 bit) DSP block granularity (see Sec-
tion 2.2) of Stratix-III and Stratix-IV prevents us from us-
ing the result of a 18x18 bit product twice, as needed by the
Karatsuba-Ofman algorithms. This pushes their relevance
to multipliers classically implemented as at least four 36x36
half-DSPs. The additive version should be considered, as it
may improve speed by saving some of the sign extensions.
The frequency will be limited by the input adders if they are
not pipelined or implemented as carry-select adders.

On Virtex-5 devices, the Karatsuba-Ofman algorithm can
be used if each embedded multiplier is considered as a
18x18 one, which is suboptimal. For instance, single pre-
cision K-O requires 3 DSP blocks, where the classical im-
plementation consumes 2 blocks only. We still have to find
a variant of Karatsuba-Ofman that exploits the 18x25 multi-
pliers to their full potential. X may be split in 17-bit chunks
and Y in 24-bit chunks, but then, in Equation (2), DX and
DY are two 25-bit numbers, and their product will require a
25x25 multiplier.

We now present an alternative multiplier design technique
which is specific to Virtex-5 devices.

4. NON-STANDARD TILINGS

This section optimizes the use of the Virtex-5 25x18 signed
multipliers. In this case, X has to be decomposed into 17-bit
chunks, while Y is decomposed into 24-bit chunks. Indeed,
in the Xilinx LogiCore Floating-Point Generator, version
3.0, a double-precision floating-point multiplier consumed
12 DSP slices (see Figure 3(a)): X was split into 3 24-bit
subwords, while Y was split into 4 17-bit subwords. This
splitting would be optimal for a 72x68 product, but quite
wasteful for the 53x53 multiplication required for double-
precision, as illustrated by Figure 3(a). In version 4.0 of
Floating-Point Generator, and in LogiCore multiplier start-
ing with version 11.0, DSP blocks are aranged in a different
way, detailed—as pointed out by one of the referrees—in [6,
p.78], and illustrated by Figure 3(b).

Figure 3(c), and the following equation, present an orig-
inal way of implementing double-precision (actually up to
58x58) multiplication, using only eight 18x25 multipliers.

XY = X0:23Y0:16 (M1)
+ 217(X0:23Y17:33 (M2)
+ 217(X0:16Y34:57 (M3)
+ 217X17:33Y34:57)) (M4)
+ 224(X24:40Y0:23 (M8)
+ 217(X41:57Y0:23 (M7)
+ 217(X34:57Y24:40 (M6)
+ 217X34:57Y41:57))) (M5)
+ 248X24:33Y24:33

(5)

The reader may check that each multiplier is a 17x24 one
except the last one. The proof that Equation (5) indeed com-
putes X × Y consists in considering

X × Y = (
57∑

i=0

2ixi)× (
57∑

j=0

2jyj) =
∑

i,j∈{0...57}
2i+jxiyj

and checking that each partial bit product 2i+jxiyj appears
once and only once in the right-hand side of Equation (5), as
illustrated by Figure 3(c).

The last line of Equation (5) is a 10x10 multiplier (the
white square at the center of Figure 3(c)). It could consume
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Fig. 3. 53-bit multiplication using Virtex-5 DSP48E. The
dashed square is the 53x53 multiplication.
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Figure 3.5: Tiling multiplier example

DSPs through dedicated routes and the adders are then implemented in LUTs.

More recently [53,54] have proposed advanced usages of such asymmetric DSP blocks

in building large multipliers. They are none-pipelined design and thus not suitable for

polynomial evaluators running in high speed.
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Conventional Squarer Design

It is common to implement a squaring operation using a standard multiplier. This may

be for reasons of resource sharing, generalization or simply convenience. According to

(Eq. 3.4), it is much more efficient to perform squaring using a specialized squarer when

multiplier grows quadratically as wordlength increases The computation of a square is

required in many DSP algorithms and thus for high performance applications, specialized

hardware for squaring may be desired. A dedicated squarer can be significantly faster,

consume less power, and be smaller than a multiplier and therefore they are widely

adopted in fixed point function evaluation [27] or in various floating point arithmetic

computations [28–30].

4.1 Squarer Designed for ASICs

In theory, a squarer can reduce the number of partial products by half compared to a

parallel multiplier, as both inputs are the same. For example, Figure 4.1 can be easily

dervied from Figure 3.3 with identical partial products identified in bold and thus they

can be added with one bit left shift. There are many variations of squarer design proposed

in the literature. In [51], 40% area reduction and 18.6% speed improvement is achieved

compared to the multiplier in ASIC, which applies the folding of partial products (which

can be seen in Fig. 4.1). Several other squarer designs have been reported to have even
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explain further. In theory, as both inputs are the same, a squarer can reduce the number of 

partial products, compared to a normal multiplier. For example, a 4 bit x 4 bit multiplier with 

input 𝑎3𝑎2𝑎1𝑎0 and 𝑏3𝑏2𝑏1𝑏0, will generate 16 partial products as shown in Figure 3.3,  

 

   𝑎3 𝑎2 𝑎1 𝑎0 
   𝑏3 𝑏2 𝑏1 𝑏0 
   𝑎3𝑏0 𝑎2𝑏0 𝑎1𝑏0 𝑎0𝑏0 
  𝑎3𝑏1 𝑎2𝑏1 𝑎1𝑏1 𝑎0𝑏1  
 𝑎3𝑏2 𝑎2𝑏2 𝑎1𝑏2 𝑎0𝑏2   
𝑎3𝑏3 𝑎2𝑏3 𝑎1𝑏3 𝑎30𝑏3    

Figure 3.4 

However, for a 4 bit x 4 bit squarer with only one input 𝑎3𝑎2𝑎1𝑎0, the partial products can be 

reduced to 10, as some of them are identical or can simply be added with one bit shift left. 

This is illustrated in Figure 3.5. 

 

 

   𝑎3 𝑎2 𝑎1 𝑎0 
   𝑎3 𝑎2 𝑎1 𝑎0 
   𝒂𝟑𝒂𝟎 𝒂𝟐𝒂𝟎 𝒂𝟏𝒂𝟎 𝑎0𝑎0 
  𝒂𝟑𝒂𝟏 𝒂𝟐𝒂𝟏 𝑎1𝑎1 𝒂𝟎𝒂𝟏  
 𝒂𝟑𝒂𝟐 𝑎2𝑎2 𝒂𝟏𝒂𝟐 𝒂𝟎𝒂𝟐   
𝑎3𝑎3 𝒂𝟐𝒂𝟑 𝒂𝟏𝒂𝟑 𝒂𝟎𝒂𝟑    
𝑎3𝑎3  𝑎2𝑎2 2𝑎0𝑎3 𝑎1𝑎1  𝑎0𝑎0 

 2𝑎2𝑎3 2𝑎1𝑎3 2𝑎1𝑎2 2𝑎0𝑎2 2𝑎0𝑎1  
Figure 3.6 

In [32], a 40% area reduction and 18.6% speed improvement was achieved by a squarer 

compared to the multiplier in an ASIC design. The design utilizes the symmetric partial 

products and applies the method discussed above.   

Several other squarer designs have been reported to have even higher area reductions as well 

as speed improvements [41-43]. These designs have all been implemented in custom circuits 

and are not easy to compare with our designs on FPGAs. None of them compares against a 

similar multiplier design after the implementation as well. Among them [41] has the smallest 

area, shorter delay and least amount of power.  

Figure 4.1: Partial product alignment of 4× 4 parallel squarer.

higher area reductions as well as speed improvements for ASIC solutions [31–33, 55]. In

the context of FPGA implementation, [35] has reported a squarer with Wallace-tree and

carry-select adder that requires 22% less LUTs, is 36.3% faster and enjoys a 45.6% power

saving on Xilinx 4052XL-1 FPGA compared to a generalized multiplier.

4.2 Squarer Based on Cascaded Method

In a DSP enabled FPGA, it is more efficient to build squarers using DSP blocks wherever

possible. A straightforward method for building large wordlength squaring circuits in

FPGA is by cascading DSPs as is briefly discussed in [36]. For squaring, x and y are

identical thus (Eq. 3.3) becomes:

x ·x = a20 + (a1a0 + a0a1) · 217 + a21 · 234 (Eq. 4.1)

Since the middle two terms in the bracket are the same, their summation can be simplified

to a one bit left shift. The alignment of DSP blocks shown in Figure 4.2 acheives this,

and has a similar pipeline to the general purpose multiplier. This alignment allows

a DSP block to be eliminated compared to using a standard multiplier – and as the

wordlength increases, more DSPs can be saved. Equations (Eq. 4.2) and (Eq. 4.3) below

show that using this method, only 6 and 10 DSPs are needed for three splits and four

splits operands respectively. This compares to 9 and 16 DSPs required, respectively, for
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Figure 4.2: Pipeline schematic of squarer based on cascading DSP chains.

the general purpose CoreGen multiplier.

x ·x = a20 + 2a1a0 · 217 +
(
a21 + 2a2a0

)
· 234

+ 2a2a1 · 251 + a22 · 268 (Eq. 4.2)

x ·x = a20 + 2a1a0 · 217 + (a21 + 2a2a0) · 234

+ (2a2a1 + 2a3a0) · 251 + (a22 + 2a3a1) · 268

+ 2a3a2 · 285 + a23 · 2102 (Eq. 4.3)

We can derive a similar equation to (Eq. 3.4) for the DSP count required for this method

with w bits split into k parts as given in (Eq. 4.4). Note that the relationship between w

and k is slightly different to that defined for the multiplier, for example, four splits are

needed for 59 bits instead of three.

f(k) =

{
(k2 + k)/2 if w − 17k > 1

(k2 + k)/2 + 1 if w − 17k ≤ 1
(Eq. 4.4)

In common with the multiplier, all the additions for the above squarer design lie within

the boundary of DSP blocks so the only circuit elements outside the DSP blocks are the

pipeline registers.

A similar rationale was used in [36] (targeting the Xilinx Virtex 4) for the FloPoCo

project [30]1. We have mapped the auto-generated FloPoCo squarer to the Virtex 6

1FloPoCo version 2.4.0, http://flopoco.gforge.inria.fr/
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FPGA for comparison purposes. However, we have not been able to produce expected

performance using ISE v13.4 as the design is not optimally pipelined for the newer DSP

architectures. Hence, in the course of our work, we have also rewritten an optimized

design for FloPoCo, based on the same decomposition and design principles, that we

refer to as the “cascaded method”. The implementation results of original FloPoCo and

the cascaded method will be presented in Section 4 where they are compared to the novel

method developed during the course of this research. We have adopted and extended

this method to the Virtex 6 FPGA, yielding good results (which will be discussed later

in Chapter 6).

4.3 Squarer Based on Non-standard Tiling Method

The cascaded method is a simple approach to build squaring circuits, but it still uses

a larger number of DSP blocks than is necessary. To further reduce DSP usage, the

tiling method [36] was proposed, applied to Xilinx Virtex 5 or newer FPGA devices

where 25×18 bit DSP blocks are supported. The main approach is to achieve efficiency

gains through maximizing the utilization of the asymmetrically sized DSP inputs. This

is similar to what has been proposed for the multiplier in Chapter 3. Two different tiling

methods were suggested for squaring circuits optimized for 53-bit operands; one of them

can reduce the number of DSPs from 6 (cascaded method) to 5. Figure 4.3 shows the

alignment of the 5 DSPs required to complete the square in this method. The main

drawback to this approach is the potentially high LUT usage, as there are four small

multiplications that must be implemented (two are shown in white in the middle top and

bottom left, and two in dark grey colour). As pointed out by the original author of [36],

“It is expected that implementing such equations will lead to a large LUT cost, partly due

to the many sub-multipliers, and partly due to the irregular weights of each line (no 17-bit

shifts) which may prevent optimal use of the internal adders of the DSP48E blocks.” [36].
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Fig. 5. Double-precision squaring on Virtex-5. Two possible
architectures.

are symmetrical with respect to the diagonal, so that each
symmetrical multiplication may be computed only once.
However, there are slight overlaps on the diagonal: the
darker squares are computed twice, and therefore the cor-
responding sub-product must be removed. These tilings are
designed in such a way that all the smaller sub-products may
be computed in LUTs at the peak DSP frequency.

Note that a square multiplication on the diagonal of size
n, implemented as LUT, should consume only n(n + 1)/2
LUTs instead of n2 thanks to symmetry.

We currently do not have implementation results. It is
expected that implementing such equations will lead to a
large LUT cost, partly due to the many sub-multipliers, and
partly due to the irregular weights of each line (no 17-bit
shifts) which may prevent optimal use of the internal adders
of the DSP48E blocks.

6. CONCLUSION

This article has shown that precious DSP resources can be
saved in several situations by exploiting the flexibility of the
FPGA target. An original family of multipliers for Virtex-5
is also introduced, along with original squarer architectures.
The reduction in DSP usage sometimes even entails a reduc-
tion in latency.

Some of these multipliers and squarers are already part of
the FloPoCo project4. We believe that the place of some of
these algorithms is in vendor core generators and synthesis
tools, where they will widen the space of implementation
trade-off offered to a designer.

The fact that the Karatsuba-Ofman technique is poorly
suited to the larger DSP granularity of last-generation de-
vices inspires some reflexions. The trend towards larger
granularity, otherwise visible in the increase of the LUT
complexity, is motivated by Rent’s law: Routing consumes
a larger share of the resources in larger-capacity devices [9].
Following this trend, the top entry of the top 10 predictions
of the FFCM conference 5 reads “FPGAs will have floating
point cores”. We hope this turns out to be wrong! Consid-
ering that GPUs already offer in 2009 massive numbers of

4www.ens-lyon.fr/LIP/Arenaire/Ware/FloPoCo/
5http://www.fccm.org/top10.php

floating-point cores, FPGAs should go further on their own
way, which has always been flexibility. Flexibility allows for
application-specific mix-and-match between integer, fixed
point and floating point numbers, between adders, multipli-
ers, dividers, and even more exotic operators [1, 10]. The
integer multipliers and squarers studied in this article are
not intended only for floating-point multipliers and squarers,
they are also needed pervasively in coarser operators such as
elementary functions, variations around the Euclidean norm√

x2 + y2 + z2, etc.
For this reason, while acknowledging that the design

of a new FPGA is a difficult trade-off between flexibility,
routability, performance and ease of programming, we think
FPGAs need smaller / more flexible DSP blocks, not larger
ones.
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Figure 4.3: Tiling method for square

Although he did not provide full implementation details, we have reproduced the design

based on Figure 4.3, which applies to operand widths between 43 and 53 bits, to compare

with the other methods evaluated.
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Chapter 5

Novel Polynomial Evaluation
Algorithm

In this chapter, a novel polynomial evaluation algorithm is proposed. It involves trans-

formation of the general form of polynomial into “square rich” format. The main benefit

of the algorithm is to achieve high level of parallelism with minimum hardware cost.

Although the total steps will be more than those used for Horner’s Rule, the implemen-

tation in hardware will be even smaller than the “optimum method in theory”, thanks to

the efficiency gains in the use of squarer units. The latency of this method is similar to

Estrin’s method as described in the literature but uses much less hardware resource than

the highly paralleled method. The algorithm can be applied to polynomials of arbitrary

degree.

5.1 First Hypothesis

The novel method is based on the hypothesis below, beginning with a 2nd degree example.

Hypothesis 1 To evaluate the following 2nd order polynomial,

f(x) =
2∑

i=0

aix
i (Eq. 5.1)

31



Chapter 5. Novel Polynomial Evaluation Algorithm

it is advantageous to use,

f(x) = a2 · ((x+m2)
2 + n2) (Eq. 5.2)

to evaluate the polynomial.

The new format completes the square and converts the original polynomial into its vertex

form. In this equation (Eq. 5.2) m2 and n2 are coefficients derived from a1 and a0, thus

they are considered as being known values. Therefore, four steps are needed to compute

(Eq. 5.2), which are one addition, one squaring followed by another addition, and a

final multiplication. The same number of steps are needed if Horner’s Rule is used to

compute the 2nd degree polynomial, however, it requires two multipliers and two adders.

The advantage of the proposed method is obvious in terms of hardware cost where one

multiplier is shrunk to a squarer, even though the total number of steps is the same as

for Horner’s Rule.

5.2 Novel Method Example

The above method can be applied to general polynomial evaluation as will be illustrated

in an example for the same 5th degree polynomial in (Eq. 2.5),

Hypothesis 2 A 5th degree polynomial which can be expressed as,

f(x) =
5∑

i=0

aix
i (Eq. 5.3)

can be evaluated using,

f(x) = a5 ·x · [(x2 +m5)
2 + n5] + a4 · [(x2 +m4)

2 + n4] (Eq. 5.4)

Similar to hypothesis 1, n4, n5, m4 and m5 are all considered to be known real values

derived from the original coefficient set. To derive the above arrangement of terms, the

original polynomial can be divided into two subexpressions,

f(x) = x · (a5x4 + a3x
2 + a1) + (a4x

4 + a2x
2 + a0) (Eq. 5.5)
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If the method in hypothesis 1 is applied to complete the square in each bracket then the

equation becomes (Eq. 5.4).

In this equation (Eq. 5.4), the total multiplication can be completed by employing

three multipliers and three squarers. To evaluate using the new format, x2 is calculated

first to be shared among both subexpressions and to be added with a coefficient in

each subexpression. This is subsequently followed by another square function and by

an addition. Meanwhile, the computation of term a5 ·x should be completed and both

subexpressions can then immediately multiply their coefficients. The final addition is

performed using one adder. In terms of latency, the novel method could be as fast as

2 ·Tsq + Tmul + 3 ·Tadd. Figure 5.1 shows the evaluation sequence.
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Figure 5.1: Diagram for evaluating 5th degree polynomials using proposed method.

Table 5.1 compares the latency with conventional methods. It is shown to be similar to

Estrin’s Method (only two adders slower and the gap could be smaller in real application),

and is much faster than the other two. The effective hardware cost, is summarized in

Table 5.2. Compared to five multipliers and five adders used by Horner’s Rule, the

proposed method involves one more step but can achieve hardware savings if an efficient
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Method Latency
Horer’s Rule 5 · (Tmul + Tadd)

Dorn’s Method Tsq + 3 ·Tmul + 3 ·Tadd
Estrin’s Method 2 ·Tsq + Tmul + Tadd

Proposed Method 2 ·Tsqr + Tmul + 3 ·Tadd

Table 5.1: Latency for evaluating 5th degree polynomials using proposed method vs.
conventional methods.

Method Multiplier Squarer Adder
Horner’s Rule 5 5

Dorn’s Method 6 1 5
Estrin’s Method 5 2 5

Proposed Method 3 3 5

Table 5.2: Hardware macro count for evaluating 5th degree polynomials using proposed
method vs. conventional methods.

squarer exists (i.e. where a squarer circuit is more efficient than a general multiplier). The

proposed method shows a tremendous advantage over the other two parallel methods,

where the expense of parallelism is very much higher.

As mentioned, the advantage over Horner’s rule presupposes the existence of an ef-

ficient squarer. If the design published in [51] is used, the requirement is met without

doubt. In fact, a novel efficient squarer (on reconfigurable hardware) has been invented

during the course of this research, which will be discussed in the Chapter 6. The com-

bined benefit of the novel polynomial evaluation process using the novel squarer will be

shown in the system implementation results for the overall polynomial evaluation process,

presented later.

5.3 Generalized Format

The novel polynomial method presented here can, of course, be generalized to higher

degree. The process of generalization will now be explained in detail. Consider a general

kth degree polynomial in (Eq. 1.1), Define an integer number j, which is the binary
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logarithm of k:

j = dlog2ke (Eq. 5.6)

Then the equation can be divided into the following groups,

f(x) = (akx
k + ak−jx

k−j + ak−2jx
k−2j)

+ (ak−1x
k−1 + ak−j−1x

k−j−1 + ak−2j−1x
k−2j−1) + ...

+ (ak−j+1x
k−j+1 + ak−2j+1x

k−2j+1 + ak−3j+1x
k−3j+1) (Eq. 5.7)

If k− 3j + 1 > 0, i.e. the polynomial is greater than 20th degree, more elements shall be

grouped after the above equation using the same general principle. Here, for reasons of

space and the scope of the thesis, only examples for degree less than 20 are presented.

Let us now define,

pt(x) = (ak−tx
k−t + ak−j−tx

k−j−t + ak−2j−tx
k−2j−t) (Eq. 5.8)

Where, t ranges from [0, j-1]. In pt(x), a common divisor of ak−tx
k−2j−t must be extracted

so that the equation becomes,

pt(x) = ak−tx
k−2j−t(x2j +

ak−j−t
ak−t

xj +
ak−2j−t
ak−t

) (Eq. 5.9)

Applying the method proposed in Hypothesis 1 and then (Eq. 5.9) becomes,

pt(x) = ak−tx
k−2j−t(xj +m2

k−t) + nk−t (Eq. 5.10)

and

f(x) = p0 + p1 + ...+ pj−1 (Eq. 5.11)

Equation (Eq. 5.10) and (Eq. 5.11) are the general format for the proposed method to

evaluate polynomials with arbitary degree.
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5.4 Derivation of the Coefficient Set and Accuracy

Concern

The proposed method needs a new set of coefficients, which are a one-off derivation from

the original coefficients. For example, in (Eq. 5.4) the new set of coefficients would be

computed from the following,

m5 =
a3
2a5

(Eq. 5.12)

m4 =
a2
2a4

(Eq. 5.13)

n5 =
a1
a5
− a23

4a25
(Eq. 5.14)

n4 =
a0
a4
− a22

4a24
(Eq. 5.15)

For an application such as an adaptive filter, this may result in an additional overhead

every time the polynomial adapts, however the evaluation process can be performed when

deriving the polynomial. Even when the coefficients are computed on the fly, compared

to the approximation process, this overhead is small and tends to zero as the number

of evaluations performed using the new coefficient set becomes large. In the system

considered in this thesis, the coefficients are all pre-stored in RAM when developing the

RTL and this overhead will not need to be accounted for. In fact, this is considered to

be a typical real-world scenario – where the polynomial is generated during system setup

or programming, rather than on the fly.

In such real systems, especially when fixed point format processing is used for com-

putation, the new set of coefficients might result in a larger evaluation error than if the

original set was used. This important consideration will be discussed as part of the system

implementation discussions, where guard bits may be needed to maintain the accuracy.

One has to note that in certain conditions, when n5 and n4 requires large wordlength

to keep precisions on both a1 and a0, extremely large multiplications might be incurred.
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This is not desired as it will penalize the performance gain. An alternative equation

could be used instead of (Eq. 5.4) and the new format is shown in (Eq. 5.16).

f(x) = [a5 · (x2 +m′5)
2 + n′5] ·x+ a4(x

2 +m′4)
2 + n′4 (Eq. 5.16)

where,

m′5 =
a3
2a5

(Eq. 5.17)

m′4 =
a2
2a4

(Eq. 5.18)

n′5 = a1 −
a23
4a5

(Eq. 5.19)

n′4 = a0 −
a22
4a4

(Eq. 5.20)

The alternative equation has the same hardware cost compared to hypothesis 2 shown in

Table 5.3. The penalty is one more multiplication stage inserted in the critical path for

polynomial whose degree is higher than 4 (but only one even when degree goes up). This

will increase the latency for polynomial evaluators, however, it may not be significant in

real-world and it will be discussed in the later chapters.

The alternative equation is used in Chapter 7 to account for the problem in the real

application. It will compare the latency between novel method and Estrin’s method in

both 4th and 5th degree polynomial, where the later one has slightly longer latency in the

novel method compared to Estrin’s method.

Method Multiplier Squarer Adder
Alternative Equation 3 3 5

Proposed Method 3 3 5

Table 5.3: Hardware macro count for evaluating 5th degree polynomials using alternative
equation vs. proposed methods.

37



Chapter 5. Novel Polynomial Evaluation Algorithm

5.5 Motivation of Squarer and Reconfigurable Hard-

ware Implementation

implemention the novel method in reconfigurable hardware, specifically FPGAs, rather

than ASIC has been completed. It is not cost effective to build a polynomial evaluation

unit in ASIC for each individual application, where different applications need to be

optimized based on different precision, area and performance requirements. However, it

is convenient to build the design in FPGA, where data paths are highly customizable

and the development duration and financial cost are acceptable at the same time. In

the modern FPGAs, where more dedicated functional blocks such as DSPs and BRAMs

are available, it becomes much more efficient to map such application specific processing

units onto FPGA.

The efficiency of the novel method largely depends on how well the squarer is de-

signed. Conventional squarers mainly rely on the benefits of folding the partial products,

compared to the situation in the parallel multiplier. When targeting to implement the

system on FPGA, exploration of various squarer structures has been done and it has been

decided to build an efficient squarer based on modern FPGA architecture, proposed in

the subsequent chapter.
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Chapter 6

Novel Squarer Implementation on
FPGA

6.1 Proposed Design

In this chapter we propose an optimised squaring algorithm implementation on FPGA

with lower DSP block cost. The algorithm is flexible with respect to operand size, though

it targets higher wordlength, since (as will be shown later) it improves on existing methods

when operand sizes are equal or larger than 42 bits.

The algorithm was inspired by the same Karatsuba-Ofman algorithm.However, the

same reduction in [36] does not apply for squaring. According to equations in [56],

there are no more advantages in using the reformation if both inputs are the same. We

have thus modified the classic Karatsuba-Ofman algorithm, only applying specific parts

of the process. By rearranging the squaring equation using our proposed algorithm,

functions performed by the DSP blocks can be mapped to a small number of LUTs.

As wordlength increases, more DSPs can be exchanged with LUTs, and the LUT count

grows only gradually. We demonstrate the algorithm using two cases in the following.

6.1.1 Squarers for Three Splits Input

We will take a 52×52 bit squarer to illustrate the algorithm, where equation (Eq. 4.2)

was the equivalent squaring equation using the cascaded method. We now define m and
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n as,

m = a2 − a1 (Eq. 6.1)

n = 2a0 − a1 (Eq. 6.2)

and their product as,

m ·n = 2a2a0 − 2a1a0 − a2a1 + a21 (Eq. 6.3)

This can be rewritten to provide the term a21+2a2a0 (which was in the middle of (Eq. 4.2))

as,

a21 + 2a2a0 = mn+ 2a1a0 + a2a1 (Eq. 6.4)

Now substituting (Eq. 6.4) into (Eq. 4.2) gives the following,

x ·x = a20

+ 2a1a0 · 217

+ (mn+ 2a1a0 + a2a1) · 234

+ 2a2a1 · 251

+ a22 · 268 (Eq. 6.5)

In the formulation of (Eq. 6.5), we can see that only 5 DSP blocks are required. The

DSPs are configured to compute the sub products a20, 2a1a0, a2a1, mn and a22 (named

DSPs p0 p1 p2 p3 and p4). The repeated terms will be added using LUTs or post-adders

in the DSP blocks. Compared to the 6 DSP blocks needed in the cascaded method,

one fewer DSP block is required (16.7% saving), matching the DSP block savings of the

tiling method (also note that DSP reduction becomes greater as the operand word size

increases).

The main benefit of this transformation is the reduced cost for the replacement logic:

The overhead in the algorithm is two 17 bit adders needed to compute m and n, and
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adders to accumulate those sub products that cannot be added using the post-adders in

the DSP blocks. Compared to the tiling method, which requires small multiplies and

complex additions, a careful mapping of the adders in our algorithm can significantly

reduce the extra LUT overhead. Specifically, for Virtex 6 FPGAs, it only requires one

17 bit adder using LUTs to work out one of m or n, since the other can be computed

using the pre-adder in DSP block p3. On the other hand, the remaining addition has to

be mapped efficiently with two cascaded chains which can be found from (Eq. 6.5). The

two chains are,

chain0 = 2a1a0 + a2a1 · 217 +mn · 217 (Eq. 6.6)

chain1 = 2a1a0 + 2a2a1 · 217 (Eq. 6.7)

chain0 is the output directly from DSPs p3, p2 and p1 with the cascaded addition chain.

chain1 can be computed in the form of

2a1a0 + a2a1 · 217 + a2a1 · 217 (Eq. 6.8)

which can be easily derived from p2 and p1 in LUTs as well. During the same cycle of

finishing chain0, the second chain finishes the addition so that they are summed up in

the following cycle. The whole process requires one 34-bit adder to obtain chain1 and

one 51-bit adder to add the two chains. Figure 6.1 shows the overall implementation

schematic of this squaring circuit with pipeline registers.

As a result, both additions for lsb and msb of the squarer are performed separately

instead of in the cascaded chain. The 17 bit addition for the lsbs can be implemented in

LUTs and the msbs can make use of the post adder in DSP p4, by using its input bus

C as well as the input CARRYIN. Consider that the input timing for input bus C and

CARRYIN are longer than the dedicated routes, the signals are further pipelined inside

the DSP block by enabling CREG and CINREG. Compared to the dedicated routes
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Figure 6.1: Pipeline schematic of squarer for three splits input.

between DSPs, the routes from DSP to Slice are slower and buses of registers are used

to capture the data from the DSP before being manipulated in the FPGA fabric. This

increases the latency by one cycle. With the pipeline design shown in Figure 6.1 having

a total latency of 9, the system clock speed can be maintained at nearly the maximum

frequency of the DSP, which is 450 MHz for the target device.

The new algorithm can be applied to longer wordlengths. When operands are above

53 bits, not only does a22 need two DSPs limited by the input width, but m ·n cannot fit

into one DSP as well, due to both operands exceeding 18 bits. Therefore a minor change

is required to the definition of m and n by making,

m = 2a2 − a1 (Eq. 6.9)

n = a0 − a1 (Eq. 6.10)

This now ensures that n is only 18 bits and hence (Eq. 6.4) gives,

a21 + 2a2a0 = mn+ a1a0 + 2a2a1 (Eq. 6.11)
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Therefore, (Eq. 6.5) becomes,

x ·x = a20

+ 2a1a0 · 217

+ (mn+ a1a0 + 2a2a1) · 234

+ 2a2a1 · 251

+ a22 · 268 (Eq. 6.12)

Consequently, the relations between the two chains will change from deriving 2a1a0 +

2a2a1 · 217 based on 2a1a0 + a2a1 · 217, to the opposite, requiring a wider adder for the

computation.

Specifically for the 53-bit squarer, since a2 is 19 bits, a22 requires only one DSP with

an adder made from LUTs. For both designs above, the architecture is similar to Figure

6.1 and they are shown in the appendix.

6.1.2 Squarer for Four Splits and More

When operands are above 59 bits, the inputs have to split into four parts. Take 64×64

bit as an example. Here, m and n are defined in the same manner as in the case of three

splits and the term a21 + 2a2a0 can be represented by (Eq. 6.11). Similarly, p and q can

be defined as,

p = 2a3 − a2 (Eq. 6.13)

q = a1 − a2 (Eq. 6.14)

and term a22 + 2a3a1 can then be written as,

a22 + 2a3a1 = pq + a2a1 + 2a3a2 (Eq. 6.15)
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Hence, the squaring equation becomes,

x ·x = a20

+ 2a1a0 · 217

+ (mn+ a1a0 + 2a2a1) · 234

+ (2a2a1 + 2a3a0) · 251

+ (pq + a2a1 + 2a3a2) · 268

+ 2a3a2 · 285

+ a23 · 2102 (Eq. 6.16)

Equation (Eq. 6.16) reveals that only 8 DSPs are needed to compute the square. We

enumerate the DSPs from p0 to p7 for a20, a1a0, a2a1, mn, 2a3a0, pq, 2a3a2 and a23

respectively. The method saves 2 DSPs over the cascaded equivalent (a 20% saving). In

contrast, the tiling method does not propose a solution for operands this large.

Clearly, as operand size increases, the additional circuitry needed to add the partial

products is more complex. To utilise the post-adder more efficiently, three chains of DSPs

are defined, which are

chain0 = a1a0 + a2a1 · 217 (Eq. 6.17)

chain1 = chain0 +mn+ 2a3a0 · 217 + pq · 234 (Eq. 6.18)

chain2 = a2a1 + 2a3a2 · 217 (Eq. 6.19)

The equation (Eq. 6.16) could be represented using these chains as,

x ·x = a20

+ 2chain0 · 217 + chain1 · 234

+ chain2 · 251 + chain2 · 268

+ a23 · 2102 (Eq. 6.20)
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Figure 6.2: Adder alignment of squarer for four splits input.

It is interesting that a2a1 is used in both chain0 and chain2, which is not possible to

achieve by using the dedicated routes from PCOUT to the adjacent PCIN in both cases.

However, we can use the C inputs as an alternative way to connect the post-adder with

the previous DSP instead. In fact, we implement this in the addition for chain0. When

chain0 is used to form chain1, the results from that DSP p1 can then be added inside the

next DSP p3 through dedicated routes with no shift. In this way, only DSP p0 and p2

have the post-adder bypassed. There is one limitation in this arrangement: a 4-bit adder

is needed on top of the post-adder to complete the 51 bit addition, due to the wordlength

limitation of the C input of the DSP. This small adder, implemented in LUTs, takes the

carry from the p1 output and adds the 4 msbs from p2. The equation (Eq. 6.16) can be

then represented using p0 to p6, which is,

x ·x = p20

+ 2 {s p12, p1} · 217

+ {p5, p4 [16 : 0] , p3 [16 : 0]} · 234

+ {p6, p2 [16 : 0]} · 251

+ {p6, p2 [16 : 0]} · 268

+ s p12 · 281

+ a23 · 2102 (Eq. 6.21)

s p12 in (Eq. 6.21) is the 4 bit adder which is defined as

s p12 = p1[47] + p2[33 : 30] (Eq. 6.22)
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Figure 6.3: Pipeline schematic of squarer for four splits input.
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The last DSP performs the final addition similar to the last DSP in the 52×52 bit

example. Other than the last adder, the rest are implemented in LUTs, which are

aligned as shown in Figure 6.2.

The grey area in Figure 6.2 is implemented using a 3:1 compressor, which only uses one

LUT per bit by the default mapping method in ISE. However, based on our experiments,

this becomes the critical path in the design. The schematic of a 1 bit 3:1 compressor

can be found in [57], where two functions are shared in one LUT. Limited by the O5 to

A/B/C/DMUX delay in a particular Slice, which is a compulsory path if the logic is

combined in one LUT, the negative setup slack is around 20% of the minimum period of

the DSP, regardless of speed grade. Hence, we map the 3:1 compressor into two LUTs

per bit instead to avoid the shared logic overhead. In this way, the O6 to A/B/C/D

paths are available for each logic function in individual LUTs, which is much faster than

the O5 to A/B/C/DMUX paths. Overall, six pipeline stages are designed to finish the

addition (one box in Figure 6.3) and the total latency is 13 cycles. With this pipeline

design, the system can sustain the 450 MHz clock rate.

The approach for even higher wordlengths is similar to the above examples and the

DSP count for higher wordlength can be as low as:

f(k) =

{
(k2 − k + 4)/2 if w − 17k ≥ 1

(k2 − k + 4)/2 + 1 if w − 17k < 1
(Eq. 6.23)

where k > 2. Note that the reduced DSP block usage, compared to the standard cascaded

method, increases much slower, resulting in higher gains with extremely large operands.

With carefully aligned adders and formations of DSP chains, the extra LUT overhead

can be constrained to be relatively small compared to the number of DSP blocks saved,

however the exact implementation details of higher numbers of splits beyond four are not

presented here for reasons of space.
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Size CoreGen FloPoCo Cascaded Tiling Proposed
42–52 9 6 6 5 5

53 10 6 7 5 5
54 10 6 7 N/A 6

55–58 10 7 7 N/A 6
59 10 10 10 N/A 8

60–64 16 10 10 N/A 8

Table 6.1: DSP block usage for all methods.

6.2 Implementation Results

The proposed algorithm has been synthesised, placed and routed using ISE version 13.4,

targeting the Xilinx Virtex 6 XC6VLX240T-1 FPGA. A design generator has been built

to expand the algorithm across input operand wordlengths from 42 to 64 bits, inclusive.

Both three splits (42 to 58 bits) and four splits (59 to 64 bits) are supported. The cascaded

squarer designs as well as the general purpose multiplier designs provided by Xilinx

CoreGen have been implemented for comparison across the same range of wordlengths.

Similarly, squarers from the FloPoCo tool have been compiled as another reference point.

The tiling method has been built for wordlengths between 43 and 53 bits.

Table 6.1 shows the total number of DSPs used in each algorithm. The proposed

algorithm shows a gain across wordlengths and consumes up to 50% fewer DSP blocks

compared to a general purpose multiplier. The tiling method has the same DSP count

but only applies to size between 43 bits and 53 bits. Across most of the range, the

proposed method uses 14.3 to 20% fewer DSP blocks than the cascaded method and

FloPoCo squarers.

To quantify the total cost among different methods, we compute an equivalent LUT

cost to represent one DSP block. This is computed by taking the total number of LUTs

in the device and dividing by the total number of DSP blocks. For the given FPGA,

which has 150720 LUTs and 768 DSP blocks, this equals 196 (it ranges from 160 to 240
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Figure 6.4: Equivalent LUT usage for all methods against operand word length.

for most general purpose Xilinx Virtex series FPGAs). This metric is used to quantify

the trade-off between DSP blocks and LUTs.

Figure 6.4 shows the equivalent cost for all the implemented designs for the range of

wordlengths. Compared to the cascaded method and the design from FloPoCo, both the

tiling method and the proposed method show an advantage in terms of total equivalent

LUTs. For the 53-bit squarer, which is the optimal size for the tiling method, both

methods save two DSP blocks over the cascaded method but the proposed method uses

21.8% fewer LUTs to achieve this. Between 43 and 52 bits, where both methods use 5

DSPs, the tiling method uses 127 to 216 LUTs to replace each DSP compared to 107

to 127 LUTs for the proposed method. This translates to up to a 41.2% improvement

over the tiling method for the given operand word sizes. It is not possible to show the

equivalent number of LUTs for the general purpose multiplier on the same axis, as for

high wordlength the cost becomes as high as 3528 LUTs.

The proposed method is flexible in terms of operand size without significant efficiency
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Figure 6.5: LUTs per DSP saved (from the cascaded method) ratio for tiling and proposed
methods against operand word length.

penalties. Figure 6.5 shows the LUTs required per saved DSP compared to the cascaded

method for the proposed method and the tiling method. Two horizontal lines show

the LUTs:DSP block ratio for the target device and for the Xilinx Virtex6 XC6VSX315T

which is a DSP-rich FPGA. The tiling method reaches an architectural limit for replacing

DSP with LUTs above a wordlength of 49 bits. In contrast, even for the DSP rich FPGAs,

where a DSP block is worth as few as 146 LUTs, it is still worthwhile to use the proposed

algorithm to reduce the DSP count for a large range of wordlenghts. The trend in the

graph repeats every 17 bits as for between 42 and 59 bits, when more DSPs can be saved

compared to the cascaded method.

Figure 6.6 plots the maximum post place and route frequency of the evaluated meth-

ods. The proposed method, along with the cascaded method and the CoreGen multiplier

are able to sustain speed as operand wordlength increases. The tiling method, due to dif-

ferent synthesized results for the small LUT multipliers, exhibits wide speed variations as

operand size increases. For the FloPoCo squarer, the speed drops significantly at larger
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Figure 6.6: Maximum frequency for all methods against operand word length.

wordlengths due to the pipeline design adopted by the method not being optimized for

the Virtex 6 architecture.
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Implementation of Polynomial
Evaluator on FPGA

We’ve built the polynomial evaluator on the targeted Xilinx Virtex 6 FPGA (XC6VLX240T-

1) as well, synthesized, placed and routed using ISE v13.4 with default settings. We lever-

age much of the work done by FloPoCo project to generate the test cases for polynomial

evaluator using its fixed point function evaluator module (Figure 7.1), while replacing

the polynomial evaluator core with alternative methods, shown in shaded rectangular in

Figure 7.1. Two function evaluators are built in this thesis, one is a 5th degree polyno-

mial used to approximate the function sin(x ·π) within the range of x ∈ [0, 1], and the

other is a 4th degree polynomial used to approximate the function log2(
x
2

+ 1) within the

same range. We define both input and output of the polynomials to be 52 bit fixed point

Coefficient
Table

Polynomial
Evaluatorx f(x)

Function Evaluator

Figure 7.1: System diagram of fixed point function evaluator.
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number. Any new coefficients will be derived based on the coefficients generated from

FloPoCo tool to maintain the approximation error. Squaring are implemented using novel

method. The intermediate steps are truncated to reduce the unnecessary computation

complexity with only guard bits to ensure that the evaluation error is within require-

ment. The design is also optimized to fit the size of primitive in the targeted FPGA.

The pipeline design of the alternative methods follows the FloPoCo default strategy in

pipelining adders and multipliers except for DSP instance. For the same reason stated

in Chapter 6, DSP block pipeline is done by instantiate Xilinx primitive with optional

registers turned on by attributes (this applies to FloPoCo design as well). Though the

design can’t reach maximum frequency of DSP block in the end, it is a more fair com-

parison among different methods. The implementation results are presented to compare

the hardware cost and performance of all three methods.

7.1 Function Evaluator in FloPoCo

In FloPoCo project, a fixed point function evaluator can be generated by using the

following command.

flopoco FunctionEvaluator function wI wO degree

The function evaluator approximate the function using Sollya tool 1. Sollya is a

tool targeted to the automatized implementation of mathematical floating-point libraries

and it offers a fast Remez algorithm to generate polynomials for approximation. A

simple range reduction is performed which consists of splitting the input intervals into

2i sub-intervals. For each intervals, the approximated polynomial fi(x) is provided by

Sollya. The coefficients for all the polynomials are built into a table and implemented in

Block RAM, when it is mapped to FPGA. The polynomial evaluator uses the Horner’s

Rule and with the flexibility of FPGA, the wordlength of coefficients are minimized and

1Version 3.0 http://sollya.gforge.inria.fr/
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Figure 1. Automated implementation flow

and multipliers), which therefore have to be built to accom-
modate the worst-case among these polynomial. Figure 3
describes the resulting architecture.

Compared to a single polynomial on the interval, this
range reduction increases the storage space required, but de-
creases the cost of the evaluation hardware for two reasons.
First, for a given target accuracy εtotal, the degree of each of
the pi decreases with k. There is a strong threshold effect
here, and for a given degree there is a minimal k that allows
to achieve the accuracy. Second, the reduced argument y has
k bits less than the input argument x, which will reduce the
input size of the corresponding multipliers. If we target an
FPGA with DSP blocks, there will also be a threshold effect
here on the number of DSP blocks used.

Many other range reductions are possible, most related to
a given function or class of functions, like the logarithmic
segmentation used in [2]. For an overview, see Muller [7].
Most of our contributions are independent of the range
reduction used.

B. Polynomial approximation

One may use the well-known Taylor or Chebyshev ap-
proximation polynomials of arbitrary degree d [7]. These
polynomials can be obtained analytically, or using computer
algebra systems. A third method of polynomial approxima-
tion is Remez’ algorithm, a numerical process that, under
some conditions, converges to the minimax approximation:
the polynomial of degree d that minimizes the maximal dif-
ference between the polynomial and the function. We denote
εapprox the approximation error, defined as the maximum
absolute difference between the polynomial and the function.

Between approximation and evaluation, for an efficient
machine implementation, one has to round the coefficients
of the minimax polynomial (which has real numbers in
theory, and are computed with large precision in practice) to
smaller-precision numbers suitable for efficient evaluation.
On a processor, one will typically try to round to single-
or double-precision numbers. On an FPGA, we may build
adders and multipliers of arbitrary size, so we have one
more question to answer: what is the optimal size of these
coefficients? In [11], this question is answered by an error
analysis that considers separately the error of rounding each

coefficient of the minimax polynomial (considered as a real-
coefficient one) and tries to minimize the bit-width of the
rounded coefficients while remaining within acceptable error
bounds.

However, there is no guarantee that the polynomial ob-
tained by rounding the coefficients of the real minimax
polynomial is the minimax among the polynomials with
coefficients constrained to these bit-width. Indeed, this as-
sumption is generally wrong. One may obtain much more
accurate polynomials for the same coefficient bit-width using
a modified Remez algorithm due to Brisebarre and Chevil-
lard [15] and implemented as the fpminimax command of
the Sollya tool. This command inputs a function, an interval
and a list of constraints on the coefficient (e.g. constraints
on bitwidths), and returns a polynomial that is very close to
the best minimax approximation polynomial among those
with such constrained coefficients.

Since the approximation polynomial now has constrained
coefficients, we will not round these coefficients anymore. In
other words, we have merged the approximation error and
the coefficient truncation error of [11] into a single error,
which we still denote εapprox. The only remaining rounding
or truncation errors to consider are those that happen during
the evaluation of the polynomial.

Let us now provide a good heuristic for determining the
coefficient constraints. Let p(y) = a0+a1y+a2y

2+...+ady
d

be the polynomial on one of the sub-intervals (for clarity, we
remove the indices corresponding to the sub-interval). The
constraints taken by fpminimax are the minimal weights

a0

a1y

a2y
2

k

2k

any
n

2−p

Figure 2. Alignment of the monomials
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Figure 7.2: Procedure of generating function evaluator

rounded while maintaining within the error bound. The overall error analysis is presented

in [43] written in C++, however, it is out of the scope of this thesis, as we only interest

in evaluation error. Figure 7.2 is the diagram of the process to generate the function

evaluator.

In this thesis, a VHDL design is generated from the above process, with a polynomial

evaluator and a table of coefficients. The range under approximation is divided into 256

intervals with a set of coefficients in each intervals. The coefficient table will take in

the input x and output a set of coefficients for each interval in one clock cycle. The

polynomial evaluator will compute the equation based on the coefficients and input x.

It has been discussed in previous chapter that by using Horner’s Rule, five multipliers

and five adders are used for 5th degree polynomial based on (Eq. 2.6). However, the

size of them could be different based on the precision requirement, and this is done by

rounding the coefficients and truncating the intermediate results after each step. Table

7.1 shows the size of the wordlength of the coefficients after rounding. The overall size

of the coefficients is 246 bit. With the 256 intervals, the coefficient table is then formed

into an array of size 256× 246, which is 22% less than the coefficients without rounding.

The array is further optimized and re-shaped to 512× 123 in order to fit more efficiently

into three RAMB36E1 block, configured as 512× 72.

The rounding of the coefficients also help on reducing the multiplier sizes. Column

two in Table 7.2 shows the effect of rounding the coefficients. However, the multiplier

could be further shrunk by truncation. Table 7.2 summarizes the DSP count for each
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Coefficient Wordlength
a0 56
a1 50
a2 44
a3 38
a4 30
a5 22

Table 7.1: Coefficient table for 5th degree polynomial evaluator.

Multiplier Without Optimization After Rounding After Truncation
p1x 9 6 6
p2x 9 6 5
p3x 9 5 3
p4x 9 4 3
a5x 9 2 1

Table 7.2: DSP count for each multiplication for 5th degree polynomial evaluator.

multiplication after truncation as well. The DSP cost reduces to 18 or 45% less in total

compared to no optimization is performed. Noted that pi is defined as pi = (pi−1+ai)x in

the table. The author of FloPoCo tool does not use conventional cascaded chain to build

multipliers. “Tiling like” multiplier are used instead which fits more tightly with the

DSP block. Consequently, the post-adders in DSP blocks are not able to be used. The

partial products are generated from the DSP blocks and added using 3:1 compressors and

carry propagate adders built from LUTs instead. Small multipliers are used to perform

the multiplication of guard bit that required, however exceeds the operand wordlength

of DSP. Figure 7.3 shows the overall schematic of the functional evaluator.

In the other application where 4th degree polynomial is used, four multipliers and four

adders are required by Horner’s Rule, which shows in (Eq. 7.1).

f(x) = (((a4x+ a3)x+ a2)x+ a1)x+ a0 (Eq. 7.1)

Table 7.3 shows the coefficients generated from FloPoCo tool. 19% of the bit is rounded

from the coefficients in 4th degree polynomial evaluator and the array is re-shaped to
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Figure 7.3: Schematic of 5th degree polynomial evaluator.

Coefficient Wordlength
a0 56
a1 48
a2 39
a3 31
a4 22

Table 7.3: Coefficient table for 4th degree polynomial evaluator.

512 × 100. However, limited by the smallest size of RAMB36E1 configuration, it still

needs three block RAM to store the table. Table 7.4 summaries the DSP count, which

shows 61.2% DSP reduction in total after optimization. The schematic of 4th degree

evaluator is similar to the 5th degree one and it is not shown here for the reason of space.

Multiplier Without Optimization After Rounding After Truncation
p1x 9 6 5
p2x 9 5 4
p3x 9 4 3
a4x 9 2 2

Table 7.4: DSP count for each multiplication for 4th degree polynomial evaluator.

7.2 Polynomial Evaluator using Estrin’s Method

Estrin’s method can be used to parallelize the polynomial evaluation process. In this

thesis, we’ve tried to replace the design from FloPoCo first with the Estrin’s method.
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In order to keep the approximation error in the function evaluator, coefficients, input

range and degree of polynomial are consistent with the design from FloPoCo. Based

on (Eq. 2.8), it requires five multipliers, two squarers and five adders to complete the

computation. The size of x is altered to reduce the computation complexity while main-

taining the evaluation error no worse than FloPoCo evaluator could achieve. Figure 7.4

shows the optimization process. As the polynomial evaluator has to be able to compute

all 256 polynomials within the acceptable evaluation error, we pick the set of coefficient

that has the worst evaluation error using FloPoCo design, indicated by the log from

FloPoCo. Both evaluation error of the FloPoCo design and design using Estrin’s method

are computed. If Estrin’s method is not accurate enough, the precision of intermediate

step will be increased and the error will be calculated again. Noted that the coefficients

from FloPoCo are not rounded any more in Estrin’s method. The iteration will only

finish when the difference is within the acceptable limit. Therefore, the newly developed

evaluator, which has the evaluation error no worse than the worst case of FloPoCo eval-

uator, shall be able to plug and play into the system without losing on precision. The

size of x is also optimized to fit into DSP operand wordlength for efficiency purpose. The

optimized size of x will be gone through the evaluation error verification again to ensure

the error is within the bound.

In order to meet the evaluation error no worse than the Horner’s Rule while further

optimizing the operand wordlength, Gappa 2 is used to verify the optimized design is

within the error bound. Gappa is a tool intended to help verifying and formally proving

properties on numerical programs dealing with floating-point or fixed-point arithmetic

[58] and it has been used in many research work [59,60]. It computes the range of a given

function based on the constraints by using interval arithmetics. In this case, we use it to

verify the post-optimized fixed point polynomial evaluator is able to remain in the same

error bound as the FloPoCo evaluator.
2Version 0.16.4 gappa.gforge.inria.fr

57



Chapter 7. Implementation of Polynomial Evaluator on FPGA

Find coefficients that have the largest evaluation error within all 256 
polynomials. 

Compute full precision result using Horner's Rule

Compute fixed point truncated result using FloPoCo polynomial 
evaluator.

Compute full precision result using Estrin's Method

Compute fixed point truncated result using Estrin's Method polynomial 
evaluator.

Compare the evaluation error between FloPoCo evaluator and Estrin's 
Method evaluator within the range of input.

Error within limit? Increase precisionIf no,

If yes,

Possible optimization for DSP

Finish.

Optimize

If no,

If yes,

Figure 7.4: Optimization flow for Estrin’s method.
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Source code in Listing A.1 in the appendix shows the first part of the verification

program using Gappa, which defines the polynomial evaluation error using Horner’s Rule.

Line 1 to 7 first defines the value of coefficients in decimal. Line 10 defines the equation to

compute full precision value Mp of the polynomial using Horner’s Rule. The coefficients

and input x are both rounded to reduce the area of multipliers and adders. This is

followed by fixed point arithmetic with truncations. The final fixed-point truncated

value is store in p.

Source code in appendix Listing A.2 shows the part to compute the evaluation error

based on Estrin’s method. Similar as in Horner’s Rule, both full precision value Mq

and fixed point value q after truncation are computed from line 1 to 22. Line 24 tries to

evaluate both error bound by deducting p and q from the full precision value of Mp. This

is within the range of [0, 2−8] which is the smallest interval we choose in range reduction.

Line 27 gives a hint that the full precision value of Mp and Mq should be the same,

otherwise Gappa is not able to recognize the relationship between q and Mp. Line 28

indicates the commutative property stands true.

If the verification shows the error for two methods are not within the same bound,

rounding bit of x and truncation bit is then modified for the next iteration to verify the

error again. Listing A.3 in the appendix shows the final result of the verification from

Gappa, which also indicates a finish in the flow shown in Figure 7.4.

The results of the flow shows that Estrin’s method could only achieve the same

precision as Horner’s Rule by maintaining similar wordlength in intermediate steps as

FloPoCo design. If the decision is to use one DSP to compute the x2 and one DSP to

compute x4, which is equivalent to 18 bit wordlength in each step, the overall precision

will drop by at least 5 bits. However, to gain back the evaluation error, one must use

additional four DSPs to compute the powers of x when the wordlength increases. This

does not only increase the overhead for parallelism but also reduce the performance gain

as the latency increases substantially.
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Multiplier Without Optimization After Rounding After Truncation
x2 5 4 3
x4 5 4 3
a5x 9 2 2
q5x

4 9 4 3
a3x 9 4 3
q3x

2 9 6 5
a1x 9 6 5

Table 7.5: DSP count for each multiplication for 5th degree polynomial evaluator using
Estrin’s method.

Table 7.5 summarizes the DSP savings for the faithful rounding and truncation with-

out losing on accuracy after verified by Gappa. In the table, qi is the notation for

aix− ai−1. Figure 7.5 shows the fixed point evaluator using Estrin’s method. The multi-

pliers and squarers are mainly built using cascaded chains after optimization to operand

wordlength of DSP. Noted that for computing square of x, the proposed squarer is used

to further optimizing the utilization. In the case where guard bits are not able to fit into

the DSP data width, similar “tiling like” multipliers and small multiplier built in LUTs

are used instead in multiplication of q5x
4 and a3x.

Apparently, similar dilemma between precision and data path wordlength exists in

4th degree polynomial evaluator, which the equation used in Estrin’s method is,

f(x) = a4 ·x4 + (a3x+ a2) ·x2 + (a1x+ a0) (Eq. 7.2)

The new evaluator is built according to the flow and verified the Gappa tool using the

same coefficients. The DSP saving is provided in Table 7.6. Limited to the space, the

details of the 4th degree evaluator is not shown here.

7.3 Polynomial Evaluator using Proposed Method

The proposed method requires a more complex design generator because of the new

coefficients required. Since the time to generate the evaluator is negligible, we maintain
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Figure 7.5: Schematic of 5th degree polynomial evaluator using Estrin’s method.

Multiplier Without Optimization After Rounding After Truncation
x2 5 4 3
x4 5 4 2
a4x

4 9 2 1
a3x 9 4 4
q3x

2 9 4 4
a1x 9 6 5

Table 7.6: DSP count for each multiplication for 4th degree polynomial evaluator using
Estrin’s method.
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full precision when calculating the new coefficients and only truncate them last when

needed. Compared to the Estrin’s method, both x and the new coefficients are rounded

to the sweet spot. With the help of Gappa tool, we develop the following flow described

in Figure 7.6 to derive the wordlength for each arithmetic step. The flow is very similar as

the flow in Estrin’s method. The new coefficients will be rounded according to precision,

BRAM size and DSP data path wordlength. The trail will begin with rounding the

coefficients to meet the same error bound as Horner’s Rule. If the constraint is not met,

the precision of coefficients has to be increased. This will follow by an optimization to

further reduce the size of coefficients which does not lead to accuracy loss to reduce the

Block RAM utilization. After that, if the coefficients are not able to fit well with the

DSP block operand size, trials on alternating the rounding positions are performed to

optimize the DSP block usage.

For the 5th degree polynomial, four new coefficients are to be computed as shown in

(Eq. 5.13) to (Eq. 5.15) and the flow will consider rounding for all of them. However, it

was found that the flow could not converge as it has system limitation reaching the same

precision as Horner’s Rule with similar rounding position of the coefficients, for the reason

been stated in Chapter 5. Therefore, alternative equation (Eq. 5.16) is used instead. The

source code for Gappa tool to veify the design is shown in Listing A.4 in the appendix.

Noted that definition of original coefficients and the error computation of Horner’s Rule

are identical in Lising A.1 and they are not shown here. In Listing A.4 in the appendix,

line 2-5 defines the full precision value of the new coefficients and their corespondent

fixed-point version are calculated in line 9-20. Similar as Estrin’s method, the proof is

going to compute the error bound for both Horner’s rule and proposed method and a

hint is given to suggest both equations have the same full precision value. Listing A.5

in the appendix shows the final result of the verification from Gappa after finishing the

iteration.
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polynomials. 
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Figure 7.6: Optimization flow for proposed method.
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Coefficient Wordlength
m5 40
m4 53
n5 46
n4 55
a5 16
a4 28

Table 7.7: Coefficient table for 5th degree polynomial evaluator using proposed method.

Table 7.7 provides the new coefficients size after rounding. The new coefficients

have 244 significant bits which matches the amount in the FloPoCo design, thus the

architecture of coefficient table could be reused.

Multiplier Without Optimization After Rounding After Truncation
x2 3 3 2
r25 3 3 2

(r25)a5 9 3 2
r24 5 5 4

(r24)a4 9 4 3
a1x 9 6 5

Table 7.8: DSP count for each multiplication for 5th degree polynomial evaluator using
proposed method.

Table 7.8 presents the DSP savings for the faithful rounding and truncation without

losing on accuracy after verified by Gappa. In the Table 7.8, ri represents (x2 + mi)

and the third and fifth row indicates the multiplication of the two numbers, which the

first operand in bracket is from the previous row. The total number of DSP count after

optimization is equivalent to the Horner’s Rule and fewer than Estrin’s method. With

the help of proposed squarer, the fourth row in Table 7.8 reduces the DSP count to 5,

and is further truncated to 4. Similar as Estrin’s method, most of the multiplier/squarer

utilize the cascaded chains after the optimization, or post-adders are used to perform part

of the partial product reduction by using C input of the DSP. However, even the size of

the coefficients are determined by ourselves, it is interesting to see that the optimization
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Figure 7.7: Schematic of 5th degree polynomial evaluator using proposed method.

of mapping to DSP48E1 does not always improve the design further. In this case r25

and (r24)a4 are not able to fit well into the DSP48E1 primitive after the truncation.

Therefore small multipliers are needed after most part of the multiplication being mapped

to DSP48E1 and they are implemented using adders/compressors in the LUTs to reduce

the DSP count. The overall schematic is illustrated in Figure 7.7.

Coefficient Wordlength
m4 51
n4 59
a4 22
a3 31
a1 48

Table 7.9: Coefficient table for 4th degree polynomial evaluator using proposed method.

For the same 4th degree polynomial, the proposed method uses (Eq. 7.3) to compute

the equation. It is based on alternative equation and similar to (Eq. 5.16) for 5th degree
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Multiplier Without Optimization After Rounding After Truncation
x2 3 3 2
r24 3 3 2

(r24)a4 9 3 2
r24 5 5 4

(r24)a4 9 4 3
a1x 9 6 5

Table 7.10: DSP count for each multiplication for 4th Degree Polynomial Evaluator using
Proposed Method.

polynomial.

f(x) = a4(x
2 +m4)

2 + n4 + x · (a3x2 + a1) (Eq. 7.3)

where,

m4 =
a2
2a4

(Eq. 7.4)

n4 = a0 −
a22
4a4

(Eq. 7.5)

Using the same process, new coefficients are derived with faithful rounding, which are

shown in Table 7.9 and the amount of DSP used after truncation is listed in Table 7.10.

Limited to the space, the schematic of the 4th degree evaluator is not shown here.

7.4 Implementation Results

After building the schematic with macros, both Estrin’s method and proposed method

designs have been implemented in RTL and synthesized, placed and routed on targeted

FPGA. The results are presented blow.

LUT DSP BRAM
FloPoCo 901 18 3
Estrin’s 350 24 3

Proposed 375 18 3

Table 7.11: Hardware resource for 5th degree polynomial evaluator.
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LUT DSP BRAM
FloPoCo 665 14 3
Estrin’s 189 19 3

Proposed 297 15 3

Table 7.12: Hardware resource for 4th degree polynomial evaluator.

Table 7.11 and 7.12 summarize the hardware cost for both polynomial evaluators for

5th degree and 4th degree polynomial. As all the three methods use similar amount of bit

for the coefficients, the number of BRAM used to store the coefficients are the same. The

proposed method uses same amount of DSP in 5th degree polynomial evaluator and one

more in 4th degree one. By contrast, Estrin’s method uses 6 or 33% more in 5th degree

evaluator and 5 or 35% more in 4th degree one. This is contributed by both precision

requirement and the complexity of the algorithm. FloPoCo design has utilized many

“tiling like” multipliers which consists of post compressors and adders and they lead to

relatively high LUT cost. Both Estrin’s method and proposed method are optimized to

implement more cascaded chains in order to reduce the LUT usage, therefore they use

less LUTs compared to FloPoCo design.

To evaluate overall hardware area cost among three methods, Table 7.13 shows the

equivalent number of LUT where one DSP has the same weight as 149 LUT in the

targeted FPGA. It is clearly that the proposed method uses the least amount of hardware

resources, which is 11.9% less compared to the FloPoCo design in 5th degree polynomial.

In 4th degree polynomial, it still has an advantage of 5% less. By contrast, Estrin’s

method uses 14.1% and 11.5% more hardware resources respectively compared to the

FloPoCo design.

Table 7.14 and 7.15 present the performance of all the three evaluators. Estrin’s

method shows its advantage in terms of latency as it has higher level of parallelism than

the Horner’s Rule, which is 48.6% faster in 5th degree polynomial and 44.8% faster in

4th degree polynomial. Proposed method has the same latency as the Estrin’s method
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5th Degree 4th Degree
FloPoCo 4433.5 3412.5
Estrin’s 5060 3917.75

Proposed 3907.5 3240.75

Table 7.13: Equivalent LUT count for polynomial evaluators.

in 4th degree polynomial, while three stages, or 7.6% longer than Estrin’s method in 5th

degree polynomial. This is mainly due to the use of alternative equation, which one more

multiplication stage is added in the critical path. Compare to the maximum frequency

of DSP, FloPoCo design has a frequency drop of 26%, where the other two drop around

16%. Further pipeline on top of the FloPoFo default pipline strategy could increase the

frequency until nearly maximum frequency of the DSP block, while it is not discussed

here.

Latency Frequency
FloPoCo 37 334MHz
Estrin’s 19 378MHz

Proposed 22 380MHz

Table 7.14: Performance for 5th degree polynomial evaluator.

Latency Frequency
FloPoCo 29 332MHz
Estrin’s 16 384MHz

Proposed 16 381MHz

Table 7.15: Performance for 4th degree polynomial evaluator.

In summary, proposed method shows large advantages over non-parallel method based

on Horner’s Rule in both hardware cost and speed. It also shows hardware cost reduc-

tion over Estrin’s method in the same level of parallelism. The result thus proves our

hypothesis stated in Chapter 5.
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Conclusion

The parallel polynomial evaluation algorithm implementation on FPGA has been ana-

lyzed the and a novel algorithm to tackle the problem of large hardware overhead on

the conventional algorithms has been proposed. The proposed method shows significant

advantages in terms of computation complexity by replacing multiplication with more

efficient squaring in theory. The novel algorithm has been implemented on FPGA in

real-world applications The results have proved that the novel algorithm is more efficient

than both conventional method, Horner’s Rule and Estrin’s methods. The area reduction

is enabled by an efficient squarer circuit developed by us. The novel squarer circuit has

shown 21.8% fewer hardware overhead than the design in the literature which uses the

least amount of DSP resources in FPGA. Therefore, the overall polynomial evaluator

is able to reach 41% latency reduction with 11.9% less area compared to the Horner’s

Rule and the performance gain can only be reached by Estrin’s method consuming larger

amount of hardware resources.

What’s need beyond this thesis is to automate the design generation process. First of

all, a general format of such algorithm shall be developed with implementation details.

Secondly, automation of the flows stated in Chapter 7 shall be done, which includes

optimization for DSP operand size and Block RAM size. The formal verification of

error bound in the new polynomial evaluator over the entire range could be included in
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the automation tool as well. This could also possibly enable generation of polynomial

on-the-fly in the future.

Further pipelining the design, for both conventional and novel evaluators can be done

to meet the maximum speed of DSP and built into the design generator. This could

easily improve the throughput of the design substantially.

The novel polynomial evaluation algorithm can be applied to more applications, not

only limited to function evaluation. Meanwhile, it will show even larger advantages in

floating point system. Tools to auto-generate designs which could convert conventional

polynomials evaluation algorithm into novel one automatically is considered in the future.
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Appendix A

Supplementary Figures Tables and
Source codes

For multiplier has operand larger than 42 bits, three splits are required for implementing

on FPGA using cascaded method and this is shown in Figure A.1.

For squarer using cascaded method that has operand larger than 53 bits, Figure A.2

shows the schematic diagram where one more DSP block is needed. However, if it is

exact 53 bits, an adder could be used instead of incurring a DSP block, shown in figure

A.3.

Table A.1 presents the amount of LUT and DSP for all types of squarers implemented

on FPGA.

Figure A.4 shows the diagram of 3:1 compressor using two LUT to improve timing.

Source codes for gappa program have been shown in Listing A.1 to A.5
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Figure A.1: Schematic of multipliers for three splits input.
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Figure A.2: Schematic of squarers for input larger than 53 bits.
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Figure A.3: Schematic of 53× 53 bit squarer.
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multiplier cascaded/flopoco tiling proposed multiplier cascaded/flopoco tiling proposed
42 0 0 N/A 107 5 6 N/A 5
43 0 0 127 109 9 6 5 5
44 0 0 131 111 9 6 5 5
45 0 0 138 113 9 6 5 5
46 0 0 147 115 9 6 5 5
47 0 0 158 117 9 6 5 5
48 0 0 172 119 9 6 5 5
49 0 0 183 121 9 6 5 5
50 0 0 202 123 9 6 5 5
51 0 0 211 125 9 6 5 5
52 0 0 216 127 9 6 5 5
53 0 0 220 172 10 7 5 5
54 0 0 N/A 152 10 7 N/A 6
55 0 0 N/A 154 10 7 N/A 6
56 0 0 N/A 156 10 7 N/A 6
57 0 0 N/A 158 10 7 N/A 6
58 0 0 N/A 160 10 7 N/A 6
59 0 0 N/A 219 10 10 N/A 8
60 0 0 N/A 221 16 10 N/A 8
61 0 0 N/A 223 16 10 N/A 8
62 0 0 N/A 226 16 10 N/A 8
63 0 0 N/A 228 16 10 N/A 8
64 0 0 N/A 230 16 10 N/A 8

LUT DSP

Table A.1: Post place and route hardware resource for all types of squarers.
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Figure A.4: Schematic of 3:1 compressor using two LUTs.
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1 #coefficients from Sollya

2 a5=-0.11075496673583984375;

3 a4=4.05604408681392669677734375;

4 a3=0.19020896436995826661586761474609375;

5 a2=-4.93145830230196224874816834926605224609375;

6 a1=-0.1156333011917212161279167048633098602294921875;

7 a0=0.99932238458834951599918383635667851194739341735839;

8
9 #Horner’s Rule ideal

10 Mp=(((((a5*Mx+a4)*Mx+a3)*Mx+a2)*Mx+a1)*Mx+a0);

11
12 #Horner’s Rule truncate

13 a_5 = fixed<-26, dn> (a5);

14 a_4 = fixed<-28, dn> (a4);

15 a_3 = fixed<-41, dn> (a3);

16 a_2 = fixed<-42, dn> (a2);

17 a_1 = fixed<-54, dn> (a1);

18 a_0 = fixed<-57, dn> (a0);

19
20 x_32 = fixed<-32, dn> (Mx);

21 x_42 = fixed<-42, dn> (Mx);

22 x_52 = fixed<-52, dn> (Mx);

23
24 p5 fixed<-33, dn> = (a_5*x_32);

25 ps5 = p5+a_4;

26 p4 fixed<-37, dn> = (ps5*x_42);

27 ps4 = p4+a_3;

28 p3 fixed<-48, dn> = (ps4*x_52);

29 ps3 = p3+a_2;

30 p2 fixed<-50, dn> = (ps3*x_52);

31 ps2 = p2+a_1;

32 p1 fixed<-63, dn> = (ps2*x_52);

33 p fixed<-52, dn> = p1+a_0;

Listing A.1: Source code to define evaluation error for Horner’s Rule.
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1 #Estrin ideal

2 Mq=Mx*Mx*Mx*Mx*(a5*Mx+a4)+Mx*Mx*(a3*Mx+a2)+(a1*Mx+a0);

3
4 #Estrin truncate

5 x_f = fixed<-39,dn> (Mx);

6 x_sq_f fixed<-52,dn> = x_52*x_52;

7 x_sq_h = fixed<-52,dn> (x_sq_f);

8 x_q fixed<-52,dn> = x_sq_h*x_sq_h;

9
10 q0 fixed<-52,dn> = a_5*x_f;

11 q0s = q0+a_4;

12 q5 fixed<-52,dn> = x_q*q0s;

13
14 q2 fixed<-52,dn> =a_3*x_f;

15 qs2 = q2+a_2;

16 q3 fixed<-52,dn> = x_sq_f*qs2;

17
18 q4 fixed<-52,dn> =a_1*x_52;

19 qs4 = q4+a_0;

20
21 q=q5+q3+qs4;

22
23 #proof

24 {Mx in [0,0.00390625] -> |Mp-p| in ? /\ |Mp-q| in ? }

25
26 #hint

27 Mp -> Mq;

28 Mx*Mx*Mx*Mx -> Mx*Mx*(Mx*Mx);

Listing A.2: Source code to compute evaluation error for Estrin’s method.

1 Results for Mx in [0, 0.00390625]:

2 |Mp - p| in [0, 75620484737189591b-108 {2.33024e-16, 2^(-51.9304)}]

3 |Mp - q| in [0, 70643622084607b-98 {2.22912e-16, 2^(-51.9944)}]

Listing A.3: Verification of evaluation error for Estrin’s method.
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1 #Proposed method ideal

2 Mm5 = a3/(2*a5);

3 Mm4 = a2/(2*a4);

4 Mn5 = a1-a3*a3/(4*a5);

5 Mn4 = a0-a2*a2/(4*a4);

6 Mr = ((Mx*Mx+Mm5)*(Mx*Mx+Mm5)*a5+Mn5)*Mx+((Mx*Mx+Mm4)*(Mx*Mx+Mm4)*a4+Mn4)

;

7
8 #Proposed method truncate

9 m5 fixed<-40,dn> = a3/(2*a5);

10 m4 fixed<-54,dn> = a2/(2*a4);

11
12 n5 fixed<-50,dn> = a1-a3*a3/(4*a5);

13 n4 fixed<-56,dn> = a0-a2*a2/(4*a4);

14
15 x_50 = fixed<-50,dn> (Mx);

16 x_sq fixed<-43,dn> = x_50*x_50;

17 x_sq_f fixed<-56,dn> = x_50*x_50;

18
19 a5_new = fixed<-20, dn> (a5);

20 a4_new = fixed<-26, dn> (a4);

21
22 rs1 = x_sq+m5;

23 r1 fixed<-43,dn> = rs1*rs1;

24 r2 fixed<-45,dn> = r1*a5_new;

25 rs2 = r2+n5;

26 r3 fixed<-54,dn> = rs2*x_52;

27
28 rs4 = x_sq_f+m4;

29 r4 fixed<-54,dn> = rs4*rs4;

30 r5 fixed<-56,dn> = r4*a4_new;

31 rs5 = r5+n4;

32
33 r=r3+rs5;

34
35 #proof

36 {Mx in [0,0.00390625] -> |Mp-p| in ? /\ |Mp-r| in ? }

37
38 #hint

39 Mp -> Mr;

Listing A.4: Source code to compute evaluation error for propose method.
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1 Results for Mx in [0, 0.00390625]:

2 |Mp - p| in [0, 75620484737189591b-108 {2.33024e-16, 2^(-51.9304)}]

3 |Mp - r| in [0, 547187349204500315b-111 {2.10769e-16, 2^(-52.0752)}]

Listing A.5: Verification of evaluation error for proposed method.
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