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Abstract

With the emergence of General Purpose computation on GPU (GPGPU)

and corresponding programming frameworks (OpenCL, CUDA), more applications are

being ported to use GPUs as a co-processor to achieve performance that could not be

accomplished using just the traditional processors. However, programming the GPUs

is not a trivial task and depends on the experience and knowledge of the individual

programmer. The main problem is identifying which task or job should be allocated to a

particular device. The problem is further complicated due to the dissimilar computational

power of the CPU and the GPU. Therefore, there is a genuine need to optimize the

workload balance.

This thesis presents the work done toward the author’s post graduate

study and describes the optimization of the Heterogeneous Earliest Finish Time (HEFT)

algorithm in the CPU-GPU heterogeneous environment.

In the initial chapters, different scheduling principles available are described

and an in depth analysis of three state of the art algorithms for the chosen heterogeneous

environment is presented. A comparison of fine-grained with coarse-grained scheduling

paradigms is also studied. Using state of the art StarPU scheduling framework and

exhaustive benchmarks, it is shown that the fine grained approach in much more efficient

for the CPU-GPU environment.

A novel optimization of the HEFT algorithm that takes advantage of dis-

similar execution times of the processors is proposed. By balancing the locally optimal

result with the globally optimal result, it is shown that performance can be improved sig-

nificantly without any change in the complexity of the algorithm (as compared to HEFT).

HEFT-NC (No-Cross) is compared with HEFT both in terms of speedup and schedule

length. It is shown that the HEFT-NC outperforms HEFT algorithm and is consistent

across different graph shapes and task sizes.
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Chapter 1

Introduction

The computing requirements of applications have been growing at a rapid pace. Conven-

tional single core processors are incapable of delivering the required processing power as

they are unable to overcome the three walls: Memory, Instruction level parallelism and

Power wall. Even the traditional method of increasing performance, i.e. increasing clock

frequency is not always optimal and after a point physically infeasible [3]. Multi-core

CPU and many-core GPU (Graphical Processing Unit) have been able to alleviate this

problem and have emerged as a cost effective means of scaling applications [3]. The mod-

ern GPU is a specialized hardware, which is able to execute highly parallel computations.

It focuses more on data processing rather than caching and flow control [4]. GPUs which

have traditionally been used for graphic rendering are now increasingly being used for

non-graphical applications. This has given birth to a new field of study called GPGPU

(General Purpose computation on GPU) [5] and owing to its high performance, GPUs

are increasingly being used in image processing, simulations, spectral analysis and other

scientific applications [6]. Keeping in mind these processing capabilities of GPU, sig-

nificant research has been conducted to seek ways to use the power of GPUs for general

purpose computing [7, 8, 9, 10, 11]. However, programmability of GPU still remains a

challenging task. It has become easier with the introduction of programming frameworks

like OpenGL, CUDA and OpenCL. However, all these frameworks require manual mem-

ory management and work distribution, which makes it more challenging as sub optimal

programming can severely degrade performance [8]. While GPUs have impressive com-

puting power, their specialized hardware may not be optimal for some applications, i.e.

algorithms need to be inherently parallel and involve enough data processing to overcome

memory latencies. This has led to the trend of using both CPU and GPU in a heteroge-

neous environment. This technique has been successful as most desktops and notebooks

are equipped with multi-core CPU and GPU. AMD has recently introduced new fusion

processors called APU (Accelerated Processing Units) which combine both CPU and GPU

in one chip [7, 12]. In the case of the APU, the CPU and GPU work in tandem with

shared system memory, and the key advantage here is lower power consumption when
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running modern applications that are designed to leverage on the advantages of both the

CPU and GPU. Applications that deal with analytics, search and facial recognition are

some aspects that stand to gain from this boost [13].

Continuing the APU model, AMD has also launched a new genre of chips

following the Heterogeneous System Architecture standard [13]. HSA is essentially an

enabler that allows multiple processing units (or accelerators) to work in tandem with

shared system resources. A simplistic diagram of the HSA architecture is shown in Fig. 1.1

Figure 1.1: Simplistic model of HSA

An example of this second generation APUs is the Kaveri chip launched

by AMD [14]. As shown in figure 1.2, Kaveri is capable of having four multi-threaded

”Steamroller” CPU cores with a 3.7 GHz clock and 512 Radeon Series GPU cores with a

720 MHz core frequency.

Similarly, Intel has introduced the Sandy Bridge and Ivy Bridge processors

like the Haswell range of microprocessors. The focus here is to provide better performance

and graphics for mobile platforms while reducing the power consumed. These examples

clearly show the continued industrial interest in such a trend.

The GPU is hence seen more as co-processor to a CPU and the focus has

now shifted to exploiting the power of both CPU and GPU in solving generic problems.

In order to improve application performance and explore heterogeneity, methods to dis-

tribute or schedule work across these asymmetric PUs (Processing Units) have become
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Figure 1.2: Kaveri: Internal architecture

more important. Conventional scheduling algorithms may not be optimal due to dissim-

ilar execution times and possibly different communication rates. The main goal of any

scheduling algorithm is to assign a task to the best suited processor such that the overall

execution time (make-span) is minimized. This problem of assigning tasks to the most

efficient processor is known to be NP-hard [15] and hence most scheduling algorithms are

based on heuristics.

1.1 Problem Statement

A platform is considered heterogeneous when dissimilar computing architectures are cou-

pled together to increase the overall computing power and solve problems faster. The

introduction of new heterogeneous architecture has led to an immense improvement in

performance at a lower cost, but also has given rise to many challenges, as the rate of

execution of tasks is different on each processor.

This property of dissimilar execution time in heterogeneous environments has reinvig-

orated research in task scheduling. Applications like image-filtering, face recognition,

gesture recognition and audio processing are multi-step processes. There are cases when

certain steps within such applications may have skewed performance on a single device.

In problems involving multi-step applications, it is crucial to determine which sections

are more efficient on a particular device.

Keeping in mind the above points, the author intends to study the problem of mapping a

set of N tasks, to a heterogeneous environment represented by a CPU and GPU such that
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the overall execution time of the application is minimized. As this problem has a non

polynomial solution, an approximate heuristic solution will be investigated. It is intended

to simplify this process by using predetermined information derived from static profiling

(automatic or manual).

1.1.1 Constraints

• The problem of finding a mapping for a set of tasks N to set of processing elements

is an NP hard problem. This implies only heuristic solutions can be found.

• The proposed schedule can only be non-preemptive as GPUs do not support pre-

emption.

• In order to reduce the complexity of framework, an application level as compared

to a driver level approach is used.

1.2 Key Contributions

Some of the key contributions of this thesis are:

1. A broad survey and analysis of the current literature on task scheduling in both

homogeneous and heterogeneous environments is presented. An in-depth analysis

of the more relevant literature is then discussed.

2. Using the state of the art StarPU framework, a comparison study between fine-

grained and coarse grained scheduling for the chosen environment was undertaken.

Several benchmarks were used and results are analyzed over different data sizes.

3. A novel optimization to the Heterogeneous Earliest Finish Time(HEFT) algorithm

for the CPU-GPU environment is presented. The author is able to demonstrate

significant improvements in its performance without changing the complexity of the

algorithm.

1.3 Organization of the Report

This report is organized as follows. Chapter 2 provides a comprehensive review of rele-

vant strategies used to schedule tasks both in the homogeneous and heterogeneous envi-

ronments. It also provides a critique of the strategies that can be used for a CPU-GPU

environment. Chapter 3 provides a broad overview and justification of the different

programming frameworks used in this thesis. Chapter 4 presents the results of com-

parison between a fine-grained approach and coarse-grained approach to scheduling tasks

in a CPU-GPU environment. Based on the results derived from chapter 4, chapters 5



1.3 Organization of the Report 7

6 put forward the different optimizations to the HEFT algorithm. Finally, Chapter 7

summarizes the work presented and suggest future work in the area
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Chapter 2

Literature Review

Parallel computing is a form of computation in which multiple operations are carried

out simultaneously [16]. It has evolved from the principle, that large problems can

often be divided into smaller ones, which are then solved in parallel [16]. Depending

on the type of hardware architecture, parallel computers can be broadly classified into

homogeneous and heterogeneous platforms [17]. Homogeneous include platforms such

as multi-core, many-core, grid computing and clusters. Here the processors are similar,

so all tasks execute with the same rate. A platform is considered heterogeneous when

dissimilar computing architectures are coupled together, for accelerating specific tasks.

Therefore, In some cases, the rate of execution of tasks is different on each processor and

in some, tasks may not be able to run on all processors. The introduction of these new

heterogeneous architectures has led to immense improvements in performance at lower

cost, but they have also given rise to many challenges. One of the interesting areas of

research has been the scheduling of tasks or programs between the specialized hardware

and the traditional processor. In Section 2.1, a brief introduction of the scheduling

algorithms available for homogeneous architectures is presented. This section describes the

different scheduling paradigms and provides insight for development in a heterogeneous

environment. In section 2.2, the advances and strategies used for high performance

computing, particularly in heterogeneous environments is presented. The latest advances

in task scheduling algorithms in CPU-GPU heterogeneous environment is elaborated in

Section 2.3. Finally in Section 2.4, a detailed account of some of the current models and

frameworks for task scheduling in CPU-GPU environment are presented

2.1 Scheduling algorithms in homogeneous architec-

tures

An application (or task set) is assumed to comprise a static set of n tasks. These tasks

give rise to a potentially infinite sequence of invocations (or jobs) [17]. Therefore task

scheduling in multi processor architecture is basically trying to solve two problems, i.e.
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Allocation problems and Priority problems. Within the domain of allocation problems,

the level of task migration is used to classify different scheduling algorithms [17]

• No Migration: - Migration of tasks and jobs is not allowed as each task is allocated

to a processor.

• Task-level migration: - Jobs of one task can execute on different processors,

however each processor can execute only one job.

• Job-level migration: - A single job is allowed to migrate and execute on differ-

ent processors. This level migration gives the highest level of freedom. The only

restriction is that parallel execution of a single job is not allowed

If no migration is allowed in the scheduling algorithm, it is considered a

partitioned approach, a global approach on the other hand allows task and job migration.

2.1.1 Partitioned Scheduling algorithms

As mentioned before, in the partitioned approach, there is no support for job/task migra-

tion. This has a very important practical implication, as once the task has been scheduled

as part of a multi-processor system, it becomes a homogeneous processor problem. Well

researched algorithms [18, 19] developed for single processor scheduling can then be used.

Partition based algorithms [20, 21, 22, 23, 24] are implemented by using

one run queue for each processor. This implies that if a task overruns its worst case

performance, it only affects that processor. This localizes the problem and is more man-

ageable for large systems as compared to global scheduling. However, the disadvantages

of the partitioning approach to multiprocessor scheduling is that the determining the ideal

number of processor required by an optimal algorithm is NP-Hard [25].

2.1.2 Global scheduling algorithms

In global scheduling algorithms, tasks are permitted to migrate from one processor to

another. The focus of the majority of research done in this domain has been on job level

migration. The goal has been to optimize the preemption and scheduling of jobs [17]. In

this scheduling method, there is only one run queue for the entire system. This implies

that there will be fewer context switches as compared to the partitioned method as the

scheduler will preempt only when all processors are busy. The method is much more

efficient as any spare processing power can be used by other jobs and not just those on

the same processor.

However, the use of global scheduling algorithms was discouraged due to

the Dhall effect. Dhall and Liu [26] showed that some tasks may not be schedule-able

even though system is underutilized [4] and the tasks have low utilization. But, Philips

et. al [27] proved that augmenting a system by increasing the processor speed is more
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effective than augmenting a system by increasing the number of processors. Therefore

the Dhall effect only occurs when at least one task is needed with very high utilization

[17, 28] thereby renewing interest in global scheduling algorithms.

An example of such algorithm is P-fair scheduling [29]. In this algorithm,

all urgent tasks are scheduled first and the remaining resources are distributed to other

highest priority task contending based on the total order function [29]. This algorithm

was further improved in [30, 31], by optimizing the memory access patterns of tasks.

They propose improving throughput by discouraging tasks that generate high memory

to L2 cache traffic from being co-scheduled. This concept was further enhanced by [32]

where they consider a model to find out a group of tasks that can be encouraged to be co-

scheduled. The essence of the problem is to promote parallelism; therefore they propose a

modified P-fair algorithm which focuses on reducing the spread (the time interval in which

each job of a task is scheduled). The ideal spread would be 1, but as perfect parallelism

is not always achievable, therefore they show that cache use is more efficient when the

spread is minimized.

2.1.3 Heuristic based scheduling algorithms

1. Exact algorithms

(a) Algorithms that have a guaranteed solutions. These can also be the optimal

solutions for a given problem

2. Approximation Algorithms

(a) Algorithms that produce solutions that are guaranteed to be within a fixed

percentage of the actual optimum.

(b) Approximation algorithms are fast and have polynomial running time

3. Heuristic Algorithms

(a) These algorithms produce solutions, which are not guaranteed to be close to

the optimum

(b) The performance of heuristics is often evaluated empirically

The algorithm to map a set of tasks to a set of processing elements is NP

hard, therefore the only solution space available is the heuristic algorithms.
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These can further be sub divided into:

1. Construction Heuristics [33]

(a) The algorithm begins without a known schedule, and then adds one job at a

time

(b) Dispatching rules are examples of the construction heuristics. A dispatching

rule is a rule that prioritizes all the jobs that are waiting for processing on a

machine. Whenever a machine has been freed, a dispatching rule inspects the

waiting jobs and selects the job with the highest priority

(c) Some examples of dispatching rules are [33]

i. Shortest Processing Time first (SPT)

ii. Longest Processing Time first (LPT)

iii. Earliest Completion Time first (ECT)

2. Improvement Heuristics [33]

(a) The algorithm begins with a known schedule, this is considered optimum for

solving the problem

(b) The goal is to then find a better schedule similar to the one it started with,

when adding a new task

(c) Some of the examples are: Iterative Improvement, Threshold Accepting, Sim-

ulated Annealing

Construction heuristics using dispatching rules are very useful, they are simple and fast

to implement and can find a reasonably good solution [33]. However, one of its biggest

drawbacks is unpredictability. Therefore it is more common to use composite dispatching

rules which combine multiple dispatching rules to improve the scheduling performance.

In this method, a scaling parameter can also be chosen to scale the contribution of the

dispatching rule. The most common rules are:

Min-min heuristic- For each component, the resource having the mini-

mum estimated completion time (ECT) is found. Denote this as a tuple (C, R, T), where

C is the task, R is the processor for which the minimum is achieved and T is the corre-

sponding ECT. In the next step, the minimum ECT value over all such tuples is found.

The task having the minimum ECT value is chosen to be scheduled next. This is done

iteratively until all the tasks have been mapped. The intuition behind this heuristic is

that the make span increases the least at each iterative step with the hope that the final

make-span will be as small as possible.

Max-min heuristic- The first step is exactly same as in the min-min

heuristic. In the second step the maximum ECT value over all the tuples found is chosen

and the corresponding task is mapped instead of choosing the minimum. The intuition
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behind this heuristic is that by giving preference to longer jobs, there is a hope that the

shorter jobs can be overlapped with the longer job on other processors.

Sufferage heuristic: In this heuristic, both the minimum and second best

minimum ECT values are found for each task in the first step. The difference between

these two values is defined as the sufferage value. In the second step, the task having

the maximum sufferage value is chosen to be scheduled next. The intuition behind this

heuristic is that jobs are prioritized on relative affinities. The job having a high sufferage

value suggests that if it is not assigned to the processor for which it has minimum ECT,

it may have an adverse effect on the make-span because the next best ECT value is far

from the minimum ECT value. A high sufferage value job is chosen to be scheduled next

in order to minimize the penalty of not assigning it to its best processor.
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2.2 Advances in Heterogeneous architectures

Moore’s Law, which predicts that the transistor density doubles every 18 months has

continuously driven improvement in hardware architectures. However, for current ap-

plications, just increasing transistor density does not deliver the same improvement in

application performance. Various strategies are being investigated to overcome this prob-

lem [34]

• Multicore systems: Combining two or more cores on one die

– Simplest method to improve performance. By combining multiple cores, per-

formance improves while reducing power/heat consumed per core

– It may not be suitable for data intensive applications

• Specialized processors : Unconventional architectures targeting high performance in

specific applications

– Examples include vector processors, Digital Signal Processors(DSP) and Graph-

ical Processing Units (GPUs)

– While these processors are very efficient for certain applications, they are not

suitable for general purpose applications

• Heterogeneous architectures [35, 36] : Computing architectures in which conven-

tional and specialized architectures work cooperatively

– This strategy combines the benefits of the above methods wherein general

purpose computations are handled by the conventional processor and specific

applications are accelerated by the unconventional processors

– Special programming paradigms need to be applied to take full advantage of

such a system. In many cases, existing algorithms need to be redefined and

implemented

Keeping the above points in mind, it can be observed that heterogeneous

model is best suited for augmenting Moore’s Law [34].

2.2.1 Heterogeneous architectures

Programming complexity has been the main barrier toward widespread adoption of het-

erogeneous architectures. But with the rise of disruptive technologies like the multi-

core/GPU architectures, scientists have adapted and modified existing algorithms to fully

exploit it’s advantages. There are many examples of the heterogeneous environments
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CPU-FPGA Co processor Model

Highly successful model in many applications [37, 35, 36]. The main drawback of this

model is the complex programming environment(VHDL). Many C to VHDL compilers and

integrated development tools have been created to alleviate this problem. Altera, FPGA

manufacturer, has recently developed an OpenCL SDK [38] to reduce the programming

effort and time to market.

Cell Broadband Engine

Cell Broadband Engine (CELL BE) [39] was developed by through an alliance of IBM,

Toshiba and Sony. It consists of a multi core chip composed of the Parallel Processing

Element(PPE) and multiple Synergistic Processing Elements(SPE). The PPE and SPE

are connected through an internal High Speed Bus and optimized for single precision

floating point operations [39]. However, this technology has not been very successful due

to limited support available for its programming framework.

CPU-GPU Co-processor Model

GPUs have been used for general purpose computation for over a decade [5]. By increasing

parallelism instead of frequency, GPUs have been able to improve performance while

reducing power requirements. One of the drawbacks of increasing parallelism [5, 35, 36]

is that it only accelerates parallel code. Sequential execution and control logic are not very

efficient on the GPU. This serial section hence becomes the bottleneck during execution,

thus most applications are benefited by combining multi-core CPUs and massively parallel

GPUs [34]. Applications in Query co-processing [40] can especially benefit from such a

architecture. It is also observed that closely coupling the CPU and GPU allows sharing

of resources like memory and cache allowing greater acceleration of applications [40]

CPUs are designed to handle logical functions owing to large die area ded-

icated to caches and instruction level parallelism. This reduces the die are for integer

and floating point calculators. This also reduces the number of cores that placed on the

same die (typically 4-8). On the other hand, GPUs have much simpler cores and simpler

control logic [36]. In the Fermi [41] based architecture, 512 accelerator cores are available.

These cores are organized into 16 streaming multiprocessors and are clocked at roughly

1.5 GHz.

The latest GPU developed by Nvidia is the Kepler class [42]. It is divided

into 4 multiprocessors with 192 cores each totaling to 1536 cores. This class of GPUs

operates at a lower frequency of 1 GHz. The next generation 28 nm production process

coupled with lower operating frequency drastically lowers the power consumption. ling

to 1536 cores. This class of GPUs operates at a lower frequency of 1 GHz. The next

generation 28 nm production process coupled with lower operating frequency drastically

lowers the power consumption.
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2.3 Scheduling algorithms in heterogeneous architec-

tures

As described in the section 2.1, scheduling algorithms for homogeneous architectures

has been well explored. While scheduling in heterogeneous architectures has also been

covered well, it has mainly been restricted to distributed and grid systems [43, 44, 45].

The research in this area for heterogeneous architectures like the GPUs within a single

machine has only picked over the last five years [46, 12, 47, 3, 48] due to improvement

in architecture technology. Due to the specialization of GPU hardware, there are more

considerations that need to be taken into account for [4], such as:

• Computing model of task, either adapted to CPU or GPU

• Amount of computing resources

• Difference in the memory architecture of the GPU

• Bottleneck of data transfers between CPU and GPU

A simple method was presented by Wang et al. [4], where tasks are divided into two

categories, computing tasks and communicating tasks. A hierarchical control data flow

is constructed where computing tasks are operating nodes and communicating tasks are

transmitting nodes. Using this task partitioning and execution runtime of tasks, the

algorithm decides which processing element the task runs on. The method proposed is

very simplistic and vague; the authors compare their solution with a traditional method

and claim about 23% improvement in performance. However details of the comparison

are not well documented.

In the method proposed by Jiménez et al. [43], a predictive user level sched-

uler is used which schedules tasks based on previous performance on a CPU and a GPU.

This algorithm is further elaborated in section 2.4.2. The Harmony framework [49] which

is analyzed in section 2.4.1 represents programs as a sequence of kernels. This framework

considers scheduling of these kernels based on the suitability of the kernels towards a

particular architecture. Using a multivariate regression model, they dynamically assign

different tasks to the processing elements. The Qilin framework [48] on the other hand

predicts run time using similar regression models offline. After extensive profiling of tasks

offline, using different input parameters, a linear model is created. This method however

may not be suitable for all applications and in some cases may require extensive profiling.

MapReduce is a programming model that enables massive data processing in large scale

computing environments. This model can take advantage of the superior performance of

GPUs. One such framework which considers task scheduling is illustrated by Shirahata

et al. [47]. The industry standard Hadoop framework [50] is used and extended to invoke

CUDA functions. The authors suggest an approach that optimizes the schedule based on
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minimizing the elapsed time. Task profiles are collected using heartbeat messages. At 64

nodes (best configuration) this method improves performance by 1.93 times but suffers

significant overhead due to the Hadoop map task invocation.

MARS [51] is another MapReduce framework implemented using GPUs

to speed up many web applications. However, one drawback of using the MapReduce

solution on the GPU is that of memory. GPUs have comparatively lesser memory and

may not be sufficient to solve larger web based problems which have generally process

gigabytes or terabytes of data. Therefore more experiments need to be conducted to get

more quantitative results.

A dynamic approach to schedule tasks was proposed by Ravi et al. [3] for

MapReduce problems. Programs are divided into chunks which are then distributed across

the devices. This method is beneficial as it requires minimum input from users and does

not use any profiling techniques. The general idea of this algorithm is straightforward as

it uses a master-slave model to allocate new chunks once the processing elements complete

their previous work. However, one of the drawbacks of this framework is the choice of

chunk size. Their experimental results show a high variation in performance when different

sizes are chosen. Choosing the optimal size has been left for further research [3].

Grewe et al. [46] used OpenCL and Clang [52] frameworks to analyze

programs and extract static code features to partition these programs across devices.

The key contribution of this work is a machine learning based compiler that accurately

predicts the best partitioning of a task using these static code features. A two-level

predictor is used to partition the tasks. This is a fine grained approach to solve the

scheduling problem but according to the authors themselves most of the programs are

scheduled by the level one predictor. This calls to question the need for an extensive

second level predictor. Also choice of features has not been justified and any changes in

the static features will require re-training the entire model which can be quite laborious

as machine learning algorithms are computationally expensive.

However, their approach is unique, wherein task partitioning is considered

instead of scheduling between a CPU and GPU. A detailed analysis of the same is con-

ducted in section 2.4.3.
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2.4 Current models and frameworks for CPU-GPU

environment

In this section, some of the current models and interesting ideas that the author finds

relevant to his study will be presented.

2.4.1 Harmony Model

The Harmony model [49] is a runtime supported programming and execution model which

is concerned with simplifying development and ensuring binary portability and scalability

across different system configurations. The model provides

• Semantics for simplifying parallelism management

• Dynamic scheduling of compute intensive kernels

• Online monitoring based optimization for heterogeneous systems

This model is divided into two sections namely programming model and execution model.

Harmony programming model

The programming model is relatively simple: it consists of compute intensive kernels

(analogous to function calls), whose execution is managed by control decisions. The

control decisions take in a set of input variables and determine the next kernel to be

executed. As kernels are encountered, there are dispatched via blocking calls. Kernel

arguments are managed by using a shared address space. These are treated as global

variables by the runtime.

Harmony execution model

During execution, an application dispatches kernels via the Harmony API which is regis-

tered by the API along with its dependence information. Kernels in the dispatch window

are then scheduled on cores for which the binaries exist. It optimizes the schedule by using

speculative kernel execution. When an application is run via the API, it first scans the

kernels in the dispatch window without blocking. This allows it to build a graph which

represents all the data dependencies between the kernels. Control decisions determine

the number of kernels that can be scanned without blocking. Non flow dependencies are

removed by variable renaming. As the kernels complete execution, the dispatch window

and schedule are updated. The harmony model shows promising results, for a matrix mul-

tiplication application it can transparently transfer it to the GPU as the size of the matrix

increases. However it does not really propose any new heuristic for task scheduling. It

relies on the control decisions specified to make a choice between different architectures.
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But on the other hand, it provides a simple model for effectively using a CPU and a

GPU. As the model is generic it can also be extended to other architectures like FPGA’s

as long as the corresponding binary is present. This makes it an ideal runtime framework

for different heterogeneous architectures.

2.4.2 Predictive runtime scheduling

In this work by Jimenez et. al [43], a novel predictive user level scheduler based on the

past performance history is presented. The authors envision a state of the art heteroge-

neous system where all processing elements are utilized by different applications (not just

scientific) and are able to adapt their behavior to improve execution time. In the model,

function level granularity is chosen; the scheduler is used as a library in the Linux OS. It

is implemented as process level scheduler. This is done as developing it as a kernel level

scheduler poses difficulties and involves a long development time. Therefore the interface

to the scheduler is a set of C++ classes. There are two steps in the algorithm namely

Processing Element (PE) selection and task selection.

Processing Element Selection

In this step, the PE on which a task should be executed is selected. This does not

mean that execution begins immediately but is a mechanism to choose which task is

best suited for a particular PE. There are two alternatives developed for this step. One

method uses the First-Free heuristic which is scheduling the tasks on the first available

PE. However this technique is not very efficient therefore a predictive algorithm based on

past performance was developed. In this method, a performance history is maintained for

all PE and task pairs by forcing the first N calls of the same function to N different PEs.

The next function call is then scheduled according best possible execution time.

Task Selection

All algorithms in this step follow the First Come First Serve heuristic. This is one of the

main drawbacks of this work as it does not consider any load balancing techniques and

may not always be optimum.

Evaluation

In order to evaluate their work, the authors have used a mix of synthetic and real bench-

marks namely matmul, ftdock, cp and sad. Even though First Free heuristic is simple,

it shows considerable improvement in some of the benchmarks. In some cases, it claims

about 60% improvement in performance. But in other cases the improvement is insignif-

icant or even degraded. This could be because some benchmarks are biased towards one
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PE. There are two variations of the predictive algorithms implemented, namely history-

gpu and estimate-hist. Both the algorithms look at the performance history and create

an ’allowed-pe’ list. In the next step history-gpu schedules the task to first available

allowed-pe while estimate-hist estimates the waiting time on all PEs and schedules the

task to the PE with lowest waiting time. Both these algorithms show more consistent

and significant speedups. history-gpu performs better as the number of PE are increased

but estimate-hist manages to balance workload between CPU and GPU better.

Analysis

This model presents a simple scheduler to optimize performance on heterogeneous archi-

tectures. As it is implemented as a library, it can also be extended to other architectures.

It shows significant improvement over just using the CPU or GPU and is able to fully

utilize both the processing elements. However, because of its simple nature, there is reduc-

tion in speedup when the number of tasks that need to be scheduled is increased. Being

a user level scheduler, there is also interference from other OS level tasks. This can also

degrade performance. Another shortcoming of this method is that they haven’t explicitly

considered the data transfer time between the CPU and GPU which is significant in many

cases.

2.4.3 Static Partitioning using OpenCL

This work [46] presents a static partitioning approach to scheduling tasks/jobs to a het-

erogeneous environment like the CPU and GPU. The OpenCL environment is used to

analyze programs and extract static code features. They claim the static approach is

superior as it does not require any offline profiling and also avoids the overheads of a

dynamic run time solution. The key contribution of this paper is a machine learning

based compiler that accurately predicts the best partitioning of a task using static code

features. They have used over 47 benchmarks which are friendly towards both CPU and

GPU to validate their claim. The static code features are extracted using Clang [52].

The OpenCL code is read by Clang which builds an abstract syntax tree. This is used

to analyze the code and extract features such as number of floating point operation or

number of memory accesses. Similar features such as memory access are coalesced and a

Principal Component Analysis (PCA) is done to reduce the dimensionality of the feature

space before the results are fed into the model.

Training Data

The training data used in this work are the static code features of OpenCL programs and

their optimal partitioning. The former is the input and the latter is the output. Using

these, a model is created. Each program is run in varying partitions, namely all work on
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(CPU, GPU), (90% on CPU 10% on GPU) and so on. The partitioning with the lowest

runtime is selected as the ideal partitioning.

Predictor

All OpenCL programs can be classified into three categories, namely

1. Executed only on CPU

2. Executed only on GPU

3. Partitioned and distributed between CPU and GPU

In order to predict the correct partition, a two level hierarchical predictor is presented.

In the first level, programs belonging to category one and two are filtered and scheduled

to the corresponding devices. Therefore the features here are reduced to two using PCA.

The remaining programs are then mapped according to third predictor. Here the features

are reduced to 11 classes; class 0 represents GPU only while class 10 represents CPU only.

All other classes represent a mix of the two.

Results

In this implementation, majority of the programs are filtered out by the first level pre-

dictor, only few programs required a more fine grained approach to partitioning. All

comparisons of speedup are made with the performance of a single core system. The

proposed approach is then compared with static strategy of CPU only, GPU only and the

dynamic approach proposed by Ravi et al [3].

GPU friendly benchmarks

In these benchmarks, for obvious reasons the GPU only approach achieves the best per-

formance. The CPU only approach loses in these benchmarks. The results of the dynamic

approach [3] are good but lose out, as some of the work is performed on the CPU, this

degrades performance as compared to GPU only approach. The prediction approach pro-

posed correctly predicts for all programs and they are scheduled on the GPU thereby

achieving optimal performance.

CPU friendly benchmarks

In these benchmarks, CPU only approach achieves the best performance and a speedup of

6.12 . GPU only achieves a speedup of 1.05 for obvious reasons. The dynamic approach

also performs badly as it suffers from overheads of transferring data to the GPU when it

is actually inefficient to do so. The partitioning approach performs slightly better and is

able to achieve a speedup 4.81.
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Remaining Benchmarks

In these benchmarks, the static approaches perform the worst with a speedup 4.49(CPU)

and 6.26 (GPU) as the optimal performance is achieved only when the work is distributed.

The dynamic approach shows a lot of potential here and achieves a speedup of 8. The

partitioning approach gives an even better performance and achieves a speedup of 9.31

as it does not suffer from the scheduling overheads.

Analysis

The work in this paper is very well presented. It shows that the partitioning approach

can outperform the scheduling approach. Their method of validating their claim by using

benchmarks friendly to CPU, GPU and also a mixture gives a better perspective on

their result as compared to other works [43, 49]. However this method is a fine grained

approach to solve the scheduling problem. According to the authors themselves most of

the programs are scheduled by the level one predictor. This calls to question the need

for an extensive second level predictor. Apart from that, training the model can be quite

laborious as machine learning algorithms are computationally expensive. Also choice of

features has not been justified and any changes in the static features will require retraining

the entire model.

2.5 Summary

This chapter introduced the basics of scheduling in a parallel environment. It highlighted

the need for classifications of scheduling algorithms based on the type of architectures

they support. Section 2.1 illustrated the different algorithms used on homogeneous ar-

chitectures. It introduced the two types of scheduling algorithms based on the level of

job migration allowed. Both these methods namely the Partitioned approach and Global

scheduling approach were elaborated and the benefits and problems of the two were dis-

cussed. The current state of the art in scheduling tasks in heterogeneous architectures was

introduced in section 2.3. It also highlighted the need to use different types of strategies

due to the nature of the architectures. Many algorithms and their competencies were dis-

cussed in this section. Section 2.4 then elaborated on the chosen few models/frameworks

that this author felt was relevant to his study. The pros and cons these models were also

discussed. Therefore in conclusion, while there is a wealth of literature on the subject,

there is still a search for an optimal algorithm. Many considerations like optimizing mem-

ory transfers along with task scheduling, fine grained vs. coarse granied scheduling and

optimization of device utilization can still be studied.
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Programming Framework

3.1 Introduction

In order to accelerate an application using a GPGPU solution, there are many program-

ming options available. The most commonly used Application Programming Interfaces

(API) are CUDA (Compute Unified Device Architecture), OpenCL [53] (Open Com-

puting Language) and DirectCompute. DirectCompute is a GPGPU API developed by

Microsoft which uses High Level Shader Language (HLSL) syntax. It is easy to use for

existing DirectX programmer but otherwise has very little support and documentation.

OpenACC is another programming standard for parallel computing devel-

oped by Cray, CAPS, Nvidia and PGI. The standard is designed to simplify parallel

programming of heterogeneous CPU/GPU systems [54]. Similar to OpenMP, sections of

C/Fortan code can be identified and accelerated using PRAGMA compiler directives and

additional functions. Unlike OpenMP, code can be started not only on the CPU, but

also on the GPU. The directives and programming model defined in the OpenACC API

document allow programmers to create high-level host + accelerator programs without

the need to explicitly initialize the accelerator, manage data or program transfers between

the host and accelerator, or initiate accelerator start-up and shutdown [54].

CUDA is a more mature framework developed by Nvidia. It has a C like

syntax making it easier to program for existing C programmers. It provides excellent

support for different GPU optimized libraries and integrates easily into existing solutions.

However, CUDA is only supported by Nvidia GPUs. This is the main drawback; it does

not even fall back to CPU if a GPU is not detected.

StarPU [55, 1] is a runtime system capable of scheduling tasks over hetero-

geneous, accelerator based machines. It is a portable system that automatically schedules

a graph of tasks onto a heterogeneous set of processors. It is a software tool aiming to al-

low programmers to exploit the computing power of the available CPUs and GPUs, while

relieving them from the need to specially adapt their programs to the target machine

and processing units. StarPU’s run-time and programming language extensions support
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a task-based programming model. Applications submit computational tasks, with CPU

and/or GPU implementations, and StarPU schedules these tasks and associated data

transfers on available CPUs and GPUs. The data that a task manipulates are auto-

matically transferred among accelerators and the main memory, so that programmers are

freed from the scheduling issues and technical details associated with these transfers. This

framework is further elucidated in Section 3.3.

3.2 OpenCL Application Programming Interface

OpenCL is an open source API developed to enable co-processors to work in tandem with

CPUs which is maintained by the Khronos group. It is supported by many companies

like ADM, Nvidia, Intel and ARM holdings. It is similar to CUDA as it also has a C like

syntax and can be integrated easily. The main advantage of OpenCL is that it supports

multiple devices. Some examples are multi-core CPUs, multi-socket CPU, GPUs and Cell

processors.

This means that a programmer can change the hardware architecture with-

out any changes to the code as OpenCL is a standard from which vendors are expected

to derive abstractions to support their devices. Therefore it can in theory support many

more devices like FPGAs and mobile hardware in the future [2]. The ability to support

a general heterogeneous environment and wide industry support has been the motivation

to choose this API for the remainder of the project.

Each OpenCL implementation (i.e. an OpenCL library from AMD, NVIDIA,

etc.) defines platforms which enable the host system to interact with OpenCL-capable

devices.The software architecture of all implementations can be described by:

• Platform Model

• Execution Model

• Memory Model

3.2.1 Platform Model

The platform model consists of a host connected to one or more OpenCL devices [2]. A

device is divided into one or more compute units. Compute units are divided into one or

more processing elements. This hierarchy is described in the Figure 3.1. Each processing

element is executes independently as it maintains its own program counter.

3.2.2 Execution Model

The execution model of the OpenCL API [53] is defined by two parts namely kernels that

execute on one or more OpenCL devices and a host program that executes on the host.
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Figure 3.1: OpenCL platform model [2]

The host program defines the context for the kernels and manages their execution. When

a kernel is submitted for execution by the host, an index space is defined. The index

space supported in OpenCL 1.0 is called an NDRange. An NDRange is an N-dimensional

index space, where N is one, two or three. It is defined by an integer array of length N

specifying the extent of the index space in each dimension.

An instance of the kernel executes for each point in this index space. This

kernel instance is called a work-item and is identified by its point in the index space, which

provides a global ID for the work-item. Each work-item executes the same code but the

specific execution pathway through the code and the data operated upon can vary per

work-item. Work-items are organized into work-groups. The work-groups provide a more

coarse-grained decomposition of the index space. As shown in figure 3.2, work-groups are

assigned a unique work-group ID with the same dimensionality as the index space used

for the work-items [53]. All work items in a workgroup execute together on the same

compute unit, thereby sharing local memory. Only work items in the same work group

can be synchronized. The size of the work groups is called the local work-size of the kernel

Figure 3.2: Work-item/Work-group example [2]
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Context

The host defines a context for the execution of the kernels. The context includes the

following resources:

• Devices: The collection of OpenCL devices to be used by the host.

• Kernels: The OpenCL functions that run on OpenCL devices.

• Program Objects: The program source and executable that implement the kernels.

• Memory Objects: A set of memory objects visible to the host and the OpenCL

devices.

The context is created and manipulated by the host using functions from the OpenCL

API. The host creates a data structure called a command-queue to coordinate execution

of the kernels on the devices.

Command Queues

The host places commands into the command-queue which are then scheduled onto the

devices within the context. These include:

1. Kernel execution commands: Execute a kernel on the processing elements of a

device.

2. Memory commands: Transfer data to, from, or between memory objects, or map

and un-map memory objects from the host address space.

3. Synchronization commands: These commands constrain the order of execution. The

command-queue schedules commands for execution on a device. These execute

asynchronously between the host and the device. Commands execute relative to

each other in one of two modes:

(a) In-order Execution: Commands are launched in the order they appear in the

command queue and complete in order. This serializes the execution order of

commands in a queue.

(b) Out-of-order Execution: Commands are issued in order, but do not wait to

complete before the following commands execute. Any order constraints are

enforced by the programmer through explicit synchronization commands. Ker-

nel execution and memory commands submitted to a queue generate event

objects. These are used to control execution between commands and to coor-

dinate execution between the host and devices.

It is possible to associate multiple queues with a single context. These queues run con-

currently and independently with no explicit mechanisms within OpenCL to synchronize

between them.
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3.2.3 Memory Model

Work-items executing a kernel have access to four distinct memory regions as shown in

Figure 3.3. Each region has a specific purpose. Memory objects can be accessed by all

devices only when they are defined in the same context. The different classifications are:

Figure 3.3: OpenCL memory model [2]

1. Global Memory: This memory region permits read/write access to all work-items

in all work-groups. Work-items can read from or write to any element of a memory

object.

2. Constant Memory: A region of global memory that remains constant during the

execution of a kernel. The host allocates and initializes memory objects placed into

constant memory.

3. Local Memory: A memory region local to a work-group. This memory region can

be used to allocate variables that are shared by all work-items in that work-group.

It may be implemented as dedicated regions of memory on the OpenCL device.

Alternatively, the local memory region may be mapped onto sections of the global

memory.

4. Private Memory: A region of memory private to a work-item. Variables defined in

one work-item’s private memory are not visible to another work-item.

3.2.4 Summary

As shown in Figure 3.4, the OpenCL framework consists of program code which runs on

the Host device, kernel programs which can run on all OpenCL capable devices defined
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within the same context. Work packages are enqueued by the framework to a device and

executed either in-order or out-of-order. Memory management on the other hand needs to

be done manually using the different types of memory objects mentioned above. However,

OpenCL is still an ongoing project and is gradually being embraced by many hardware

vendors and may undergo changes in the future.

Figure 3.4: Complete OpenCL framework [2]

3.3 StarPU Scheduling Interface

StarPU [55], developed by INRIA, is a runtime system capable of scheduling tasks over

heterogeneous, accelerator based machines. It is a portable system that automatically

schedules a graph of tasks onto a heterogeneous set of processors. It is a software tool

aiming to allow programmers to exploit the computing power of the available CPUs

and GPUs, while relieving them from the need to specially adapt their programs to the

target machine and processing units. Many applications like the linear algebra libraries

MAGMA [56] and PaStiX [57] use StarPU as a backend scheduler for deployment in

a heterogeneous environment. Taking into account the extensive use of StarPU in such

applications, it is an ideal choice as a scheduler for this investigation. Applications submit

computational tasks, with CPU and/or GPU implementations, and StarPU schedules

these tasks and associated data transfers on available CPUs and GPUs. The data that a

task manipulates are automatically transferred among accelerators and the main memory,

so that programmers are freed from the scheduling issues and technical details associated

with these transfers [55]. StarPU maintains the historical data of application runtimes

over different data-sizes and builds performance models for each device. It uses these

auto-tuned models along with well-known algorithms like HEFT (Heterogeneous Earliest

Finish Time), WS (Work Steal) and other variants for scheduling tasks efficiently. In most

cases, these algorithms are sufficient; however custom scheduling techniques can also be

defined.
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The next two sections provide an overview of the StarPU framework, it is

not intended to be an extensive tutorial but aims to provide a basic understanding of the

framework and how scheduling decisions are made.

3.3.1 Programming Interface [1]

The programming interface of StarPU can be described using the following data struc-

tures:

1. Codelets: This data structure is used to describe the computational kernels that

can be implemented on different architectures. It also defines the data buffers and

the data access rules (READ/WRITE) that are used by the kernels.

(a) Each codelet can be associated with a performance model. These models can

take into consideration execution time by the performance model as well as

power consumption. These models are built using the execution profile of the

application over at least 10 iterations. Every time the application is run, its

execution profile is saved and the model is updated using hashing techniques.

Alternatively, by specifying different parameters during the execution ,these

models can also be derived using regression based estimates and are used by

StarPU to make scheduling decisions. An example of a performance model is

shown in figure 3.5. It describes the performance on a CPU and a GPU for a

2D matrix multiplication codelet.

Figure 3.5: Performance model of Matrix Multiplication

2. Task: The task is an instantiation of a codelet. This structure is used to apply a

codelet on a data set, on the architectures for which the codelet is defined. The

StarPU GCC plug-in views tasks as Extended C functions.

(a) Tasks may have several implementations, one for each device
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(b) Tasks may have several implementations of the same device. When invoked,

StarPU can choose any of its implementations.

(c) Data handles that are used to describe the data set that each task uses. These

handles need to be registered with StarPU and are used to data management

between different devices

(d) Callback functions can be defined for each task, these are invoked after the

successful completion of the task

(e) Other additional options like task dependencies and priority levels can also be

specified using this structure

(f) The task can also be defined as synchronous or asynchronous, which means that

the task will only be executed in the order of submission. However, the process

of task submission itself is always asynchronous (non-blocking operation).

By default, task dependencies are inferred from data dependency (sequential

coherence) by StarPU. The application can however disable sequential coherency for some

data, and dependencies be expressed by hand. A task is identified by a unique 64-bit

number chosen by the application which is referred to as a tag. Task dependencies can be

enforced either by the means of callback functions or by expressing dependencies between

tags of tasks that have not been submitted yet.

3.3.2 Task Scheduling [1]

StarPU obtains performance portability by efficiently using all computing resources at

the same time. It provides a unified view of all computational units and can effectively

map tasks in a heterogeneous environment while transparently handling low level function

like data transfer automatically. Also, by comparing the relative performance of tasks on

different processing units, processing units can automatically execute the tasks they are

best suited for.

Data Management

Data that is manipulated by the different devices needs to be registered with the StarPU

scheduler through the starpu data handle() data structure. Using these data handles it

automatically manipulates all data transfers between the devices. StarPu replicates data

on all devices and by default, stores these wherever they were used. This is to ensure

minimal data transfer overhead in case they are re-used by other tasks on the same

device. When a task modifies some data, all other copies are invalidated, and only the

device which ran that task has a valid replicate of the data.
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Task Submission

The starpu create task() function is used to create tasks. Once the appropriate data fields

are filled, it can be submitted to the scheduler using the starpu task submit() function.

This operation can be completely asynchronous by setting the appropriate flag during

task creation. In the ideal case, all tasks should be submitted asynchronously. The

starpu wait for task() or

starpu task wait for all() functions should be used to wait for tasks to terminate. StarPU

will then be able to rework the whole schedule, overlap computation with communication

and manage accelerator local memory usage. Figure 3.6 shows an example of multiple

tasks being submitted asynchronously and scheduled using the work-steal algorithm by

StarPU across different processing elements.

Figure 3.6: Execution timeline of multiple tasks

Task scheduling algorithms

Performance modeling

Performance modeling is the key to scheduling tasks effectively on StarPU. The ap-

plication programmer needs to configure a performance model for the codelets of the

task. There are two types of models available namely STARPU HISTORY BASED and

STARPU REGRESSION BASED. STARPU HISTORY BASED measures runtime per-

formance. This assumes that for a given set of data input/output sizes, the perfor-

mance will always be about the same. This is very true for regular kernels on GPUs

for instance (< 0.1% error) and CPUs (1% error) [1]. Records of the average run-time

of previous executions on the various processing units are stored and used for estima-

tion. This method is very useful as it has lower overhead while making scheduling

decisions. However, it inherently assumes that the execution time changes based only

on size of the data. STARPU REGRESSION BASED models performance based on

run-times but further refined by regression. Performance regularity is still assumed, but

works with various data input sizes, by applying regression over observed execution times.

STARPU REGRESSION BASED uses a∗nb regression form. While this method is more
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refined and accurate, it is computationally expensive. The task must also be issued mul-

tiple times with varying size as there is at least 10% difference between the minimum

and maximum observed input size for regression to be accurate. Overall, both methods

require a minimum of 10 measurements on each device before the scheduler starts to trust

the performance models.

Scheduling algorithms

Performance models are required by most scheduling algorithms in order to make intelli-

gent decisions while scheduling different tasks. By default, StarPU uses the eager simple

greedy scheduler. This is because it does not need performance models for scheduling.

Other algorithms that do not need performance models are:

1. The eager scheduler uses a central task queue from which devices draw task to work

on. This however does not permit it to pre-fetch data since the scheduling decision

is taken late. If a task has a non-0 priority, it is put at the front of the queue.

2. The Prio scheduler also uses a central task queue but sorts tasks by priority (between

-5 and 5).

3. The random scheduler distributes tasks randomly according to assumed overall de-

vice performance.

4. The WS (Work Stealing) scheduler schedules tasks on the local device by default.

When another device becomes idle, it steals a task from the most loaded device.

If performance models are available, other scheduling algorithms can be used by StarPU,

namely

1. The DM (Deque Model) scheduler uses task execution performance models into

account to perform an HEFT-similar scheduling strategy: it schedules tasks where

their termination time will be minimal.

2. The DMDA (Deque Model Data Aware) scheduler is similar to DM, it also takes

into account data transfer time.

3. The DMDAR (Deque Model Data Aware Ready) scheduler is similar to DMDA, it

also sorts tasks on per-worker queues by number of already-available data buffers.

4. The DMDAS (Deque Model Data Aware Sorted) scheduler is similar to DMDA, it

also supports arbitrary priority values.

5. The HEFT (Heterogeneous Earliest Finish Time) scheduler is similar to DMDA, it

also supports task bundles.
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6. The Pheft (parallel HEFT) scheduler is similar to HEFT, it also supports parallel

tasks (still experimental).

7. The PGreedy (Garallel Greedy) scheduler is similar to Greedy, it also supports

parallel tasks (still experimental).

3.3.3 Summary

StarPU is an open source scheduler that can be used to schedule tasks in a heterogeneous

environment. It massively reduces the amount of data transfers without any application

code modification. The unique selling point of StarPU is the tight collaboration between

its high-level data management library and its portable scheduling engine. This allows

the programmer to easily design powerful scheduling policies. An overview of the StarPU

execution model is shown in Figure 3.7. StarPU unlocks the portability of performance

on complex accelerator-based platforms: it is for instance generic enough to transparently

handle heterogeneous multi-GPU setups by hiding both low-level heterogeneity and by

dispatching tasks according to the capabilities of the different units. StarPU is not limited

to multi-core machines equipped with GPUs and Cell processors. Its asynchronous event-

driven design will for instance make it straightforward to implement an OpenCL backend.

Figure 3.7: Execution model of StarPU [1]
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Chapter 4

Fine Grained Scheduling

4.1 Introduction

As mentioned in Chapter 1, introduction of heterogeneous architecture has led to an

immense improvement in performance at lower cost. While many applications can take

advantage of the superior performance, programming them efficiently is still a topic of

active research.

Applications like image-filtering, face recognition, gesture recognition and

audio processing are multi-step processes. There are cases when certain steps within such

applications may have skewed performance on a single device. In problems involving

multi-step applications, it is crucial to determine which sections are more efficient on

a particular device as it allows a fine grained approach to scheduling tasks. The focus

here is not on partitioning the tasks themselves, but determining how such a fine grained

scheduling improves overall execution time and reduces task starvation. Work Steal (WS)

and Heterogeneous Earliest Finish Time (HEFT) [58] are ideal for comparison as they

represent the different scheduling perspectives. Work Steal is a greedy algorithm that

schedules tasks as and when a processing element becomes available, it does not take into

account the historical performance on different devices.

The main idea behind Work Steal is to improve device utilization. On the

other hand HEFT [58],can use performance models and historical data to make a quicker

decision on ideal mapping of tasks onto devices while trying to reduce overall make-span.

However, it may not be a fair algorithm as it can starve some tasks in order to run them on

a better suited device leading to poor device utilization. The following sections describe

in detail the effect of fine grained scheduling across the two scheduling algorithms using

the StarPU framework. It also shows the result when executing applications over different

data sizes.
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4.2 Multi-step Applications

Applications, especially in the image processing domain have similar base functions. For

example, several image filtering algorithms utilize the Fourier domain (and hence FFT)

for faster processing. Hence, different applications can reuse come computation kernels.

The matrix transpose kernel, for example is the same for the FFT and the Recursive

Gaussian tasks. Other tasks like 2D matrix multiplication or matrix-vector multiplication

are also used regularly as sub-tasks within a larger algorithm. Keeping this in mind, three

multi-step applications were developed and used to evaluate the fine grained approach. All

examples have two variations, one deployed as an atomic task and the other as non-atomic

tasks. The experimental setup for these tests is mentioned in Appedndix A

4.2.1 Example 1

The first example used is matrix multiplication (matMul) followed by a matrix-vector

multiplication (vectMul). Two variants of this application were created. mvmAtomic,

is a straightforward variation, where only one task is created. The OpenCL kernels for

the two sub-sections are combined and only one OpenCL execution call is made. For

the other variant, mvmSep, two tasks are created and submitted to the StarPU scheduler

asynchronously. An explicit dependency is specified such that vectMul is executed only

after matMul. Table 4.1 shows the execution time of the tasks for different data sizes.

It can be seen that the vectMul task is more efficient on the CPU even as the data size

increases; while matMul is more efficient on the GPU only when the data processed is

large. This is an ideal example that can be used to represent non-uniform performance

within a single task.

Table 4.1: Execution time for mvmAtomic Task (in ms)

Tasks 256 512 1024

matMul
CPU 174 1824 54528

GPU 564 1011 5396

vectMul
CPU 1 2 8

GPU 403 402 419

mvm atomic
CPU 178 1436 54216

GPU 486 1025 5417

mvm sep
CPU 181 1046 5442

GPU 546 1084 14980

4.2.2 Example 2

Recursive Gaussian (recGauss) filtering is another application that is used for testing the

approach. Gaussian blurring is optimal for applications that require low pass filtering
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or running averages. It is a widely used effect in graphics software, typically to reduce

image noise and detail. Recursive Gaussian technique is very efficient in achieving this,

especially when long filters are used. The recursive Gaussian function consists of two

kernels, namely Gaussian filtering and Matrix transpose. From the performance models

(Figures 4.1 and 4.2) generated by StarPU we can see the inherent heterogeneity in this

algorithm, wherein the recursive Gaussian kernel performs better on the GPU as the data

size increases but the transpose binary is always efficient on the CPU. Therefore this

application, GaussSep can be divided into two tasks.
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Figure 4.1: Performance model for recursive Gaussian task
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Figure 4.2: Performance model for matrix transpose task
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4.2.3 Example 3

The final application developed is 2D matrix multiplication followed by 2D Fast Fourier

Transform (FFT). FFT which has a complexity of O (N logN) is used in this example

as it is an efficient way of computing the DFT of a signal which has a complexity of

O(N2). The FFT algorithm is inherently not parallel and hence more efficient on the

CPU. Matrix multiplication on the other hand operates on a relatively larger data set

and can be parallelized very easily. It is very suited to be executed on the GPU. While

this example also shows the heterogeneity within the application, it represents a different

class of applications as the penalty of running the application on a suboptimal device is

very high. Table 4.2 shows the execution time of the individual tasks when executed on

the CPU/GPU only.

Table 4.2: Execution time for mulFFT Task (in ms)
,

Tasks 256 512 1024

matMul cmplx CPU 288 7030 81192

GPU 671 2360 8655

fftAtomic
CPU 26 139 588

GPU 616 957 2488
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4.3 Experiments and Discussion

The examples developed in the section 4.2 along with other benchmarks are deployed

using the StarPU scheduler. The average result over 20 iterations of each experiment is

used for analyzing the scheduling perspective. Seven tasks are chosen as the intended

benchmarks to analyze the different approaches. All tasks are created and submitted

to the StarPU scheduler asynchronously. The execution time is measured from when

the tasks starts execution till the callback function is called by StarPU and the task is

destroyed. As StarPU manages data transfer internally, data transfer time between the

devices are included within the execution time. The different tasks (atomic) deployed are:

1. bSearch-Binary search

2. matMul-2D Floating point Matrix multiplication

3. recGauss-Recursive Gaussian

4. mvmAtomic1- 2D matrix multiplication followed by matrix-vector multiplication

5. mvmAtomic2- 2D matrix multiplication followed by matrix-vector multiplication

6. FFT - Fast Fourier Transform

7. mulFFT - 2D matrix multiplication followed by FFT

The tasks are then split into separate non-atomic tasks as mentioned below:

1. mvmAtmomic1/2: These applications are split into two tasks, namely mvmAtomic1 1

/ 2 1 and mvmAtomic1 2 / 2 2. The first corresponds to the matrix multiplication

task and the second corresponds to matrix-vector multiplication task.

2. recGauss: This application is split into two functional tasks, namely the Gaussian

function and the transpose function as explained in the previous section. However,

as we are operating in two dimensions, the tasks need to be deployed twice, resulting

in four tasks. These are recGauss1, recGauss2, recGauss3 and recGauss4.

3. mulFFT: This application is deployed as two tasks, mulFFT1 which corresponds

to the matrix multiplication operation and mulFFT2 being the 2D FFT task.
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4.4 Results and Discussion

4.4.1 256 Matrix dataset

If we examine the execution time when the tasks are deployed both atomically and non-

atomically, we can see that there is very little difference in execution time for small data

sets. Figure 4.3 shows the execution time of all algorithms for the 256 data-set, the non-

atomic HEFT approach has the best performance with an improvement of about 25% as

compared to its atomic counterpart. As compared to HEFT (atomic), the Work Steal

algorithm shows a marginal improvement(1%). This can be attributed to the fact that for

such computations, the CPU and GPU have similar performance with CPU performing

better in some cases.

Figures 4.4 and 4.5 show an example of the execution time-line when these

tasks are deployed atomically using the HEFT and WS algorithms. In these snapshots,

we can see that the atomic HEFT algorithm schedules most of the tasks on the CPU and

the result is similar to a CPU only approach. Figures 4.6, 4.7 show the same when

the tasks are deployed non-atomically. We can observe that a better schedule in achieved

by HEFT. Work Steal algorithm has a longer make-span but better utilization. In the

case of the HEFT algorithms, the make-span of the tasks improves significantly as fine

grained approach creates a detailed performance profile of all tasks. From this profile,

HEFT schedules matMul on the GPU instead of the CPU.

Figure 4.3: Execution Time - 256 dataset
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Figure 4.4: Atomic HEFT - 256 Dataset

Figure 4.5: Atomic WS - 256 Dataset
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Figure 4.6: Non Atomic HEFT - 256 Dataset

Figure 4.7: Non Atomic WS - 256 Dataset
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4.4.2 1024 Matrix dataset

The results are very similar for the 1024 data-set. However in this case, the tasks are

more frequently scheduled on the GPU than the CPU. Figure 4.8 shows a comparison

of the different algorithm on this data-set. Even in this case, we can see that the non-

atomic HEFT algorithm performs the best. There is about 28% improvement when the

HEFT algorithm is used and non-atomic Work Steal shows a 68% improvement over its

atomic counterpart. While on average the improvement is very significant, the algorithm

is not very stable as the execution time has a high standard of deviation (≈10%) which

corresponds to hundreds of ms, and depends wholly on the order of the task submission.

In the 1024 execution time-line, we see the opposite schedule as compared to the 256

data-set. Figures 4.9 , 4.10, 4.11 and 4.12 show the execution time-line of this example .

It is interesting to note the utilization of the different devices. In both cases, the schedule

is skewed toward one device. The HEFT algorithm ensures that the tasks are scheduled

on a particular device based mainly on their historical performance, but in this case it

is detrimental to the overall execution time. The Work Steal algorithm performs slightly

better in terms of device utilization as it forces execution of tasks on idle devices.

Figure 4.8: Execution Time - 1024 dataset
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Figure 4.9: Atomic HEFT - 1024 dataset

Figure 4.10: Atomic WS - 1024 dataset
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Figure 4.11: Non-Atomic HEFT - 1024 dataset

Figure 4.12: Non-Atomic WS - 1024 dataset
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4.4.3 512 Matrix dataset

The results of the experiment with the 512 data-set are more interesting. Figure 4.13

shows the execution time of all approaches, there is considerable improvement in perfor-

mance when the non-atomic approach is used in both algorithms. As expected a non-

atomic HEFT solution provides the best result, it is 43% faster than its atomic equivalent.

From the time-line as shown in Figure 4.16 and 4.17, we can also observe that the devices

are utilized better.

In the Work Steal approach, we can see an improvement of 68% when

compared with its atomic counterpart. Both the CPU and GPU are utilized well. In the

non-atomic approach, tasks such as FFT, mvmAtomic1 1 and mulFFT2 are scheduled on

the GPU, which is not the optimal device for these tasks. The overall execution time is

still comparable to its HEFT counterpart. This is attributed to the fact the utilization

of the devices is quite high. From these results we can infer that improving the device

utilization is as important to reducing the overall execution time as making the correct

decision on choosing the optimum device. Therefore scheduling algorithms that can take

into account both historical run-time information and current device utilization merits

further research.

Figure 4.13: Execution Time - 512 dataset
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Figure 4.14: Atomic HEFT - 512 Dataset

Figure 4.15: Atomic WS - 512 Dataset
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Figure 4.16: Non-Atomic HEFT - 512 dataset

Figure 4.17: Non-Atomic WS - 512 dataset
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4.4.4 Device Utilization

One of the aspects that plays a major role in improving the overall execution time is the

device utilization. A good schedule is able to use all devices within the heterogeneous

environment effectively. In some cases, it is more useful to schedule a task on a non-

optimal device than wait for the ideal device to be free. Figure 4.18 shows the improvement

in utilization of the CPU and GPU when the HEFT algorithm is used across 256 and 512

data sets. In the context of large data sizes such as the 1024 data set, we can see that the

GPU is utilized extensively as most tasks are efficient on it, while the CPU on the other

hand is underutilized.

For smaller data sizes, the improvement is more significant. It is observed

that the non-atomic versions are able to better utilize the devices. This is very evident

in the 512 data-set where the CPU utilization increases from 34% to 74%. In the case of

the 256 data-set the GPU utilization increases from 43% to 69%.

In the case of the Work Steal algorithm, there is a similar improvement in

performance, but no general conclusion can be derived as the results have a high variation.

Figure 4.19 depicts this variation over 10 iterations of the deploying tasks using the Work

Steal algorithm. We can observe that there is a significant fluctuation in both CPU and

GPU utilization. In this case, the task dependencies and sub-optimal scheduling lowers

the CPU utilization. Work Steal does not consider the previous performance of the task

and therefore schedules the task on the next available device. If it schedules a task on a

suboptimal device, for eg : FFT on the GPU, it takes substantially more time to complete

the task, while in the mean time the CPU waits till the dependencies are satisfied. This

leaves the CPU idle for long periods, lowering its utilization while the GPU is utilized

sub optimally.
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Figure 4.18: Utilization of CPU and GPU
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Figure 4.19: Utilization of devices - Work Steal



4.5 Summary and Conclusion 51

4.5 Summary and Conclusion

In this chapter, the effectiveness of a fine grained scheduling approach in a CPU-GPU

heterogeneous environment was presented. Examples representing the different classes of

applications have been used in this study. Both inter-task (mvmAtomic, mulFFT) and

intra-task (recGauss) partitioning of applications were used to thoroughly investigate the

benefit of such an approach. The variation of the results over multiple data sets was also

studied. Using a fine grained approach provides greater freedom to the scheduler to make

decisions. This is very critical when non-homogeneous tasks are deployed as it allows

devices to be fully utilized. From the execution times and the time line graphs, we can

conclude that the non-atomic HEFT approach demonstrates the best result.

Based on the results presented in this chapter, we can conclude that map-

ping tasks to the ideal device based on only performance profile does not necessarily

improve the execution time. Other consideration that need to be taken into account are:

• Task dependencies

• Device utilization

• Memory transfer time

The effect of these factors is further studied in the next chapter.
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Chapter 5

HEFT-No Cross Algorithm

5.1 Introduction

The main goal of any scheduling algorithm is to assign a task to the best suited processor

such that the overall execution time (make-span) is minimized. As shown in chapter 4,

performance profiles alone are not sufficient to make this decision. We must also consider

task dependencies and device utilization.

A well accepted representation of an application (set of tasks) is the Di-

rected Acyclic Graph (DAG), which characterizes the application both in terms of ex-

ecution time and inter-task dependencies. This problem of assigning tasks to the most

efficient processor is known to be NP-hard [15] and hence most scheduling algorithms

are based on heuristics. Heterogeneous Earliest-Finish-Time (HEFT) is widely accepted

algorithm that schedules a DAG onto a range of heterogeneous processors. There are two

phases within the algorithm. In the first phase, tasks are ranked and prioritized and the

second phase is used for processor selection. This algorithm has relatively low complexity

O(v2p), where v is the number of tasks and p is the number of processors. However, it

was developed before the advent of using specialized processors like GPUs [44] for general

computation.

Since then, many improvements and variations of the HEFT algorithm have been sug-

gested. Zhao and Sakellariou [59] investigated different methods to improve the ranking

function. They showed that using the average value as the task rank is not optimal. How-

ever, the results from the proposed modifications are not consistent over different graphs.

Nasri and Nafti [60] put forward another algorithm that closely mimics HEFT. Commu-

nication costs are included as part of the task rank to compensate for the heterogeneity

in communication, but the results are only marginally better than HEFT.

The PETS [61] algorithm also focuses on changing the ranking method: task ranks are

calculated not only on the Average Computation Cost (ACC) but also the Data Transmit

Cost (DTC) and Data Receive Cost (DRC). It claims to derive better schedules 71% of

the time and has lower complexity than HEFT. However, for randomly generated graphs,
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the algorithm shows marginal improvement in schedule length. Better results are ob-

tained for FFT graphs. Observing that small changes to the ranking method can affect

the performance of the scheduling algorithm, Sakellariou and Zhao [62] suggest a hybrid

method which is less sensitize toward the ranking system. The authors propose a 3-step

algorithm namely ranking, grouping and scheduling. In the grouping step, all independent

tasks are grouped together allowing greater freedom in the scheduling step to schedule

tasks in parallel. The Balanced Minimum Completion Time(BMCT) heuristic proposed

for the scheduling step outperforms HEFT for random, as well as real world work-flows

but is computationally expensive. In comparison with HEFT it is approx. seven times

slower [62].

Bittencourt et al. [63] proposed a different optimization to HEFT. The main idea here is

to minimize the Earliest Finish Time (EFT) of all the children of a node on the processor

where the selected node is to be executed. Four different variations to this look-ahead

model are presented. The algorithm performs well when the number of processors is high

but otherwise the improvement in terms of schedule length is marginal. By looking-ahead,

the complexity is also increased. Arabnejad and Barbosa [64] further optimize this ap-

proach. They put forward an algorithm that is able to look-ahead while maintaining

the same complexity as HEFT. They calculated the Optimistic Cost Table (OCT) for all

tasks and use the same for ranking and processor selection (minimize Optimistic Finish

Time instead of EFT). The algorithm also shows 4-10% improvement in make-span over

HEFT.

5.2 Problem Statement

HEFT is a well accepted list-based heuristics owing to low complexity and efficiency

[44]. Canon et. al [65] compared 20 scheduling heuristics and concluded that for random

graphs, on average, HEFT derives the best schedule. They compared these algorithms

in terms of robustness and schedule length. Computationally, the HEFT algorithm has

a complexity of O(v2p). The HEFT algorithm first assigns a priority (rank) to each task

and then uses an insertion based framework to assign tasks to a particular processor such

that the overall execution time is minimized. However, the HEFT algorithm may not be

optimal in a CPU-GPU environment as it uses average computation time to derive the

schedule and does not consider the effect of dissimilar execution times. This problem is

further exacerbated for complex task sets which have high inter task dependencies. Due

to these dependencies a single suboptimal scheduling decision can cause a significant delay

in the execution of all tasks.

Therefore, several improvements such as changing the ranking method,

looking ahead and clustering have been proposed [59, 62, 61, 66, 64, 60] over the past

few years to further improve the performance of the algorithm. In this chapter, a novel

optimization to the HEFT algorithm HEFT-NC (No Cross) is presented. The main idea
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behind the algorithm is balancing the globally optimal performance (Earliest Finish Time)

with the locally optimal one (computation time on different processors) by restricting the

crossing of tasks between processors. Some of the results of this study were published in

the 14’th International Conference on Parallel and Distributed Computing, Applications

and Technologies (PDCAT13) [67].

5.3 Algorithm Overview

Currently, HEFT is not fully suited to take advantage of dissimilar performance of the

CPUs and GPUs. The main idea behind the HEFT task ranking is to schedule the largest

task first, however using the average time as a metric to prioritize tasks is not optimal for

a CPU-GPU environment. The processor selection step in HEFT is based on scheduling

the highest priority task producing the lowest global Earliest Finish Time (EFT). In some

cases, we can observe that the make-span can be reduced by choosing the more optimal

processor (based on computation times) for a task rather the global EFT as later shown

in Fig. 5.3. Therefore, both the task ranking and the processor selection steps have scope

for improvement.

5.3.1 Modification of Task Weight

Approach 1

Zhao and Sakellariou [59] have experimented with various simple metrics (Median, Best

value, Worst value) to better rank tasks, but none of the metrics showed consistent per-

formance. In the author’s first approach, relative speedup was used as a metric as this is

more intuitive when comparing the performance of the CPU and GPU. The speedup is

defined as the ratio of the execution time on the slower processor to the faster processor.

This value is used to calculate the rank of the tasks. Comparing this modification with

the original HEFT (same processor selection heuristic) shows a 2.3% improvement in the

make-span averaged over 500 random DAGs. It was also observed that it produces a

better schedule 45% of the time.

Approach 2

While using the speedup as a metric shows some improvement, it does not capture all the

information about the tasks. A large speedup value does not necessarily mean that the

task is large and hence should be scheduled first. The actual time saved or the absolute

time difference of the computation times is a better metric. A similar comparison (as

Approach 1) with HEFT shows that on average, there is a 2.6% improvement in the

make-span. In this method, there is a strong bias towards tasks with large computation
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time, tasks with better speedup can be assigned lower priority. Therefore while the make

span improves, this approach produces better schedules only 38% of the time.

Approach 3

Keeping in mind the advantages and disadvantages of both the approaches, a composite

task ranking system is proposed which takes into consideration both speedup and the time

saved. By using the ratio of absolute time saved over the speedup as defined in Eq. 5.1,

we are normalizing the information across different tasks and processors.

Weightni
=

abs(w(ni, pj)− w(ni, pk))

w(ni, pj)/w(ni, pk)
(5.1)

Here w(ni, pj) is defined as the computation time of task ni on processor pj. This method

captures more information about the tasks and shows a 3.1% improvement in make-span

while being better than HEFT 42% of the time.

Consider the DAG shown in Fig. 5.1, the task set consists of 16 nodes with 0 being

the root node added to complete the graph. Table 5.1 shows the computation time and

the rank assigned to each task using HEFT and Approach 3. The priority of tasks as

assigned by HEFT will be {2,6,1,9,5,4,7,10,8,3,12,11,13,15,14,16} and that assigned using

the proposed approach is {2,1,6,5,9,4,8,7,3,10,11,3,12,15,14,16}. We can see that Task 1

is given higher preference compared to Task 6 even though the absolute time difference

is similar because of the higher speedup achieved. Conversely, Task 5 is given preference

over Task 9 even though their speedup is comparable as it saves a significant amount of

time. Therefore, both factors are used efficiently to determine the priority of the task.
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Figure 5.1: Example of random DAG

Table 5.1: DAG Rank table

Task P1 (time) P2 (time) HEFT-Rank Proposed-Rank

1 40 260 1550 355

2 286 352 1937 403

3 132 247 813 238

4 256 298 1333 262

5 97 299 1375 320

6 131 304 1617 348

7 136 104 1176 250

8 165 308 860 253

9 315 370 1399 273

10 292 213 1055 225

11 172 136 623 176

12 323 343 802 166

13 316 153 547 172

14 14 45 312 92

15 266 105 468 146

16 215 347 281 82
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5.3.2 No-Crossover Scheduling

As per the HEFT algorithm, the highest priority tasks are first scheduled on the processor

that produces the lowest finish time (globally optimal). This approach may not be the

most optimal for large and complex task sets. Sometimes, better make-span can be

achieved by scheduling tasks based on just the computation time of tasks on different

processors (locally optimal). This is more relevant for CPU-GPU environment, where the

level of heterogeneity is quite high. The formal definition of the algorithm (HEFT-NC)

is shown Algorithm 1.

Algorithm 1: HEFT-NC Algorithm

1 for all ni in N do

2 Compute modified task weight(ni)
3 Compute blevel(ni)

4 end

5 StartNode←ReadyTaskList
6 while ReadyTaskList is NOT NULL do

7 Select ni node in the ReadyTaskList with the maximum blevel
8 for all pj in P do

9 Compute EST (ni,pj)
10 EFT (ni,pj) ⇐ wi,j + EST(ni,pj)

11 end

12 Select pj with Min EFT (ni,pj)
13 if wi,j <= Mink∈P (wi,k) then

14 Map node ni on processor pj which provides its least EFT
15 Update T Available[pj ] and ReadyTaskList

16 else

17 Weightabstract =
abs(EFT (ni ,pj )−EFT (ni ,pk ))

EFT (ni ,pj )/EFT (ni ,pk )

18

19 if
Weight(ni )

Weightabstract
<= CROSS THRESHOLD then

20 Map node ni on processor pj (Cross-over)
21 Update T Available[pj ] and ReadyTaskList

22 else

23 Map node ni on processor pk (No Cross-over)
24 Update T Available[pk] and ReadyTaskList

25 end

26 end

27 end

The algorithm can be better understood by studying the schedules produced

as shown in Fig 5.2 and 5.3. In both cases, Task 2 is scheduled first on P1. HEFT

schedules Task 6 next followed by Task 1. In this case, Task 1 is scheduled on P2 as it

produces the lowest EFT. In comparison HEFT-NC schedules Task 1 second, ideally it

should have been scheduled on P2, however if we look at the computation time of Task 1

on P1 and P2, there is a significant difference (≈ 220 time units). So we can observe that

while globally the finish time is optimized if this task is scheduled on P2 but it is more
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Table 5.2: Definitions

N {n1, n2, n3, n4, n5, n6.}.Set of nodes in the DAG

P {p1,p2, p3, p4, p5, p6.}//Set of processors

wi,j Time required to execute task ni on processor pj
ci,j Time required to transfer data from task ni to nj

T Available[pj ] Time at which processor pj completes the execution of all the
nodes previously assigned to it

EST (ni,pj) Max(T Available[pj ],Max(n
m∈pred(ni )

) EFT(nm,pj)+ci,j)

EFT (ni,pj) wi,j + EST (ni,pj)

CROSS THRESHOLD Empirically defined coefficient that determines if a task should
crossover to a locally sub-optimal processor

efficient if we use the locally optimal processor (P1). Therefore applying the HEFT-NC

definition, the cross over to P2 is not allowed. While this can lower device utilization, it

can be observed that for large task sets the make-span is significantly improved.

The decision to cross over is critical and depends on the empirically derived value of

CROSS THRESHOLD. This value is defined as a number from 0-1. A value close to

unity will reduce the HEFT-NC schedule to the HEFT schedule. On the other hand, a

low value will not allow any cross over thereby lowering the efficiency of the heterogeneous

architecture. For this work, the value has been set to 0.3 and has shown consistent results

over 2000 DAGs as described in Section 5.4. The make-span using this method has

improved by about 4.8%. HEFT-NC also has a better schedule length ratio (SLR) of 0.98

as compared to 1.05 of HEFT. Therefore we can observe that making short term sacrifices

can significantly improve overall performance.

Lines 13-24 in the formal description of the algorithm better illustrate the

cross/no-cross decision making process. The first step is to check if processor j that pro-

duces the lowest EFT is also the most efficient processor for the task (lowest computation

time). If this case is true, (Lines 13-16) the globally optimal result matches the locally

optimal one and the task is scheduled on that processor. If these results don’t match, i.e

there exists a processor k which has a lower computation time than j, then we create an

abstract task which is an aggregate of all the previous tasks executed. This also includes

the task that needs to be scheduled. The EFT on processor p and k are used as the

computation times respectively. We create this abstract task to reduce the complexity of

the scheduling problem to a two task problem.

The composite weight as described in Eq. 5.1 is calculated for this abstract task (Line

17). Now we can compare the two tasks (abstract task and the original task to be sched-

uled) and choose the larger task. However, a simple binary comparison can overload

one processor by restricting cross-overs. Hence, a margin of error is allowed through

the CROSS THRESHOLD parameter (Lines 18-24). In the chosen example as shown

in Fig. 5.3, Tasks 1 and 2 are aggregated as a single task and their abstract weight is

calculated and compared with the weight of Task 1.
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Figure 5.2: Application trace of HEFT
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Figure 5.3: Application trace of HEFT-NC
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5.4 Results and Discussion

5.4.1 Experimental Setup

The performance of the HEFT-NC algorithm was tested exhaustively across 2000 ran-

domly generated DAGs. The following parameters were considered for generation of

these DAGs. Each of these parameters were combined in all possible combinations and

25 iterations of each combination were generated.

1. Number of tasks (N) = {10, 50, 100, 200, 500}

2. Graph shape (α) = {0.1, 1, 5, 10}

3. Computation to Communication ratio (CCR) = {0.1, 5, 10}

4. Outdegree range [0..5]

5.4.2 Simulation Results

Speedup Comparison

Figure 5.4 - 5.6 shows the speedup achieved across different parameters (α = 0.1,5,10).

We can observe that in all cases, for narrow as well as wide graphs the speedup achieved

is quite significant. The results are much better for large task sets, for smaller task

sets HEFT produces better results. This can be attributed to the fact that no-crossover

method can sometimes lengthen the schedule by overloading a processor as it assumes

that there will always be more tasks available. But as we can observe, overall, there is a

consistent improvement of about 4-6% in make-span. The best case performance of the

algorithm shows a 20% improvement.

Schedule Length Comparison

The metric most commonly used to evaluate a schedule for a single DAG is the make-span.

In order to compare DAGs with very different topologies, the metric most commonly used

is the Scheduling Length Ratio (SLR) as defined in Eq. 5.2

SLR =
make− span(solution)

CPIC
(5.2)

Critical Path Including Communication (CPIC) is the longest path in the DAG including

communication costs. The average SLR over different computation to communication

ratio (CCR) is shown in Table. 5.3. The improvement in performance is consistently

better than HEFT across the different CCRs. This shows that the algorithm is quite

stable.

Another important observation is the best case percentage, i.e. the amount of time
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Figure 5.4: Speedup comparison α = 0.1
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Figure 5.5: Speedup comparison α = 5

HEFT-NC produces shorter make-spans than HEFT. HEFT-NC is quite consistent and

on average produces better results than HEFT 68% of the time. As the task sets get bigger

and more complex, HEFT-NC produces better results. Fig. 5.7 shows the performance

of both algorithm with varying shape of the graph. For narrower graphs, there is very

little improvement in performance as compared to square or wider graphs. This is due

to the fact that dependencies curb the different permutations in which the tasks can be
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Figure 5.7: SLR comparison over different graph shapes

The performance of the algorithm over different CCR is shown in Fig. 5.8.

The improvement in performance here is significant across all ratios. The highest im-

provement can be seen in graphs with high CCR ratio because by restricting the number

of crossovers, we limit the amount of data that needs to be transferred between proces-
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sors. Therefore, even though communication costs are not taken into account explicitly,

the algorithm is indirectly benefited by using the no-crossover heuristic.

Table 5.3: SLR comparison over varying CCR

Name CCR = 0.1 CCR = 5 CCR = 10

HEFT HEFT-NC HEFT HEFT-NC HEFT HEFT-NC

Mean 12.76 12.23 11.53 10.91 12.42 11.83

Median 10.62 10.17 9.09 8.70 10.85 10.37

Std. Dev. 8.64 8.37 8.34 7.83 9.03 8.54

Best Case % 18.03 65.86 14.37 68.58 12.37 84.9
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5.5 Conclusion

A novel optimization to the HEFT algorithm is presented in this chapter. The modifica-

tions proposed do not change the complexity of the algorithm but significantly improve its

performance. Modifications to both the task ranking method and the processor selection

method are suggested here.

• Task ranking: A new method to rank the tasks such that both speedup and absolute

time saved, are considered while giving priorities to the tasks. This modification

alone showed about 3-4% improvement in the make-span. While the results were

not always significant, it provided a more optimal barometer while making decisions

in the processor selection step.

• Local vs global optimization: Through exhaustive experiments it was shown that

the performance of HEFT-NC has improved significantly over the HEFT algorithm.

We have shown that in many cases, a locally optimized approach produces better

schedules. Experiments were conducted using randomly generated DAGs to test the

algorithm thoroughly.

5.5.1 Future Work

From the above results we can observe that the while HEFT-NC algorithm is very efficient,

there is still scope to improve its performance. Communication costs have not been

considered in this work. Although, indirectly it does benefit from lower memory transfers,

a better ranking system which also takes communication costs into consideration could

significantly improve performance. Another extension that incorporates multiple CPU-

GPUs can be investigated. The key challenge here would be to improve performance

without changing the complexity of the Cross/No-Cross decision.
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Chapter 6

Extension of the HEFT-NC

Algorithm

6.1 Introduction

In the previous chapter, the concept of the HEFT-No Cross algorithm is introduced.

Through exhaustive testing, it was shown that choosing the locally efficient processor as

compared to the globally efficient processor improves the overall execution time. This

approach however, was only studied in a single CPU and GPU environment.

Recent advances in GPGPU technology has led to including multiple CPU

and GPUs in the same computing framework. This industry trend toward multiple GPUs

can be observed with the advent of technologies like Unified Virtual Addressing, wherein

all devices share the same memory and GPUDirect, where communication between GPUs

can happen without host intervention. These technologies simplify the integration of

multiple GPUs within a single system.

Increasing the number of accelerators like GPUs, helps scale up performance

tremendously as it adds another level of parallelism and can also lower power requirements.

Many high end servers like the Tesla S8750 use multiple GPUs (4) along with a host

system to accelerate performance. Supercomputers like Tianhe-1A, ranked 2 in top 500

supercomputers [68] is able to generate a theoretical peak performance of 4700 petaFlops/s

using 4,096 Intel Xeon E5540 processors and 1,024 Intel Xeon E5450 processors, with 5,120

AMD GPUs. Other supercomputers like Nebulae (ranked 4) and Tsubame 2.0 (ranked

5) also use multiple GPUs. Therefore scheduling in a multi CPU-GPU environment can

be considered the next challenge in heterogeneous scheduling techniques. This chapter

describes the methods to extend HEFT-NC algorithm to a multi CPU-GPU environment.
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6.2 Algorithm Overview

6.2.1 Modification of Task Weight

The weight of a task for a two processor HEFT-NC is calculated based on Eq. 5.1. The

idea there is to include information about speedup and the absolute time saved metric.

This method is straight forward for a two processor system. To extend the same idea to a

multiple CPU-GPU environment the least efficient processor for a given task is identified.

This can be considered the base processor and the respective metric can be calculated as

shown in Eq 6.1 - 6.4

MaxTimei = max
j∈p

(w(ni, pj)) (6.1)

Speedupi = MaxTimei/w(ni, pj) (6.2)

TimeDiffi = abs(MaxTimei − w(ni, pj)) (6.3)

Weightni
=

Speedupi
TimeDiffi

(6.4)

Eq. 6.4 is the final equation that defines the composite weight of a given

task ni . This method, is able to combine both the speedup and time saved metric without

increasing the algorithmic complexity of the task ranking procedure. In order to support

the processor selection step, the locally optimum processor for a given task is also identified

in this step as shown in Eq. 6.5

MinProc(L)i = min
j∈p

w(ni, pj) (6.5)

6.2.2 No-Crossover Scheduling

Once the task weights are generated, the tasks are ranked based on their dependencies

with other tasks. The task with highest rank is selected first in the processor selection

step. Based on the HEFT heuristic, the processor producing the lowest effective finish

time is selected and can be considered the globally optimal processor (GOP).

The computation times of a given task on GOP and the processor selected

based on Eq. 6.5 (locally optimal) are compared. If the processors have the same com-

putation time, then the task is scheduled based on the HEFT algorithm heuristics (GOP

solution). However, if the processors are different, then further analysis is carried out

to check if the task should instead be scheduled on the locally optimal processor (LOP).

This decision is similar to the decision described in Section. 5.3. By calculating the LOP

during the ranking stage using Eq. 6.5, the solution is reduced to a two processor problem



6.2 Algorithm Overview 69

and hence does not increase the complexity of the algorithm. The formal definition of the

extension of the algorithm (HEFT-NCe) is described in Algorithm 2.

Algorithm 2: HEFT-NC Extended Algorithm

1 for all ni in N do

2 Compute modified task weight(ni)
3 MinProc(L)i = Minj∈p w(ni, pj)
4 Compute blevel(ni)

5 end

6 StartNode←ReadyTaskList
7 while ReadyTaskList is NOT NULL do

8 Select ni node in the ReadyTaskList with the maximum blevel
9 for all pj in P do

10 Compute EST (ni,pj)
11 EFT (ni,pj) ⇐ wi,j + EST(ni,pj)

12 end

13 Select pj with Min EFT (ni,pj)
14 GlobalMinProc = j

15 if GlobalMinProc == MinProc(L)i then
16 Map node ni on processor pj which provides its least EFT
17 Update T Available[pj ] and ReadyTaskList

18 else

19 WeightLtask =
abs(w(ni ,pglobalMin )−w(ni ,plocalMin ))

w(ni ,pglobalMin )/w(ni ,plocalMin )

20

21 Weightabstract =
abs(EFT (ni ,pglobalMin )−EFT (ni ,plocalMin ))

EFT (ni ,pglobalMin )/EFT (ni ,plocalMin )

22

23 if
WeightLtask
Weightabstract

<= CROSS THRESHOLD then

24 Map node ni on processor plocalMin (Cross-over)
25 Update T Available[plocalMin] and ReadyTaskList

26 else

27 Map node ni on processor pglobalMin (No Cross-over)
28 Update T Available[pglobalMin] and ReadyTaskList

29 end

30 end

31 end

Table 6.1: Definitions
N {n1, n2, n3, n4, n5, n6.}.Set of nodes in the DAG

P {p1,p2, p3, p4, p5, p6.}//Set of processors

wi,j Time required to execute task ni on processor pj
ci,j Time required to transfer data from task ni to nj

T Available[pj ] Time at which processor pj completes the execution of all the
nodes previously assigned to it

EST (ni,pj) Max(T Available[pj ],Max(n
m∈pred(ni )

) EFT(nm,pj)+ci,j)

EFT (ni,pj) wi,j + EST (ni,pj)

CROSS THRESHOLD Empirically defined coefficient that determines if a task should
crossover to a locally sub-optimal processor
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6.3 Results and Discussion

6.3.1 Experimental Setup

The performance of the HEFT-NCe algorithm was tested exhaustively across 2000 ran-

domly generated DAGs. The following parameters were considered for generation of these

DAGs. Each of these parameters were combined in all possible combinations and 25 iter-

ations of each combination were generated.

1. Number of tasks (N) = {30, 50, 100, 200, 500, 1000 }

2. Graph shape (α) = {0.1, 5, 10}

3. Computation to Communication ratio (CCR) = {0.1, 5, 10}

6.3.2 Simulation Results

Speedup Comparison

Figures 6.1(a) and 6.1(b) show the speedup achieved for different shape parameters (α =

0.1,5,10) across all CCR ratios. We can observe that in all cases, for narrow(alpha = 0.1)

as well wide (alpha = 10) graphs the speedup achieved is quite significant. The results are

much better for large task sets. For smaller task sets HEFT produces better results which

is similar to what was observed in the two-processor solution. It can also be observed

that scaling up the number of processors does not lower the overall performance of the

algorithm which suggests that the algorithm is robust and stable. As narrow graphs do

not provide any flexibility in scheduling, HEFT has better performance in these scenarios.

Overall, HEFT-NCe show a 6% and 7% improvement in performance across all parameters

for a four and eight processor system respectively.

Considering the effects of communication between processors, Figures 6.2(a)

and 6.2(b) show the speedup achieved for a given CCR (CCR = 0.1,5,10) across different

shapes. Even in these scenarios, HEFT-NCe performs better. The improvement in per-

formance is more substantial in larger tasks sets. The effect of different communication

ratios, does not affect the performance proving that the algorithm is robust and can scale

easily over different CCRs. The best case performance in these scenarios shows a 18%

improvement while on average, a 4% improvement can be observed.
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Figure 6.1: Speedup comparison across different CCR, for given shape (alpha)
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Figure 6.2: Speedup comparison across different alpha, for given CCR
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Schedule Length Comparison

Comparing the SLR as defined in Eq. 5.2 of the two algorithms gives a better indication

of the utilization of the devices. Lower values indicate better utilization of the devices

during scheduling.

In the context of a 4 processor system, Table. 6.2 shows the average SLR

over all 2000 randomly generated graphs. HEFT-NCe has a lower SLR (≈ 8%) than

HEFT. It is also more stable with a lower standard deviation (≈ 11%).

The same trend is observed in an eight processor system. Table. 6.3 sum-

marizes all the results. Another important observation is the best case percentage, while

the value is lower than that observed in a two processor system (68%), HEFT-NCe is

quite consistent and on average produces better results than HEFT 55% of the time.

Table 6.2: Average SLR for 4 processors

Name HEFT HEFT-NC

Mean 2.6 2.39

Median 2.17 2.01

Std. Dev. 1.58 1.40

Best Case % 10.64 61.04

Table 6.3: Average SLR for 8 processors

Name HEFT HEFT-NC

Mean 1.46 1.34

Median 1.29 1.19

Std. Dev. 0.62 0.54

Best Case % 8.64 50.37

Further analysis of the SLR over different graph shapes and communica-

tion ratios is described through Figures 6.3(a), 6.3(b), 6.4(a) and 6.4(b). Fig. 6.3(a)

and 6.3(b) show the performance of the algorithm over varying shape of the graphs.

The performance of HEFT-NCe improves as the graphs shape increases. The best perfor-

mance improvement is seen in wide graphs owing to the flexibility available in scheduling.

Similarly, 6.4(a) and 6.4(b) show the SLR over different communication rates. It is

interesting to note that for lower communication ratio graphs, the improvement is more

significant, ≈ 9% for a 4 processor system and ≈ 14% for an eight processor system. In

this scenario, it is actually the HEFT algorithm that performs poorly
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6.4 Conclusion

In this chapter, the HEFT-NC algorithm was extended to support a multi CPU-GPU

environment. The original HEFT-NC algorithm was modified both in the task ranking

and processor selection phase. The motivation behind the modifications was to ensure the

complexity of the algorithm does not increase. Through exhaustive testing, the author

has shown that the HEFT-NC algorithm is robust, stable and outperforms HEFT even

with an increase in the number of processing elements. The average SLR over different

graphs is significantly lower than HEFT which showcases the efficiency of the scheduling

principle.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

With the rapid rise in computational requirements, heterogeneous architectures are being

considered as a viable solution. In this thesis, the author first introduced the problem

of scheduling in the heterogeneous environment. Some of the key contributions from the

author were highlighted and the constraints and limitations were justified.

A substantial literature review was conducted which showed the trends in

scheduling algorithms both in the homogeneous and heterogeneous environments. It can

be observed that solutions developed for conventional systems may not be applicable to

heterogeneous environments due to nature of the hardware architectures. By reviewing

the latest advances in these architectures a better understanding of the architecture was

established.

This study also investigated the state of the art scheduling algorithms for

heterogeneous environments. The various models were studied and the advantages and

disadvantages were presented. This study helped the author understand the various prob-

lems in scheduling and motivated him to focus his study by targeting

• Coarse grained vs Fine Grained scheduling

• Effect of dependencies

• Optimizing device utilization

In Chapter 4, the author studied the effect of fine grained and coarse grained

approaches to scheduling. These methodologies were compared using the StarPU envi-

ronment and several CPU friendly and GPU friendly benchmarks. Work Steal which is a

simple greedy algorithm and HEFT algorithm were used as the candidate algorithms for

the comparison.

It was observed that fine grained scheduling provided more freedom to the

chosen scheduling algorithms thereby deriving better schedules using both algorithms.
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Using the atomic (fine grain) approach improved the make-span on average by 28% across

all data sets. The fine grained approach also ensured high device utilization when using

the HEFT algorithm, but showed inconsistent results in the Work steal method due to

its greedy nature.

However, one of the drawbacks of using the fine grained approach is addi-

tional dependencies that are incurred by breaking up a complex task into simpler task.

These dependencies can severely degrade performance if the tasks are scheduled on a sub

optimal processor.

Based on these results, the author was able to propose a novel optimization

to the HEFT algorithm as described in Chapter 5. HEFT algorithm is a well established

as it produces schedules with short make-span and has low algorithmic complexity. The

author was able further improve its performance by optimizing both the task ranking

stage and processor selection stage of the algorithm without changing the complexity of

the algorithm.

In the task ranking stage, the author developed a new method to prioritize

tasks. This method takes into consideration the speedup and absolute time saved as

compared to just the average execution time in HEFT. This optimization hence is more

suited to the CPU-GPU environment as these architectures can have vastly dissimilar

execution times for a given task. Changing this method alone improved performance over

HEFT algorithm by 3-4% and produced shorter schedules.

The main contribution in this chapter is the idea that due to the vastly

different architectures, a locally optimized approach produces better results than a glob-

ally optimized approach. The HEFT-No Cross algorithm compares both these solutions

during the processor selection phase and chooses the optimal processor using a local bias.

Extensive tests were conducted using simulated data, over 2500 DAGs of

different sizes and shapes were generated. In terms of make-span, the HEFT-NC algorithm

shows a 4-6% improvement on average and a best case of 20% as compared to HEFT. The

algorithm was compared using the Schedule Length Ratio metric also and showed better

performance across all DAGs. On average, HEFT-NC produced better schedules 70% of

the time, while HEFT achieved 14% (Both achieved same results otherwise).

HEFT-NC algorithm was further extended to multi CPU - multi GPU en-

vironment to test the scalability of the algorithm. This is presented in Chapter 6. Even

in these scenarios, the HEFT-NCe algorithm outperformed HEFT by 6-8% in terms of

make-span. It produced better results 55% of the time as compared to 8% by HEFT.
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7.2 Future Work

With the rapid development of the technology in the semiconductor industry, it is now

possible to couple CPUs and GPUs even more closely. Both AMD and Nvidia are actively

developing platforms that are closely coupled. These hardware vendors are also trying to

reduce the effort required by programmers to benefit from GPU co-processor model, for

Eg. the ’Fusion System Architecture’ (FSA), which is a task-based queuing model is still

being developed by AMD and will be implemented in the future.

Studying the current literature in this topic, we can observe that a large

number of applications benefit from the heterogeneous environment and hence schedulers

that can exploit benefit of the CPU-GPU environment will play a critical role in the

future. As mentioned in Chapter 5 and 6, the HEFT-NC algorithm is quite robust

and scalable. It performs well for narrow as well as wide graphs, however there are still

multiple avenues in which the current work can further extended.

7.2.1 Extensions to proposed algorithm

• Communication costs PETS [61] algorithm shows that performance of HEFT can

be improved by considering both data in and data out costs. These haven’t been

taken into consideration in HEFT-NC algorithm during task ranking or the pro-

cessor selection stage. They are added during the graph traversal linearly. One

way to improve the performance could be to consider data transfer time while mak-

ing the Cross/No-Cross decision. By comparing the communication costs with the

processing time, a better decision can be made.

• Extended task profiling As mentioned in chapter 2, Grewe et al [46] propose a static

partitioning approach to schedule tasks in CPU-GPU environment. They profile the

code to determine the best architecture to run on, by extracting static code features

and classifying them. This approach could be used in the proposed approach to

further enhance the task profiles (based on execution time only). By including more

information about the actual complexity of the task, the cross/ no cross decision

can be further refined.

• Look ahead variation In many cases, especially when inter task dependencies are

high, the decision not to cross can lower processor utilization. One way to avoid

this is develop a look ahead variant, wherein the child of a particular node is also

considered. This might change the complexity of the algorithm, but as shown by

Arabnejad and Barbosa [64] this situation can be avoided by gathering the infor-

mation during the task ranking stage.
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7.2.2 Real world platform testing

The second aspect that can further examined is the integration of the proposed scheduling

algorithm in real world systems. The best approach forward would be to integrate the

scheduling algorithms within the Operating Systems(OS). GPUs can then be used as

a co-processor and applications can be seamlessly deployed on them. Fusion System

Architecture is AMD’s attempt to better utilize both the processors.

However, currently, one of the main drawbacks of GPUs is the inability to

pre-empt tasks during execution. This severely limits the type of real world systems it

can be used with. One of the ways to overcome this would be to reserve a certain number

of cores for high priority tasks, but this could lead to wastage of resources.

Therefore, completing integrating heterogeneous schedulers in the OS will

require considerable effort from both hardware vendors and OS programmers, a simpler

way to approach this problem could be by using already developed run-time schedulers

like StarPU. StarPU allows programmers to design their own scheduling policy using their

API. This can help test the algorithms developed in real-world platform and fine tune

as necessary. Implementing and testing the proposed algorithm on such platforms could

further enhance this study.



Appendix A

Experimental setup

A.1 Hardware Specification

A.1.1 CPU : Intel Core 2 Duo

Table A.1: CPU specification

Specification Value

No of Cores 2

Clock Speed 1.86 GHz

L2 Cache 2 MB

FSB Speed 1066 MHz

FSB Parity No

Instruction Set 32-bit

Lithography 65 nm

Max TDP 65 W

A.1.2 GPU: Nvidia Quadro 580

Table A.2: CPU specification

Specification Value

Core G96

Core clock 450 MHz

Memory clock 400 MHz

Memory 512 MB

Memory type 128 bit GDDR3

Memory bandwidth 25.6 GiB/s

CUDA cores 32

Power consumption 40W
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A.2 Software Specification

The following software was used during the testing:

1. Operating System-Linux Ubuntu 11.04

2. Development tools

(a) Scheduler: StarPU runtime 1.0.4

(b) Trace tool: ViTE 1.1 (Visual Trace Explorer)

(c) IDE: Eclipse Galileo
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[43] Vı́ctor J. Jiménez, Llúıs Vilanova, Isaac Gelado, Marisa Gil, Grigori Fursin, and Na-

cho Navarro, “Predictive runtime code scheduling for heterogeneous architectures,”

in Proceedings of the 4th International Conference on High Performance Embedded

Architectures and Compilers. 2009, pp. 19–33, Springer-Verlag.

[44] Haluk Topcuoglu, Salim Hariri, and Min-You Wu, “Task scheduling algorithms

for heterogeneous processors,” in Eighth proceedings of Heterogeneous Computing

Workshop. IEEE, 1999, pp. 3–14.

[45] Hyunok Oh and Soonhoi Ha, “A static scheduling heuristic for heterogeneous pro-

cessors,” in Proceedings of the Second International Euro-Par Conference on Parallel

Processing-Volume II, 1996, Euro-Par ’96, pp. 573–577.

[46] Dominik Grewe and Michael F. P. O’Boyle, “A static task partitioning approach

for heterogeneous systems using OpenCL,” in Proceedings of the 20th International

Conference on Compiler Construction. 2011, pp. 286–305, Springer-Verlag.

[47] K. Shirahata, H. Sato, and S. Matsuoka, “Hybrid map task scheduling for GPU-based

heterogeneous clusters,” in Cloud Computing Technology and Science (CloudCom),

2010, pp. 733–740.

[48] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim, “Qilin: exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping,” in Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, New York, NY,

USA, 2009, pp. 45–55, ACM.

http://www.altera.com/literature/wp/wp-01173-opencl.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf


REFERENCES 85

[49] Gregory F. Diamos and Sudhakar Yalamanchili, “Harmony: an execution model and

runtime for heterogeneous many core systems,” in Proceedings of the 17th inter-

national symposium on High performance distributed computing. 2008, pp. 197–200,

ACM.

[50] Tom White, Hadoop: The definitive guide, O’Reilly Media, Inc., 2012.

[51] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and Tuyong Wang,

“Mars: A mapreduce framework on graphics processors,” in Proceedings of the

17th international conference on Parallel Architectures and Compilation Techniques.

ACM, 2008, pp. 260–269.

[52] S. Naroff, “Clang: New LLVM C Front-end,” http://llvm.org/devmtg/2007-05/09-

Naroff-CFE.pdf, 2007.

[53] Aaftab Munshi et al., “The Opencl specification,” Khronos OpenCL Working Group,

vol. 1, pp. l1–15, 2009.

[54] OpenACC-Standard.org, “The OpenACC application programming interface,”

http://www.openacc.org/sites/default/files/OpenACC

[55] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier,

“Starpu: a unified platform for task scheduling on heterogeneous multicore architec-

tures,” Concurrency and Computation: Practice and Experience, vol. 23, no. 2, pp.

187–198, 2011.

[56] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien

Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov, “Numerical linear

algebra on emerging architectures: The PLASMA and MAGMA projects,” in Journal

of Physics: Conference Series. IOP Publishing, 2009, vol. 180, p. 012037.

[57] Pascal Hénon, Pierre Ramet, and Jean Roman, “Pastix: a high-performance parallel

direct solver for sparse symmetric positive definite systems,” Parallel Computing,

vol. 28, no. 2, pp. 301–321, 2002.

[58] Yang Gerasoulis, Apostolos and Tao, “A comparison of clustering heuristics for

scheduling directed acyclic graphs on multiprocessors,” Journal of Parallel and Dis-

tributed Computing, vol. 16, no. 4, pp. 276–291, 1992.

[59] Henan Zhao and Rizos Sakellariou, “An experimental investigation into the rank

function of the heterogeneous earliest finish time scheduling algorithm,” in Euro-Par

2003 Parallel Processing, pp. 189–194. Springer, 2003.

[60] Wahid Nasri and Wafa Nafti, “A new DAG scheduling algorithm for heterogeneous

platforms,” in 2nd IEEE International Conference on Parallel Distributed and Grid

Computing (PDGC). IEEE, 2012, pp. 114–119.



86 REFERENCES

[61] E Ilavarasan, P Thambidurai, and R Mahilmannan, “Performance effective task

scheduling algorithm for heterogeneous computing system,” in The 4th International

Symposium on Parallel and Distributed Computing. IEEE, 2005, pp. 28–38.

[62] Rizos Sakellariou and Henan Zhao, “A hybrid heuristic for DAG scheduling on

heterogeneous systems,” in 18th International Symposium on Parallel and Distributed

Processing. IEEE, 2004, p. 111.

[63] Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira, “DAG scheduling

using a lookahead variant of the heterogeneous earliest finish time algorithm,” in

18th Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP). IEEE, 2010, pp. 27–34.

[64] H Arabnejad and J Barbosa, “List scheduling algorithm for heterogeneous systems

by an optimistic cost table,” IEEE Transactions on Parallel and Distributed Systems,

, no. 99, pp. 1–1, 2013.

[65] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei Zheng, “Com-

parative evaluation of the robustness of DAG scheduling heuristics,” in Grid Com-

puting. Springer, 2008, pp. 73–84.

[66] Saima Gulzar Ahmad, Ehsan Ullah Munir, and Wasif Nisar, “A segmented approach

for DAG scheduling in heterogeneous environment,” in 12th International Conference

on Parallel and Distributed Computing, Applications and Technologies (PDCAT).

IEEE, 2011, pp. 362–367.

[67] Timo Bretschneider Karan R Shetti, Suhaib A. Fahmy, “Optimization of the heft al-

gorithm for a CPU-GPU environment,” in 14’th International Conference on Parallel

and Distributed Computing, Applications and Technologies. IEEE, 2013, pp. 362–367.

[68] http://www.top500.org/, “Top 500 supercomputer,” http://www.top500.org/

lists/2013/11/#.U4R8PvmSzJY, November 2011.

http://www.top500.org/lists/2013/11/#.U4R8PvmSzJY
http://www.top500.org/lists/2013/11/#.U4R8PvmSzJY

	Introduction
	Problem Statement
	Constraints

	Key Contributions
	Organization of the Report

	Literature Review
	Scheduling algorithms in homogeneous architectures
	Partitioned Scheduling algorithms
	Global scheduling algorithms
	Heuristic based scheduling algorithms

	Advances in Heterogeneous architectures
	Heterogeneous architectures

	Scheduling algorithms in heterogeneous architectures
	Current models and frameworks for CPU-GPU environment 
	Harmony Model
	Predictive runtime scheduling
	Static Partitioning using OpenCL

	Summary

	Programming Framework
	Introduction
	OpenCL Application Programming Interface
	Platform Model
	Execution Model
	Memory Model
	Summary

	StarPU Scheduling Interface
	Programming Interface starPU:2010
	Task Scheduling starPU:2010
	Summary


	Fine Grained Scheduling
	Introduction
	Multi-step Applications
	Example 1
	Example 2
	Example 3

	Experiments and Discussion
	Results and Discussion
	256 Matrix dataset
	1024 Matrix dataset
	512 Matrix dataset
	Device Utilization

	Summary and Conclusion

	HEFT-No Cross Algorithm
	Introduction
	Problem Statement
	Algorithm Overview
	Modification of Task Weight
	No-Crossover Scheduling

	Results and Discussion
	Experimental Setup
	Simulation Results

	Conclusion
	Future Work


	Extension of the HEFT-NC Algorithm
	Introduction
	Algorithm Overview
	Modification of Task Weight
	No-Crossover Scheduling

	Results and Discussion
	Experimental Setup
	Simulation Results

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Extensions to proposed algorithm
	Real world platform testing


	Appendix Experimental setup
	Hardware Specification
	CPU : Intel Core 2 Duo
	GPU: Nvidia Quadro 580

	Software Specification


