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THESIS ABSTRACT

Exploiting DSP Block Capabilities in FPGA High Level

Design Flows

by

Ronak Bajaj
Doctor of Philosophy

School of Computer Engineering

Nanyang Technological University, Singapore

The embedded DSP blocks in modern Field Programmable Gate Arrays (FPGAs)

are highly capable and support a variety of different datapath configurations.

These evolved to support a range of applications requiring significant amounts

of fast arithmetic. In addition to all the computational capabilities, DSP blocks

support runtime reconfigurability, which allows a single DSP block to be used as a

different computational block in every clock cycle. Vendor synthesis tools can infer

the use of these resources but they do not exploit their full capabilities, especially

the dynamic configuration. Specific language structures are suggested for imple-

menting standard applications but others that do not fit these standard designs

can suffer from inefficient mapping. High-level synthesis (HLS) tools rely on the

backend synthesis tools to map efficiently to the target architecture.

This thesis explores how DSP blocks can be exploited to produce high throughput

computational kernels at close the theoretical limit of the primitives, and how their

dynamic configurability can be exploited to create efficient implementations. We

show that this can be achieved using a high level description, but only by consider-

ing architectural information at higher levels. An automated tool flow is presented

that takes a high-level description of a computational kernel in C and generates

synthesisable Verilog that achieves performance close to theoretical limits of the

DSP block with hand-optimised designs. We extend this tool to support proposed

techniques for resource sharing of DSP blocks, adapting traditional approaches for

the high latency of the DSP blocks, and also applying multi-pumping in this new

context. This detailed design results in circuits that always operate at close to the

theoretical limits, and offer full utilisation of the DSP block.
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1
Introduction

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that

can be electrically programmed to become almost any kind of digital circuit or

system [1]. FPGAs are built around a matrix of configurable logic blocks (CLBs)

connected via programmable interconnect [2]. Any design that fits within the

available resources can be mapped to the FPGA by setting these programmable

resources to implement the desired circuit. Changes can be made and a new con-

figuration loaded should requirements change. This feature distinguishes FPGAs

from Application Specific Integrated Circuits (ASICs), which are manufactured

for specific fixed tasks and cannot be changed.

The evolution of FPGAs has dramatically changed the process of designing digital

systems. FPGAs first appeared in the 1980s, and they have evolved significantly

in the last couple of decades. Some of the key advantages of FPGAs over other

1
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available implementation platforms includes reprogrammability as compared to

ASICs, lower power consumption than multicore processors and GPUs, capability

in real-time execution without depending on operating systems, caches, or other

non-deterministic latency sources, and most importantly, high spatial parallelism

which can be used to significantly accelerate complex algorithms.

Initially, although FPGAs provided programmable logic and routing interconnect;

they were large, slow, and consumed significantly more power compared to ASICs.

Because of these limitations, FPGAs were mainly used for small glue logic, or

for prototyping designs which would then be implemented in ASICs. Due to the

advancements in process technologies, the evolution in FPGA architecture, and the

rising cost and complexity of ASIC design, the gap between FPGAs and ASICs is

shrinking with each generation of FPGAs. FPGAs are typically two manufacturing

process nodes ahead of affordable ASIC processes. As a result, FPGAs are now

used for implementing large complex circuits, and are being deployed in production

systems, replacing ASICs in areas like networking, where algorithms and protocols

change fast and it is not feasible to implement them on ASICs. The high non-

recurring engineering (NRE) costs, high manufacturing costs, and long design time

for ASICs are also motivating designers to use more FPGAs, for which turn-around

time is much reduced.

As FPGAs have gained wider adoption, vendors have sought to improve the ef-

ficiency of implementing a wide range of designs. One trend has been to intro-

duce ASIC-like embedded hard blocks that make common functions more efficient.

These embedded blocks are varied, and include DSP blocks, Block RAMs, embed-

ded processors and more. These are spread around the FPGA for efficient place-

ment and routing. With these embedded blocks, FPGAs have found applications

in many different areas like digital signal processing, image processing, software de-

fined radio, automotive systems, high-performance computing, security, and many

more.

Though FPGAs are challenging ASICs due to the reasons discussed above, adop-

tion of FPGAs for systems which are traditionally implemented using software
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on generic computing platforms is somewhat lacking. The performance of many

applications can be improved manyfold compared to software implementations.

However, these benefits are not being realised in general purpose computing sce-

narios. Two primary reasons for this are:

• Implementation Complexity

• High compilation time

Implementing a system on FPGAs requires an understanding of how hardware

works. High-level languages (HLLs) like C/C++ used for software development are

sequential and hardware-description languages (HDLs) used for describing hard-

ware are essentially structural and require an understanding of low level hardware

details. Additionally, as many systems are already implemented in HLLs, trans-

lating these to hardware can be a very time consuming task. As FPGAs become

more functional and complex, highly skilled hardware engineers are required to effi-

ciently utilise all the capabilities available. Another obstacle causing slow adoption

of FPGAs is high compilation time. Software engineers are accustomed to compile

times of a few seconds to a few hours for large systems. Hardware implementation,

on the other hand, is very time consuming, especially the backend flow that does

the final mapping to the target FPGA. For large designs, this can be many hours

or even days, significantly affecting design productivity. Furthermore, many state-

of-the-art compilers for software compile incrementally, meaning small changes do

not consume a significant amount of time to test. FPGA design tools are only

just starting to address this issue through hierarchical compilation. For the most

part, small changes still require significant re-implementation in the tools, making

design iteration slow.

Researchers in the area of reconfigurable computing have been working to address

all these obstacles. For implementation complexity, a large body of work has fo-

cused on high-level synthesis (HLS). The idea of HLS is to allow designs to be

described using higher level languages, in many case, the same as those used for
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software programming. This allows software programmers to easily port appli-

cations to hardware platforms. The higher abstraction level hides some of the

complexities of design implementation at a lower level, in exchange for sacrificing

control over individual elements and a variable performance loss in some cases.

HLS tools takes a design description in HLLs like C/C++ and generate synthesis-

able Verilog/VHDL code, which can be mapped on to FPGAs using vendor tools.

This allows the designers to implement complex system quickly and easily. The

evolution of input languages for hardware design has been similar to that of the

software domain. Initially, machine code was the only way to program a com-

puter. As computers became more functional and complex, assembly languages

were developed. Assembly languages were platform dependent, inflexible, and not

portable. This led to the development of HLLs and associated compilers. Systems

could be implemented once and run on different platforms using the corresponding

compilers, which translated the HLL code to low-level assembly or machine code.

Hardware design has also followed a similar pattern, evolving from hand-coding

systems at the transistor level, to sophisticated HLS tools. Following Moore’s Law,

the size of ICs approximately doubled every 18 months, so has the complexity of

systems, and designing and testing at a low-level became infeasible. This led to

the automation of the design and test processes. Tools were developed to perform

cycle-accurate simulations, automated synthesis and place-and-route, for end-to-

end development. The development of HDLs, such as Verilog and VHDL played

a crucial role, enabling wider adoption of these automated tools.

In the context of FPGA development, although most design development is still

done at the HDL level, HLS tools have gained momentum in the past decade. Us-

ing HLS tools, the designer implements an untimed design in an HLL and different

design possibilities can be explored. From the same high-level description, the de-

signer can perform design space exploration by tweaking configurations, to find an

implementation best suited for a set of given constraints. Mainstream HLS tools

available for FPGA design include Xilinx Vivado HLS [3] for Xilinx FPGAs, and

an open-source academic tool, LegUp [4], which is mainly optimised for Altera FP-

GAs. In addition to these, other major HLS tools commercially available include
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BlueSpec [5], MATLAB, Synphony C from Synopsys [6], Cadence’s C-to-Silicon,

and Catapult C from Mentor Graphics [7].

Vivado HLS requires the user to follow guidelines on coding style to effectively

translate the HLL code to RTL. It supports C, C++, and SystemC input lan-

guages. Data types in generic C/C++ are fixed at 8, 16, 32, or 64 bit wordlengths.

Using these data types can result in unoptimised hardware, by implementing wide

operations where it is not required. Vivado HLS supports arbitrary precision data

types for both C and C++, which can be exploited to specify the exact wordlength

of the signals in HLL code. Hardware generation is guided by directives, which

can be used to further optimise the hardware generated by the tool. Effective use

of directives requires knowledge of the hardware. LegUp accepts ANSI C code,

without the need for directives or special keywords. The synthesis flow is driven

by a set of TCL scripts and Makefiles. This results in less control over the hard-

ware generated, but makes it easier to use for a developer who does not have an

in-depth understanding of hardware design.

HLS tools can significantly improve development times through abstraction, how-

ever they are seen as an additional step in the design flow, generating RTL code

which must then go through the backend implementation flow which is very time

consuming. Though there are research efforts attempting to address this problem,

it is a challenging one as the designs and devices continue to grow in size [8, 9]. An-

other approach that has been pursued to overcome these compilation times is vir-

tualising the architecture. Overlay architectures or intermediate fabrics are more

coarse grained architectures built on top of the FPGA that can be programmed

through customised flows with much smaller configuration overheads. Coarse-

grained reconfigurable architectures (CGRAs) are implemented on an FPGA, of-

fering a large number of processing elements and a somewhat flexible interconnec-

tion fabric for whole words. By raising the level of the target architecture, the

configuration space is significantly reduced. Different applications can be mapped

onto virtual architectures, with fast compilation since there is no need for the time

consuming backend flow with each new application. However, overlays typically
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entail significant overheads in terms of both area and performance compared to

custom designs.

This thesis explores how the detailed understanding of low-level architecture can

benefit high level design flows, offering comparable performance to custom design

but with high level design definitions.

1.1 Motivation

When designing systems on FPGAs, we wish to maximise the performance and

efficiency of our circuits. This means making best use of all types of resources avail-

able to us. Since designers generally write behavioral code that is then mapped by

the implementation tools, performance and efficiency are controlled for the most

part by the capabilities of these tools. As architectures evolve with more complex

resources, the tools have to work harder to make full use of them. As FPGAs find

use in a wider range of domains, from wireless systems [10, 11], through connected

and autonomous vehicles [12, 13], to general cloud computing [14], the drive to-

wards high-level design will become stronger. While HLS tools allow higher level

design description, the final mapping remains the purview of the backend tools. If

these cannot map general RTL code to exploit the capabilities of the architecture,

the resulting implementations can be inefficient. More importantly, information

contained in the high level design description may be helpful in achieving this, but

be lost in the translation to generic RTL.

A primary example is the DSP blocks in modern Xilinx FPGAs, which are highly

configurable, but generally underutilised in the vendor flow. Targeted applications

like signal processing and digital image processing can make acceptable use of

DSP blocks, but given their extensive capabilities, even these are sometimes not

maximised, and more general applications suffer even more. It has been observed

that synthesising standard RTL code and relying on vendor synthesis tools to

correctly infer the use of DSP blocks results in sub-optimal implementations [15].

DSP blocks available on modern FPGAs can be configured in many different ways,
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but current vendor tools do not explore all these possibilities while mapping to

them. In addition to all the computational capabilities, DSP blocks support run-

time reconfigurability, which allows a single DSP block to be used as a different

computational block in every clock cycle. This can be exploited for designs with

constraints on resources or for designs with low-throughput requirement. In this

thesis, the DSP block is taken as a case study, demonstrating the importance of

architecture awareness in high level design flows. It is shown that information

about the low-level architectural capabilities of such resources can be used to

make decisions at higher levels, which results in significant improvements in the

final implementations.

1.2 Objectives

The key question that is to be answered is whether high level design can exploit

the significant capabilities of evolving hard blocks like the DSP blocks in Xilinx

FPGAs while preserving high abstraction levels.

We first set out to demonstrate that standard vendor tools do not exploit the full

potential of modern DSP blocks. We show that even when designed at RTL level,

datapaths that do not exactly match those of the DSP block result in sub-optimal

implementations. Furthermore, we show that the dynamic programmability of the

DSP blocks is ignored by the tools in almost all situations.

We then show that by considering the capabilities and structure of the DSP block,

it is indeed possible to build tools that output implementations of comparable

performance and efficiency as hand-optimised implementations, and that exploit

capabilities of DSP block fully to support high throughput, and resource shared

implementations.

The main objectives of this thesis are to:

1. Quantify the losses incurred when designing at higher levels of abstraction

without regard for low-level architecture.
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2. Develop an automated tool to generate multiple implementations from high

level descriptions, that demonstrate the techniques developed with compar-

ison to standard approaches.

3. Devise an automated flow that takes high level descriptions of computational

kernels and produces implementations that approach the theoretical limits

of the DSP block.

4. Show how dynamic reconfigurability of the DSP blocks can be exploited to

implement resource constrained implementations.

1.3 Contributions

The main contributions of this thesis include tools, techniques, and algorithms for

efficient implementation of computationally intensive mathematical expressions

onto the DSP blocks in modern Xilinx FPGAs.

These contributions include:

1. A detailed study of high-level synthesis approaches and tools, including tech-

niques for technology mapping and placement and routing which are integral

parts of implementation of designs on FPGAs.

2. A thorough investigation of the efficiency of mapping to DSP blocks, showing

that there is a discrepancy between hand-coded instantiation and inference.

3. An automated design tool that takes high level descriptions of computa-

tional dataflow graphs and generates traditional implementations, including

pipelined RTL and Vivado HLS, alongside the proposed approaches for fair

comparison.

4. Techniques for resource constrained implementations that take advantage

of the DSP block’s dynamic programmability, overcoming the long latency

of the block to offer improved initiation intervals compared to traditional

approaches.
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5. Techniques for multi-pumping flexible DSP blocks demonstrating that this

flexibility offers a significant advantage over fixed configurations, leading to

more efficient implementations.

6. An approach for minimising error due to truncation when building graphs

out of DSP blocks, applicable with all the above approaches.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows. Chapter 2 presents a de-

tailed background on Xilinx FPGA architecture, building blocks, and the design

flow. It then reviews work done on technology mapping and place and route

techniques. It explores approaches and tools proposed in the area of high-level

synthesis and resource sharing techniques in the context of high-level synthesis.

Chapter 3 presents the detailed architecture of the DSP48E1 hard block available

on modern Xilinx FPGAs and discusses how to utilise its different functionalities

including dynamic reconfigurability. Chapter 4 introduces an automated tool flow

for mapping arithmetic functions onto DSP blocks, exploiting their capabilities.

The tool also generates generic RTL implementations for comparison. In Chap-

ter 5, we present a technique for minimising error when mapping graphs to DSP

blocks, taking into account their limited wordlengths. Chapter 6 discusses schedul-

ing and implementation techniques for resource sharing. We present an initiation

interval (II) driven resource sharing technique that offers resource savings while

improving II compared to traditional methods. In Chapter 7, we demonstrate how

multi-pumping of the DSP block can offer significant resource savings. We show

that incorporating all DSP block sub-blocks offers improved savings over multi-

pumping of just multipliers. We then show that dynamic programmability offers

further improvements, and propose two scheduling approaches for this. Finally,

Chapter 8 concludes the work presented in this thesis and outlines future research

directions.
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2
Background and Literature Review

In this chapter, we cover necessary background on FPGA architecture and the

design flow. We discuss some basic graph concepts and explain how computations

are represented using dataflow graphs. We talk about technology mapping, in

which patterns of computational nodes are discovered in dataflow graphs and

assigned to specific hardware resources, and how this is done in tools. We then

review various tool flows including academic and commercial tools for high level

synthesis.

2.1 Field Programmable Gate Array

Modern state-of-the-art FPGAs consist mainly of:

12
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IOB (Input/
Output Block)

CLB (Configureable 
Logic Block)

Embedded 
Memory

DSP Block

Figure 2.1: Xilinx FPGA architecture.

• Programmable logic blocks

• Flexible routing fabric

• I/O resources

• Embedded blocks (e.g. Block RAMs, DSP blocks)

A general overview of FPGA architecture is shown in Figure 2.1. Programmable

logic blocks, also called configurable logic blocks (CLBs) by Xilinx and Adaptive

Logic Modules (ALMs) by Altera, are arranged in an island style configuration.

CLBs are connected with programmable routing interconnect. I/O Blocks are

connected at the periphery of the grid allowing off-chip connections. Block RAMs

and DSP blocks are arranged in a columnar fashion, spread across the FPGA. DSP

blocks are also interconnected with dedicated connections, which can be efficiently

used while cascading multiple DSP blocks.
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Figure 2.2: Configurable Logic Block (CLB).

2.1.1 Programmable Logic Blocks

In recent FPGAs, CLBs consists of eight Lookup Tables (LUTs) divided into two

slices that can work independently. Each slice consists of four LUTs, storage ele-

ments (flip-flops), multiplexers, and carry logic. Multiplexers are used to combine

LUTs to generate different functions. The basic internal structure of a CLB is

shown in Figure 2.2. CLBs interface with the programmable logic interconnect

that consumes most of the area (as high as 80–90%) on FPGA.

2.1.2 Flexible Routing Fabric

The programmable routing interconnect consists of switch boxes and connection

boxes, that facilitate connections between all the compute primitives on the FPGA.

When a design is mapped to an FPGA, the tools must determine how to make

all the necessary connections between placed primitives, and this is generally the

most time-consuming process of the back-end implementation.

2.1.3 I/O Resources

I/O blocks are located at the periphery of the FPGA, connecting it to the outside

world. A key benefit of using FPGAs to implement digital systems is their support
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for a wide range of I/O standards including high speed serial standards. I/O blocks

are grouped into banks, each supporting a subset of standards.

2.1.4 Embedded Blocks

CLBs can be configured and combined to implement arbitrary arithmetic opera-

tions, and can also be used as small memories. However, for many such functions,

CLBs are slow and consume significant area. As more designers seek to use FPGAs

to implement computing systems, modern FPGAs have gained hard-wired ASIC

like embedded blocks which are optimised for specific functionalities. These include

Block RAMs (BRAMs) and DSPs. Functions mapped onto embedded blocks im-

prove performance and power consumption compared to the same functions built

out of CLBs. Complex functions built out of CLBs consume considerable routing

resources, increase the complexity of mapping and place and route, and adversely

affect timing. Embedded blocks also save the general purpose resources for use in

other parts of the design.

2.1.4.1 Block RAMs

BRAMs are dedicated, dual-port memory blocks with separate read/write ports,

which can store several kilobits of data. These can be configured as single or dual

port memories, with different port widths and serve as efficient on-chip memory,

which can be accessed in every clock cycle. BRAMs also support cascading, which

can be used to create a large memory block. The latest FPGAs support different

operating modes, allowing them to be used as FIFOs, register files, circular buffers,

and more.
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2.1.4.2 DSP Blocks

DSPs were initially introduced on FPGAs to improve the performance of com-

monly used operations in signal processing applications like multiply and multiply-

accumulate. However, over the generations, these blocks have evolved into highly

functional arithmetic blocks, which can perform many operations. In addition to

arithmetic operations, the latest DSP blocks support logical operations, shift op-

erations, pattern detection, magnitude comparison, etc. Similar to BRAMs, DSP

blocks can also be cascaded to implement operations wider than the port-widths

supported, with dedicated internal connections for efficient implementations. Mod-

ern DSP blocks are discussed in more detail in Chapter 3.

2.2 FPGA Design Flow

The process of implementing a design on an FPGA starts with describing the de-

sign in a HDL like Verilog or VHSIC Hardware Description Language (VHDL),

and ends with a stream of bits, which is loaded into the FPGA’s configuration

memory. The configuration memory controls all the low level features of the fab-

ric, determining the logic contents of the LUTs, how all primitives are connected,

and which features are used. As more and more complex systems are being im-

plemented on FPGAs, a significant amount of research effort is being focused on

how best to describe such systems at a higher level of abstraction to improve the

design and verification tasks. This includes research into tools that can convert

high-level languages like SystemC, C, and C++ into hardware. Normally these

tools take the design description in a high-level language and translate them into

synthesisable Verilog or VHDL code which is then processed through the steps of

the standard tool flow.

After describing the design in HDL, the first step is functional verification (simula-

tion) of the behavioral model of the design. The process of generating a bit-stream

from the HDL description can be divided into three major steps. These are:
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Simulation

Verilog Input 
Files Testbench

Functional Verification

Synthesis

Technology Mapping

Placement and Routing
Timing 

Constraints
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Figure 2.3: FPGA design flow.

1. Synthesis

2. Technology Mapping

3. Placement and Routing

Figure 2.3 shows the design flow for FPGAs.

Synthesis transforms the input HDL to a hierarchical network of basic building

blocks, including LUTs for Boolean logic, flip-flops for synchronous components,

efficient basic circuits for arithmetic, and in modern tools, even to some device

specific hard blocks. Various technology-independent optimisation techniques are

applied on the generated network at this stage to minimise the number of logic

gates, which can reduce the total area and delay of the final implementation of the

design. The output of a synthesis stage is a network of Boolean logic elements,

flip-flops, basic circuits, hard blocks, and wiring connections between them.



2 Background and Literature Review 18

Given a set of library cells, technology mapping is generally defined as mapping

the network to the library cells such that each node is assigned to one type of

resource. In the case of FPGAs, this library is composed of k-LUTs, flip-flops,

basic arithmetic circuits like adders, and advanced hard blocks. Therefore, the

technology mapping for FPGAs consists of segmenting the Boolean network into

set of nodes that can be mapped to one of these basic building blocks.

Placement is the process of determining which specific logic blocks on FPGA

should be used for a particular instance of a logic block in the network. Place-

ment can be done with different objectives. Wire length driven placement places

connected blocks as close as possible to each other, Routability driven placement

tries to balance the wiring density across the FPGA, and Timing driven placement

tries to place blocks in such a way that delay can be minimised.

Routing is the process of configuring the interconnect so that the placed logic

blocks are properly connected. This stage tries to connect all logic blocks in such

a way that routing delay can be minimised. This is a challenging problem, and

may require iterations with re-placement of some blocks.

After successful execution of all these steps, a bit-stream can be generated. This is

a sequence of configuration words that captures the configuration of all necessary

blocks and the routing configuration for all used wires. Loaded into the config-

uration memory of the FPGA, this creates the circuit originally described in the

HDL.

2.3 Graph Computations

A graph is an ordered pair G = (V,E), comprising a non-empty set V of vertices

(or nodes) and a set E of edges, which is a binary relation on the set of vertices

V [22]. Graphs can be broadly divided into two categories:

1. Undirected Graphs
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Figure 2.4: (a) Undirected graph (b) Undirected graph with loop (c) Di-
rected graph (d) Directed graph with loop.

2. Directed Graphs

In undirected graphs, edges are unordered pairs of vertices denoted by {vi, vj},
where viεV and vjεV . In a directed graph (or digraph), the edges are ordered

pairs of vertices. An edge directed from vertex vi to vj is denoted by (vi, vj).

Example undirected and directed graphs are shown in Figure 2.4a and Figure 2.4c

respectively.

2.3.1 Undirected Graphs

The edges in an undirected graph are unordered pairs of vertices. The degree of

a vertex in an undirected graph is the number of edges connected to the vertex.

The degrees of vertices v1, v2, v3, and v4 in Figure 2.4a are 3, 2, 2, 3 respectively.

A vertex vi is said to be adjacent to another vertex vj if there is an edge {vi, vj}
connecting the two vertices. In Figure 2.4a, vertices v2, v3, v4 are all adjacent to
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Figure 2.5: Complete undirected graph.

vertex v1. An edge which starts and ends on the same vertex is called a loop.

Undirected and directed graph examples with loops are shown in Figure 2.4b and

Figure 2.4d respectively. Edge e6 in both graphs makes a loop at vertex v2.

Graphs without any loops and no two edges connecting the same set of vertices

are called simple graphs.

A graph is called a complete graph when each vertex is connected to all other

vertices of the graph. A complete four node graph is shown in Figure 2.5.

A subgraph of a graph G(V,E) is a graph whose vertex and edge sets are subsets

of sets V and E respectively.

2.3.2 Directed Graphs

The definitions discussed above for undirected graphs can be extended for directed

graphs, with additional terms specific to directed graphs.

For any directed edge (vi, vj), vertex vj is called the head of the edge and vertex

vi is called the tail. The degree of a vertex is the total number of edges it is

connected to. The number of edges for a vertex where it is the head is called the

indegree of the vertex, and outdegree is the number of edges where it is the

tail.

A walk for a directed graph is an alternating sequence of vertices and edges with

the same direction. A cycle is a walk for which the start and end vertices are the
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Figure 2.6: Directed graph with cycle.

same. An example directed graph with a cycle is shown in Figure 2.6. A walk

from v1 to e1 to v2 to e4 to v4 to e3 to v1 is a cycle.

A graph with no cycles is called an acyclic graph. Directed graphs without any

cycles are called Directed Acyclic Graphs (DAGs). A path in a graph is a walk

with different vertices and edges. For a path in a DFG, a vertex vi is called the

successor of vertex vj if vi is head of a path whose tail is vj. Similarly, vi is called

a predecessor of vj if vi is tail of path with head vj.

Many algorithms and mathematical expressions can be represented as DFGs where

each node represents some function or expression. Additionally, graphs are used

as intermediate representations in the implementation of circuits. An example

dataflow graph of the expression (a × b + c × d) is shown in Figure 2.7. DFGs

are widely used to represent electronic circuits and their transformed Boolean

networks. Circuits are modelled as blocks performing different operations and

connected to each other. Each block doing its computations can be represented as

a node and connections between these different blocks transmitting data can be

represented as the edges of the graph. Similarly, in the case of Boolean networks,

each node represents a gate and edges connect different gates. The indegree and

outdegree of a node in a graph can be interpreted as the fan-in and fan-out of

gates.

For large systems, a node can represent a functional block, and the graph can

represent how these blocks communicate to comprise the full system. In these
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Figure 2.7: A simple dataflow graph.

representations, a node can perform multiple functions and the graph can be

understood as a hierarchical graph, where each node can be a complex circuit

which can be then represented as a graph or set of graphs when we go down the

hierarchy.

2.4 Technology Mapping

Technology mapping is the process of transforming a technology-independent de-

scription of a logic circuit to a technology specific description. The input to tech-

nology mapping algorithms are directed acyclic graphs (DAGs), which are Boolean

networks generated after technology-independent optimisations.

2.4.1 Preliminaries and Basic Definitions

A Boolean network is represented as a Directed Acyclic Graph (DAG) (as discussed

in Section 2.3). An example Boolean network is shown in Figure 2.8.

• Each node represents a logic gate (u,v,w in Figure 2.8)

• Directed edge (u,v) exists if the output of gate u is an input of gate v

• PI are the primary inputs of the network. PI nodes do not have any incoming

edge.
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Figure 2.8: Directed acyclic graph.

• PO are the primary outputs of the network. PO nodes do not have any

outgoing edge.

• For node v, input(v) is the set of input nodes of v ({u,w} in Figure 2.8)

A Boolean network is K-bounded, if

|input(v)| ≤ K ∀ vεV (2.1)

For a subgraph H, input(H) is the set of distinct nodes outside H which are

fanin to the nodes in H. Similarly, output(H) is the set of nodes which are fanout

of the nodes in H.

In a DAG, if there exists a directed path from node u to node v, u is said to

be a predecessor of v. A sub-graph which is rooted at v and consists of all the

predecessors of v is called as sub-graph rooted at v.

The level of a node v, l(v), is the longest path from any PI to node v. The level

of PI nodes is generally defined as zero.

The depth of a network is the largest node level in the network.

For a node v in a network, a cone of node v, denoted by Cv, is a sub-graph rooted

at v such that any path connecting a node in Cv and v lies entirely in Cv.
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A cone Cv is a fanout-free cone (FFC) of node v, denoted by FFCv, if:

• for any node u 6= v, output(u) ⊆ FFCv

A cone Cv is a K-feasible cone of node v, if:

• |input(Cv)| ≤ K

Several concepts about cuts in a network:

Given a network N = (V (N) , E (N)), with a source s and a sink t, a cut
(
X,X

)
is a partition of nodes in V (N) such that sεX and tεX

A cut
(
X,X

)
is K-feasible, if n

(
X,X

)
≤ K, where n

(
X,X

)
is the node cut-size

of
(
X,X

)
.

The node cut-size of
(
X,X

)
, n
(
X,X

)
, is the number of nodes in X that are

adjacent to some node in X, i.e.,

n
(
X,X

)
= |x : (x, y)εE(N), xεX and yεX| (2.2)

2.4.2 Overview

The aim of technology mapping is to map the given technology-independent de-

scription to a specific technology while satisfying different cost metrics and con-

straints provided by the user. Details of the specific technology are available as

libraries which are used in the process. These libraries are composed of gates and

other basic logic components like delay elements. Details about library compo-

nents like their functional description, delay, area, power, and other properties are

available, which are then used in evaluating the cost of the mapping.

The basic elements of the input logic circuit or Boolean network may not be

directly mapped to the basic blocks available in a technology-library. Therefore,

transformations are applied on an input Boolean network to convert it into a
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functionally equivalent circuit which can be then mapped to the elements of the

given library. Broadly, the process of technology mapping can be divided into two

stages [23, 24]. The first stage is determining the functionally equivalent network

which consists of basic elements of the library, and elements from the library that

match at each node are enumerated. This is called the matching stage. Only

the functionality of the components is considered in this stage; ignoring area,

timing, and other parameters. The second stage is the selection stage, which

can be thought of as a covering, in which the best of these matches are selected

satisfying given constraints. Covers are selected in such a way that the inputs of

selected covers are outputs of other covers, unless the inputs are primary inputs

of the Boolean network. One of the most widely used algorithms for covering is

binate covering.

Approaches to solving the technology mapping problem can be broadly categorised

into two categories [24]:

1. Rule-based

2. Algorithm-based

Rule-based Techniques

Rule-based approaches are based on a set of rules or transformations, which can

be applied on an input Boolean network as a pair of logically equivalent configu-

rations. This set of transformations is called a rule-base. For each transformation,

a cost is calculated which estimates its effect on the network and if the estimate

shows improvement in some metric, the transformation or ‘rule’ is applied. These

transformations are applied unless either no transformation can be applied (which

results in improvement on some metric) or the previous transformations have re-

sulted in a network which satisfies the constraints. Some of the basic transforma-

tions used are decomposition of gates into simpler gates, merging of several gates

into a single gate, and more.
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The performance of rule-based methods highly depends on the quality of the rule-

base for the technology. The rule-base should cover all possibilities for good results.

With a properly defined rule-base, these methods can achieve optimal or close to

optimal solutions. One of the biggest drawbacks of these methods is their run-

time is non-deterministic. Depending on the input Boolean network, they may

take a long time, applying different transformations to meet constraints. Also,

these methods do not show how far the solution is from the optimal solution.

Some rule-based algorithms for technology mapping proposed in the literature are

LSS [25, 26], TRIP [27], LORES/EX [28], Socrates [29].

LSS [26] was one of the first rule-based methods to solve the problem of technology

mapping. Initially, only basic gates were supported, though support for more

complex gates was later added. This, however, resulted in a significantly expanded

rule base. TRIP [27] performs technology mapping as well as logic optimizations.

To determine the logic equivalence of circuits before and after applying a rule,

TRIP simulates both the circuits. It also supports partitioning of large Boolean

networks by the user into smaller networks to keep the size of designs manageable.

LORES/EX [28] is similar to TRIP as it also depends on partitioning of large

designs by user. However, instead of directly applying ‘rules’ to input circuits, it

first converts them into a standard format which simplifies the technology mapping

process while also limiting the set of rules. Socrates [29] attempts to achieve a

globally optimal solution. Instead of evaluating the effect of a rule immediately

after applying it, Socrates evaluates the overall effect of several rules.

Algorithm-based Techniques

Algorithm-based approaches completely transform the generic Boolean network

into a technology-specific network. Different operations, often in a particular order,

are applied on input Boolean networks to transform them into networks with

elements of the specific technology.

One important stage of these methods is pattern matching, which determines dif-

ferent patterns from the Boolean network that can be mapped to restricted sets
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of logic blocks available for the target technology. Input boolean networks, repre-

sented as DFGs are split into a forest of trees, then each tree is mapped indepen-

dently, and these are merged at the final stage.

To find different patterns from these trees, both top-down and bottom-up traver-

sals are performed. Top-down traversals are performed to determine all possible

patterns and then bottom-up traversal, which is a graph covering problem, selects

the best patterns from patterns determined during top-down traversal.

The run-time of algorithm-based methods is significantly shorter compared to

rule-based methods and is deterministic. As these methods follow a set of specific

stages, one-by-one, different approaches can be properly evaluated before applying

them on DFGs.

The first algorithm-based technology mapping algorithm was proposed by Kahr

in [30] by adapting the twig [31] system developed for compilers. Some other

algorithm-based solutions proposed for technology mapping are MIS [32, 33],

TECHMAP [34], McMAP [35].

The methods discussed above are mainly used for mapping a general Boolean

network to a standard-cell library, which contains some basic logic gates as well

as complex ones. But most modern FPGAs are LookUp-Table (LUT)-based, in

which boolean logic is mapped onto LUTs. A LUT with k inputs is called as

k-LUT. Each k-LUT can implement any k-variable logic function. In the case

of FPGAs, logic synthesis tools transform the logic to be implemented into a

technology-independent description, i.e., independent of underlying architecture

of FPGA. Therefore, the technology mapping problem for LUT-based FPGAs is

to cover a general Boolean network generated by logic synthesis using k-LUTs.

The result is a network of k-LUTs which is functionally equivalent to the original

Boolean network. An example of mapping for 3-LUTs is shown in Figure 2.9.

Conventional library-based technology mapping techniques are not feasible for

these LUT-based FPGAs. A k-LUT can implement 22k different functions and it is

not desired to enumerate all these functions in a library as the number of functions
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Figure 2.9: Technology mapping for 3-LUT.

increases exponentially with k. Now we discuss various methods proposed in the

literature to solve the technology mapping problem for LUT-based FPGAs.

2.4.3 Related Work

The optimisation objectives for LUT-based FPGA mapping approaches can be

categorised into four:

1. Minimising delay

2. Minimising area

3. Maximising routability

4. Minimising power

5. Multiple objectives

There are various algorithms and approaches proposed in the literature which

focus on one of the four objectives mentioned above. There are many algorithms

that attempt to optimise multiple parameters. One parameter is considered as the

primary objective and some other(s) as secondary objective(s).

2.4.3.1 LUT Mapping

The mis-pga technology mapping algorithm was first proposed in [36]. It maps

the Boolean network to LUTs in two stages. In the first stage, infeasible nodes
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(whose number of inputs are more than the number of LUT inputs available) are

decomposed and converted into feasible ones. mis-pga uses Roth-Karp decom-

position [37] for converting infeasible gates into feasible gates and hence feasible

Boolean networks. The second phase is node minimisation. Either a greedy ap-

proach is used to select pairs of nodes which can be collapsed into one or the

problem is formulated as binate covering and heuristic algorithms are used.

Chortle-crf was proposed in [38] which uses an algorithm based on bin packing

for gate level decomposition. This significantly enhanced the performance and

results in less LUT usage compared to mis-pga. Using bin packing drastically

reduces the run-time which makes use of local optimisation techniques practical.

Two local optimisation techniques, reconvergent paths and duplication of logic at

fanout nodes were exploited to further reduce the number of LUTs.

mis-pga was extended to mis-pga-new in [39], which used a bin packing algorithm

similar to [38]. In addition to bin packing, three other decomposition techniques:

cofactoring, AND-OR decomposition, and disjoint composition were also used.

Chortle-crf [38] focused on minimising area and was extended to Chortle-d in [40],

which focuses on technology mapping for delay optimisation. It assumes that all

the LUTs have same delay and routing delays are constant. With these assump-

tions, critical path delay is calculated as the number of LUTs on the critical path

and the task of the algorithm is to minimise this. Chortle-d results in depth opti-

mal solutions for LUT sizes less than or equal to 6. Both Chortle-crf and Chortle-d

make use of dynamic programming.

mis-pga, mis-pga-new, Chortle-crf, Chortle-d, are all based on decomposition of

Boolean networks into fanout-free trees. Xmap, proposed in [41], with the opti-

misation goal of minimising area, differs from these methods. It is based on an

if-then-else representation of dataflow graphs and does not decompose graphs into

fanout-free trees. A tree is fanout-free if each input and output of each node con-

nects to at most one node. But one of the major drawbacks of Xmap is it does

not guarantee optimality. Technology mapping is done in two stages: Marking

and Building the logic blocks. To reduce area further, if possible, logic blocks are
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shared. Suppose the LUT size is k and if there are logic blocks with the same

set of inputs that use only (k − 1) inputs, then instead of using different k-LUTs,

these are merged into a single LUT, saving area. This feature is fully supported

in FPGA LUTs.

DAG-Map for delay optimised technology mapping based on Lawler’s labelling

algorithm [42] was proposed in [43]. DAG-Map is mainly divided into three stages.

In the first stage, the Boolean network is transformed into a two-input network.

In the second stage the the two-input network is mapped to a network of k-LUTs.

And the final stage performs optimisations for reducing area without affecting

depth, i.e., delay of the solution. The second stage, technology mapping, is done in

two steps: labelling and mapping. Nodes are labelled in topological order, starting

from the PI (Primary Input) nodes with label zero. After labelling, starting from

the PO (Primary Output) node, the algorithms starts mapping the nodes to LUTs

such that the number of inputs of each cluster does not exceed the LUT size.

FlowMap [44], is also focused on mapping for delay optimisation. Algorithms

proposed before [44] were heuristic in nature and it was difficult to analyse how

close the solution was to optimal. In this paper, the authors proposed a tech-

nique, called FlowMap, which solves the problem of technology mapping opti-

mally in polynomial time for general k-bounded Boolean networks. A key step

of FlowMap is the computation of a minimum height K-feasible cut of the net-

work in polynomial time. Although the primary objective is minimising delay,

FlowMap also minimises LUT count by maximising the volume of each cut and

some post-processing (i.e., after LUT mapping) operations. The algorithm runs

in two phases. The first phase is the labelling phase which computes a label for

each node which reflects the k-LUT level implementing that node in an optimal

mapping. The second phase uses the labels of phase one and generates the final

mapping solution. FlowMap uses the unit-delay model to estimate the delay of

generated mapping solutions. In [45], the authors extended FlowMap, which uses

a unit-delay model to FlowMap-d, which considers arbitrary net-delay models.
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Edge-map [46] proposed by Yang et al is also a non-trivial generalisation of

FlowMap which uses a general delay model. It differs from FlowMap in the la-

belling phase, where instead of labeling only nodes, Edge-map labels the edges

too, representing edge delay. Different edges coming from the same node can have

different delays.

FlowMap-r [47] and CutMap [48] minimise the area while maintaining minimum

depth. FlowMap-r starts with the depth-optimal solution produced by FlowMap [44]

and is modified in two phases. In the first phase, depth-relaxation techniques like

remapping perform the node packing for the non-critical paths (as it doesn’t change

the optimal depth mapping solution generated by FlowMap). In the second phase,

FlowMap-r remaps the output of phase one to minimise area. It first uses DF-Map

to generate a duplication-free mapping solution and then applies MP-Pack from

DAG-Map [43] and Flow-Pack [49], which allows necessary node duplication. After

generating an area-optimised solution with bounded depth, it gradually increases

the depth bounds and generates a set of mapping solutions which trade-off area

and depth.

FlowMap works on homogeneous FPGAs, i.e., containing only one type of LUT.

In [50], a technology mapping solution for heterogeneous FPGAs was proposed,

optimised for minimising area. But this approach assumes FPGAs with only

two types of LUTs, with their ratio on the device known apriori. The proposed

approach runs the technology mapping solution multiple times. Suppose the device

contains k1-LUTs and k2-LUTs. In the first iteration, it is assumed that only k1-

LUTs are available and area is minimised; in the second iteration, area is minimised

with the constraint that only one k2-LUT is available and the number of k1-LUTs

is minimised, and so on until the number of k1-LUTs required becomes zero. The

solutions of all these mappings are recorded and the solution which results in

minimum area is selected as the final solution. This approach cannot be easily

extended to FPGAs with more than two types of LUTs.

In [51], the authors extended FlowMap further for FPGAs with LUTs of multiple

sizes, named HeteroMap. HeteroMap is not restricted to a particular number of
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type of LUTs, and is general in nature. Similar to FlowMap, technology mapping

is done in two phases: Labelling and Mapping. In the labelling phase, the label is

calculated considering all LUT sizes and the LUTs which result in minimum delay

are chosen. The mapping phase is similar to FlowMap. The primary objective

of HeteroMap is delay minimisation and it also tries to minimise the area for

minimum delay mapping.

A power-aware technology mapping solution was proposed by Farrahi and Sar-

rafzadeh in [52]. Similar to estimating power in CMOS circuits, the contribution

of static power is considered as negligible and the algorithm tries to minimise dy-

namic power consumption, which depends on the activity of the circuit. Therefore,

the primary objective of the algorithm is to map a circuit onto k-LUTs such that

highly active signals are hidden inside the LUTs, i.e., minimise the activity on the

edges of a graph of k-LUTs. The input Boolean network is scanned and a transi-

tion density (TD) is calculated for each node, and both the TD and contribution

of a vertex factors in the selection of fanin nodes for LUT assignment. For each

node v, contribution represents the contribution of a node v to the dependency

of its fanout nodes, which is the number of PIs or LUTs that feed the vertex v.

The cost of different cuts is calculated and the most suitable cut selected for the

mapping phase.

In [53], the authors proposed a power-aware mapping solution called Power-Map

which exploits the cut enumeration technique to generate a mapping solution.

Power-Map completes the technology mapping in three phases. The first phase

calculates the transition density of each node of the network in topological order.

In the second phase, at each node, all the possible K-feasible cuts are enumer-

ated. Depending on the cost of power consumption for each cut, the p most

power-efficient cuts are selected for the next stage. The final mapping solution is

generated in the third mapping phase.

Li et al [54] proposed another power-aware technology mapping solution, called

PowerMap which uses the concept of min-weight K-feasible cut to select the most-

power efficient cut. On the critical path, min-height K-feasible cuts are generated
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which optimise the depth, and min-weight K-feasible cuts are used for nodes

on non-critical paths. The first phase of PowerMap is similar to FlowMap [44] in

generaing a depth-optimal mapping solution. In the second phase, before mapping

a node v to a LUT, the algorithm calculates if the depth of the LUT implementing

that node can be relaxed without increasing overall depth. If possible, it calculates

a min-weightK-feasible cut for that node, which is optimised for minimising power.

Similar to [52], a power-aware technology mapping solution was proposed in [55]

which tries to keep nets with high-switching activity out of the FPGA routing by

including those nets in sub-graphs that are then mapped to LUTs. In addition

to this, the effect of logic replication is also considered for its consequences on

power. The proposed algorithm explores the depth/power curve to trade-off one

criteria for another. Logic replication is widely used in algorithms focused on

depth optimisation. Replicating a node for depth minimisation covers a fanout

of the node within a LUT, but increases the fanout of the node’s fanins, and

the activity/depth relationship implies that the activity of signals whose fanout

is increased is slightly higher, and thus replication is generally undesirable from

a power perspective and has to be analysed properly considering both delay and

power. The approach is divided into three major steps. First is generation of

K-feasible cuts for all nodes, second is selecting the best of these cuts, and the

final step is transforming these cuts to LUTs. In step 2, the best cut is selected

by using a cost function which includes costs of depth, power, as well as logic

replication. Step 3 is similar to the one proposed in [44].

WireMap proposed in [56] is focused on technology mapping solutions which are

easily routable, with a secondary objective of minimising the number of LUTs

required. A heuristic algorithm is used in WireMap, called edge flow, which tries

to reduce the number of edges without affecting area and delay. WireMap reduces

the number of 5- and 6-LUTs on the critical path, which results in smaller depth

while increasing the number of smaller (2-, 3-, and 4-LUTs). These are then

merged and implemented on dual-output LUTs available on modern FPGAs using

maximum cardinality matching to find the maximum number of disjoint pairs of

LUTs which can be merged.
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An iterative technology mapping tool called IMap was presented in [57]. Solu-

tions generated from IMap can be generated for three different objectives: depth-

oriented (for which area is a secondary objective), area-oriented (for which depth is

a secondary objective), and for duplication-free modes. This algorithm first gener-

ates the set of all K-feasible cones for each node in the graph using the algorithms

described in [58, 59]. After this, it traverse the graph forward and backward to

optimise the initial set of K-feasible cones. The number of iterations is limited

by a user specified maximum value. The forward traversal selects a cone for each

node, and updates the depth and area-flow for every node and edge it encounters.

A cone for the node can be selected for depth optimisation or area optimisation.

Backward traversal selects a set of cones to cover the graph, and traverse the graph

from primary output. Every backward traversal affects the next forward traversal.

Instead of using the commonly used unit delay model, IMap uses the edge delay

model, in which arbitrary delay values can be assigned to branches of the graph.

These values are generally estimated from placement and routing delays.

2.4.3.2 Mapping to Other Resources

With the evolution in FPGA architectures, multiple resource types became preva-

lent on the same chip. Technology mapping for these hybrid FPGAs is different

from LUT-only FPGAs.

Kaviani in [60] proposed a technology mapping solution for FPGAs containing

both LUTs and PLAs. Before applying any technology mapping algorithm, the

input tree is partially collapsed. Partial collapsing can be done for either depth

optimisation or area optimisation. After collapsing, all the nodes are divided into

two groups of high-fanin nodes and low-fanin nodes. Nodes with a number of

inputs greater than the number of LUT inputs are high-fanin nodes. High-fainin

nodes are packed onto a minimum number of PLAs using a bin packing algorithm

and low-fanin nodes are, if-possible merged, and then packed into a minimum

number of LUTs. Traditional LUT-based technology mapping solutions can be

used for this step.
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Krishnamoorthy et al in [61] proposed a technology mapping tool called Hy-

bridMap, optimised for Altera’s APEX20KE FPGAs, which contained both LUTs

and PLAs. While the algorithm proposed by Kaviani in [60] was based on single-

output logic cones, the algorithm used by HybridMap is based on Maximum

Fanout Free Subgraphs (MFFSs) [62]. The criteria for sub-graphs to be imple-

mented on PLA is high fan-in with a limited number of product terms. Deter-

mination of the logic to be implemented on PLAs is done in three steps, which

are, sub-graph generation, product term estimation, and sub-graph combining.

FlowMap [44] is used for mapping the remaining logic onto LUTs.

In modern FPGAs, LUTs are designed in such a way that they can be used

as either a k-LUT or two (k − 1)-LUTs sharing inputs (and in some cases two

(k/2)-LUT can be mapped to a k-LUT. These type of LUTs are called fracturable

LUTs (FLUTs). One of the main objectives of technology mapping is to minimise

the number of LUTs used but traditional technology mapping techniques do not

leverage this feature of modern LUTs. Two LUTs which share inputs (with a

number of inputs less than or equal to k-1) can be mapped to a single FLUT,

reducing the number of LUTs used.

Dicken in [63] merged the edge-recovery technique of WireMap [56] with the LUT

balancing approach of [64] with the objective of minimising the number of FLUTs

used. It is shown that combining the techniques of WireMap and LUT balancing

results in reduce usage of FLUTs compared to using only one of the approaches.

Chen et al in [65] proposed a method in which the input to the algorithm is a

k-LUT mapped network (generated by technology mapper Glitchmap [59]) and

it optimises the network further with the primary objective of power reduction

and secondary objective of area reduction. The output of the algorithm is a LUT

network which utilises fracturable LUTs with reduced power and area. Similar to

methods proposed earlier for power-reduction, it tries to hide high-activity nets

inside LUTs, and for area-reduction it tries to take advantage of input-sharing and

input underutilisation of LUTs. The algorithm is divided into three steps. Step one

is identification of LUTs which can be merged into a fracturable LUT. Step two is
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generating a LUT-network and only those LUTs which can be merged (determined

in step one) are connected by edges. In the final step, the algorithm assigns weights

to the LUT-graph generated in step two and applies the max-weight matching

algorithm [66]. Weights are decided to minimise the power consumption.

The technology mapping algorithms discussed above process input graphs, cut the

graph into sub-graphs, which are them mapped to the basic logic elements of the

architecture. The algorithms used to split graphs into sub-graphs depend on the

optimisation criteria adopted for the algorithms. For delay or depth optimisation,

the algorithms try to minimise delay on the critical path. For minimising area, the

algorithms try to fit as much logic as possible into the basic building blocks of the

architecture so that the number of logic blocks used can be minimised. Since power

consumption depends on the switching activity of the circuits, power-optimising

algorithms try to map the edges with higher activity into the building blocks,

which in turn minimises activity on the lines connecting logic blocks. Algorithms

define appropriate cost functions, according to optimisation criteria, to select the

best cuts, which results in optimal implementations. The focus of our work is to

map dataflow graphs onto DSP blocks. Most of the algorithms we have reviewed

are designed for mapping to k-LUTs, which are distinctly different. They have

functionally equivalent inputs, and map arbitrary Boolean functions. However,

we still learn from these algorithms proposed in the literature and these help us

develop mapping techniques for DSP blocks.

2.5 Verilog-to-Routing (VTR)

Research on FPGA architecture and CAD tools was significantly invigorated by

a collaborative open-source research project, Verilog-to-Routing (VTR), involving

multiple research groups, proposed in [67] and available online [68]. VTR is an

end-to-end tool which takes a description of a circuit in Verilog HDL and a file de-

scribing the architecture of an FPGA as input and elaborates, synthesises, packs,

places, and routes the circuit, and also performs timing analysis of the design after
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implementation. One of the major advantage of VPR over other available tools is

its capability to not only allow the designers to design and test systems for already

available FPGA architectures, but allows to explore new architectures. [67] also

extended the area-driven packing algorithm of [69] to timing-driven. Further im-

provements have been made in VTR 7.0 [70]. These include support for multiple

clock domains, an efficient packing algorithm, and fast compilation times. VTR

mainly integrates three different tools to perform all the stages mentioned above.

The front-end of the tool is ODIN-II [71], which performs elaboration and front-

end hard-block synthesis. ABC [72, 73] is used for technology-independent logic

optimisation and technology mapping on the soft-logic portion of the BLIF (Berke-

ley Logic Intermediate Format). Packing (timing-driven), placement, routing, and

timing analysis is done by VPR [69, 74].

2.5.1 ODIN-II

ODIN-II [71] parses the input Verilog file and converts the Verilog syntax into a

netlist targeting the logic fabric. For logic to be implemented on embedded cores

or ‘hard logic’, it uses the information passed about the architecture of the FPGA

in the architecture file and performs a partial-mapping, which determines how

to pack the design structure into the hard cores available on the target FPGA.

For embedded cores, ODIN-II is optimised for invoking embedded multipliers and

memories, which are available in all modern FPGA devices. And, in addition to

multipliers and memories, it also supports the integration of arbitrary embedded

cores, which must be described in the architecture file.

As it is inefficient to use large hard multipliers to implement small multipliers,

ODIN-II has a parameter which decides if the multiplication operator in an input

file should be implemented using a hard multiplier block or soft logic. When it

detects any multiplication operator (*) in the input circuit, the tool first checks

its wordlength. Small multipliers are implemented using LUTs. If the multiplier

is large enough that it should be implemented using a hard multiplier, the tool

will synthesise that multiplier directly to a hard block. One more possibility is the
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size of multiplier in the input circuit is larger than the size of the available hard

multiplier. In this case, the tool splits the large multiplier into a set of smaller

multipliers with some soft logic to generate the final output. These small multi-

pliers are then implemented using either soft-logic or hard blocks, depending on

wordlengths. The current version of ODIN-II supports only unsigned multipliers

and can invoke hard blocks for implicit use of the multiplication operator as well

as explicit instantiation.

For memories, ODIN-II cannot identify memory coded as arrays in Verilog. It

only identifies explicit instantiations of memory. Similar to multipliers, the size of

memories instantiated in an input circuit can be larger than the size of embedded

memory blocks available. It can split logical memories in two ways. One is similar

to multipliers, it breaks logical memory into small memories which can be mapped

to physical memories. The other way is to split all memories into the smallest

possible size, i.e., 1-bit. In this case, it relies on subsequent tools to merge these 1-

bit memories and map them to physically available memories. In [75], the authors

have extended the functionality of ODIN-II to support implicit memories, which

can map large two-dimensional arrays to the embedded memory blocks. They

also added support for the elaboration of logic memories into soft logic, i.e., if the

memory size is small, it can be more efficient to implement it using LUTs instead of

using embedded memory. For explicit memories, instead of splitting them into 1-

bit memories and depending on later stages for their merging, techniques proposed

in [75] can resize them to the exact specification (width and depth) of memories

available in the architecture file of FPGA.

ODIN-II also supports detection and synthesis of arbitrary embedded hard blocks,

but with some limitations. For detection, user-defined hard blocks should be

instantiated explicitly, similar to memories. And the logical size of instantiated

hard block should be exactly the same as the physical size of the hard block.

Splitting similar to multipliers and memories is not supported for arbitrary hard

blocks.
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ODIN-II also provides support for functional verification of the input circuit. It

integrates a logic simulator proposed in [76] which can simulate either the Verilog

input file after elaboration done by ODIN-II or the generated BLIF netlist. For

arbitrary hard blocks, a C-description of the functionality of the block must be

added by the developer. As multipliers and memory blocks are common, their

functionality is built in.

2.5.2 ABC

The BLIF netlist generated by ODIN-II is used as an input to ABC [72], which

performs the technology-independent logic optimisation and technology mapping

to LUTs and flip-flops. In ABC, soft logic, i.e., logic to be implemented using LUTs

and flip-flops is represented as an AND-Inverter Graph (AIG) and embedded hard

cores like multipliers, memories, and user-defined hard-cores are represented as

black-boxes. WireMap [56] is also integrated for technology-mapping the AIG

into K-LUTs.

2.5.3 VPR

Versatile Place and Route (VPR) is a state-of-the-art, widely used open-source

tool for placement and routing. It was first proposed by Betz and Rose in [77].

The major advantage of VPR is, it can place and route circuits on a wide variety

of custom FPGA architectures designed and developed by researchers, for which

standard vendor tools cannot be used. VPR places a circuit and can then perform

either global routing or combined global and detailed routing.

The input to VPR is a technology-mapped netlist generated by ABC in the pre-

vious stage and a text file describing the FPGA architecture, and the output is a

placed and routed design, as well as statistics like routed wire-length, track count,

maximum net length, etc. VPACK is a logic block packing algorithm used in

VPR which reads a BLIF netlist of a circuit which has been technology mapped
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to LUTs and flip-flops. It then packs the LUTs and flip-flops to the desired FPGA

logic blocks and outputs a netlist in VPR’s netlist format.

VPR’s placement algorithm is based on simulated annealing [78] and uses a linear

congestion cost function [79]. This cost function penalises placements which oc-

cupy areas of the FPGAs that have narrower channels. An annealing schedule is

also proposed in [77] which automatically adjusts annealing parameters to differ-

ent cost functions and circuit sizes. Placement is an iterative process which starts

with a random placement of the circuit.

The routing algorithm is based on the Pathfinder negotiated congestion algo-

rithm [80, 79]. At first, ignoring any constraints on the number of wire segments

or logic block pins, it routes all the nets by the shortest path. The cost function

of a routing resource is a function of overuse of that resource in the current iter-

ation as well as in all previous iterations. Each iteration of the router consists of

sequentially re-routing all nets of the circuit by the lowest cost path found for that

net. The number of iterations is fixed apriori and if the circuit is not successfully

routed in a given number of tracks, the design is considered as unroutable with

the available channels.

With various developments over the years, many improvements and features have

been added to VPR. VPR 5.0 was proposed in [81] and includes many new features.

Out of these, the four main new features are:

• Broad range of support for single-driver routing architectures

• It can now model and place and route architectures with heterogeneous hard

blocks like embedded memories and multipliers

• Optimised electrical models in different technologies for wide range of FPGA

architectures. It also includes a wide range of area-delay trade-offs for each

architecture

• VPR 5.0 includes a set of regression tests to ease the development and en-

hancement of features
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For packing and clustering of technology-mapped circuits, instead of using VPACK,

VPR 5.0 use T-Vpack [82], which performs a timing-driven packing. After pack-

ing, placement and routing is done. And, finally timing analysis is performed to

determine the performance of the circuit.

All modern FPGA architectures include hard blocks like embedded memories and

multipliers. The addition of the ability to place and route architectures with

heterogeneous hard blocks is one of the most significant contributions of VPR

5.0. This capability also opens the doors for exploring what hard blocks should

be included into FPGAs instead of implementing those functions in FPGA fabric.

To maintain the structure of FPGAs for efficient placement and routing, VPR

5.0 assumes that the width of these hard blocks is equal to the width of one grid

(the unit of a soft logic cluster) so that they are restricted to one column. The

height of these hard blocks is restricted to an integral number of grid units so that

no area is wasted in empty slots. In addition to this, it is also assumed that for

multigrid height hard blocks, the horizontal routing tracks at every grid location

are passed through as if there are no hard blocks to ensure efficient routability of

soft logic. But the packing algorithm of VPR 5.0 does not support the clustering

of nodes by breaking these heterogeneous blocks into sub-modules, so it supports

the placement and routing for monolithic heterogeneous blocks only.

Early versions of VPR had different data structures for modelling logic blocks and

I/O, and did not support embedded hard blocks. In VPR 5.0, support for hard

blocks was added and data structures for different blocks were unified, allowing

the user to add new types of hard blocks easily while also simplifying the code.

To further strengthen the support for hard blocks, VPR 5.0 uses an XML-based

architecture file format to leverage convenient modelling hierarchy in XML.

A new language (also based on XML syntax) for describing architecture and an

architecture-aware packing algorithm AAPack were proposed as VPR 6.0 beta

in [69]. Complex logic blocks with arbitrary internal routing structure and hierar-

chy can be easily described in this language. In addition to this, it also supports

different modes for each logic block, which can represent different functionalities
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and routing structures for these block. These modes represent different ways of

using the embedded logic block. Similar to earlier version of VPR, the input to

this packing algorithm is a technology mapped netlist and architecture file. The

algorithm tries to pack the input circuit into a minimum number of complex logic

blocks defined in the architecture file and generates a packed output netlist which

is functionally equivalent to the input netlist. The latest version of VTR extends

the AAPack packing algorithm of VPR 6.0 beta, which supported only area-driven

packing with timing-driven packing.

After passing a circuit through ODIN-II and ABC, VPR in non-timing driven

mode is run multiple times to determine the minimum channel width (W ), and

then after determining the W , VPR is invoked again in timing driven mode, with

width slightly higher than calculated in non-timing driven mode, to complete final

placement and routing.

2.6 High Level Synthesis

As the complexity of systems implemented on FPGAs increases, a significant

amount of work is being done on increasing the level of abstraction for describing

complex computations. This helps reduce development time, which is critical in

modern fast-changing technologies and also helps to explore the design space.

Research so far can be broadly categorised into three categories:

1. Tools that take high-level descriptions as input and generate RTL which can

then be synthesised using commercially available vendor tools.

2. Tools that take a dataflow graph as input and generate synthesisable RTL.

These can be sub-categorised into:

(a) Those focused on implementation of algorithms on heterogeneous hard-

ware components which can be a hybrid of one or more of conventional

processors, DSP processors, and FPGAs [83, 4].
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(b) Those focused on implementing algorithms on FPGAs only.

3. Research focused on extracting dataflow graphs from high-level descrip-

tions and relying on other tools for further implementation from generated

dataflow graphs.

We discuss various techniques and tools proposed in the literature that focus on

implementation of algorithms from high-level descriptions or dataflow graphs.

Many tools have been developed to increase the level of abstraction of hardware

design to high-level languages like C/C++. Although the adoption of HLS was

slow in early generations of the tools, there has been a rapid growth in development

and demand lately. As discussed in [84] and [85], some of the motivations and

demands for high-level synthesis are:

• Increasing complexity with expectations of reduced design time, along with

significantly reduced verification time, which is critical in complex systems.

• More complex and capable architectures requiring significant exploration of

the design space to achieve effective use of resources.

• Embedded systems increasingly blending hardware and software, requiring

considered partitioning of systems, and a preference for unified description.

• An abundance of legacy code in high-level languages like C/C++ that can

serve as a springboard for building complex systems.

There are, however, some inherent limitations of high-level languages like C/C++

for hardware design. Some of these include [84]:

• Hardware circuits can be highly parallel but most high-level languages do

not support concurrency natively and algorithms are described sequentially.

• Timing specifications are very important for hardware design, but most pro-

gramming languages do not consider timing.
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• For efficient implementations, hardware designers tends to pass structural

information like input/output ports and data formats across these ports, and

also specific constraints for some portions of the circuit. These functionalities

are not supported by conventional programming languages.

Some of these limitations and more are discussed in detail in [86]. To overcome

these limitations, many tools use modified versions of languages, which both ex-

tend and restrict constructs of the programming language. Extensions are needed

to express concurrency, structural information (partitions, I/O, data formats) and

various constraints. Restrictions are generally motivated by constructs which ei-

ther do not have hardware equivalents or constructs which are hard to map to

hardware blocks (like pointers).

Some high-level synthesis (HLS) tools proposed in the literature or commercially

available are: HardwareC [87], Handel-C [88], Catapult C [89], Impulse-C [90],

PACT HDL [91], CHiMPS [92], Bluespec [5], Xilinx Autopilot [3], LegUp [4].

In [93], the authors proposed an integrated synthesis environment, which syn-

thesises the control and data path of an architecture simultaneously. The main

focus was to use more global information which can be extracted from a high-

level description, instead of doing local optimisations in subsequent stages. In the

proposed system, both scheduling and binding are based on simulated annealing,

and the datapath is optimised for area, performance, and interconnect lengths.

The input is a high-level description of the algorithm, which is converted into

a hierarchical dataflow graph. The scheduling process runs iteratively, applying

small transformations to the architecture, and then accepts or rejects the changes

according to a probability criterion, and runs as long as the algorithm does not

converge.

In [94, 95, 96], the authors tried to efficiently map arbitrary C code with support

for pointers and malloc/free, and complex data structures into hardware. [94] pro-

posed a solution named Synthesis of Pointers in C (SpC) which can synthesise and

optimise a C model with pointers. Pointers are synthesised to multiple variables
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and array elements. It takes a C description, which can contain pointers, and gen-

erates a synthesisable Verilog module. As a continuation of [94], in [95] and [96],

the authors extended the capabilities of SpC to support malloc/free which are

used for dynamic memory allocation. To implement malloc/free, the SpC uses

a library of hardware components implementing malloc and free. The first step

is flow- and context- sensitive pointer analysis, and then a hardware component,

called allocator (or virtual memory manager) is generated which manages differ-

ent memory spaces and resolves all malloc and free instructions. Implementation

is based on the SUIF (Stanford University Intermediate Format) [97] framework,

developed at Stanford University.

PACT (Power Aware Architecture and Compilation Techniques) HDL [91] is a

C to HDL compiler, designed with the aim of generating power-aware architec-

tures. PACT HDL supports arbitrary architectures, including both application

specific and reconfigurable hardware. It translates input C code into synthesis-

able HDL code in three stages. The first stage is the translation of input C code

into an Abstract Syntax Tree (AST). Optimisations independent of architecture

like precision analysis, loop unrolling are also performed in this stage. The AST is

then converted into an HDL AST representation, adding architecture information,

which is then used to generate RTL in final stage. PACT HDL is best suited for

image and signal processing applications. Power optimisation is done by pipelin-

ing functional units, reverse code levelisation, and support for integrating power

efficient IP cores.

A C-based accelerator compiler CHiMPS (Compiling High-level Languages into

Massively Pipelined Systems), targeting acceleration of high-performance com-

puting (HPC) applications on CPU-FPGA platforms is proposed in [92]. It takes

ANSI-C code as input and generates VHDL blocks. The hybrid CPU-FPGA model

used for CHiMPS consists of one or more conventional CPUs with FPGAs con-

nected to the CPU sockets, all sharing a common bus. Each instruction in C

is translated into an intermediate representation, which is an assembly-like lan-

guage called CHiMPS Target Language (CTL), which in turn produces a VHDL
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implementation. If the design is too big to fit on a single FPGA, it uses time-

multiplexing of FPGA resources or uses a MicroBlaze [98] soft processor to reduce

resource requirements. One major contributor to performance enhancement is the

many-cache memory model, where many small independent memory blocks avail-

able on the FPGA are used as caches. For designers with hardware expertise, the

tool supports pragmas which can result in greater performance improvements.

[99] and [100] extends the Adequation Algorithm Architecture (AAA) methodol-

ogy and the associated software tool SynDEx, first proposed in [101], to implement

algorithms on heterogeneous architectures. The goal of the AAA methodology is

to discover the best implementation of an algorithm for a multi-component archi-

tecture, which also meets the real-time constraints of the application. [99] uses

the AAA methodology to extend the tool SynDEx for FPGAs named SynDEx-IC.

SynDEx-IC generates synthesisable VHDL code for a single FPGA architecture.

[100] proposed an automatic design generation methodology for telecommunication

applications using DSPs and FPGAs. It also leverage the partial reconfiguration

capabilities of modern FPGAs.

Catapult C [89] is a commercially available HLS tool by Mentor Graphics, which

accepts ANSI-C as an input and generates synthesisable RTL which can be easily

integrated with the rest of the tool flow. It can be used for FPGAs as well as

ASICs. In addition to RTL, the tool also generates a SystemC testbench, which

compares the outputs of both the C descriptions and generated RTL and validates

the functional correctness of the generated RTL. RTL generation can be optimised

by applying various synthesis constraints for I/O, loops, and memory elements, in

addition to system level constraints.

LegUp [4] is an open-source HLS tool developed at the University of Toronto.

LegUp accepts a standard C description of the design as input and can generate

hardware solutions for either a hybrid architecture containing an FPGA-based

MIPS soft processor and custom hardware or a full hardware implementation. It

uses the LLVM compiler framework to translate the C description into an machine

independent intermediate representation (IR), which is then used to generate RTL.
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In [102], LegUp added support for parallel hardware generation with the integra-

tion of Pthreads and OpenMP. Parallel code segments in C are directly translated

into sub-circuits working in parallel. LegUp also offers a software-like debugging

framework for generated hardware [103]. The framework allows a user to inspect

the program at input C, LLVM IR, as well as Verilog. It is primarily optimised

for Altera FPGAs. The latest version of the tool [104] supports Xilinx devices as

well, though somewhat limited.

A case study presented in [105] compares the performance of K-means clustering

for two different implementations: one is a simple data-flow centric implemen-

tation and another uses dynamic memory allocation and recursion, for Xilinx’s

Vivado HLS. Vivado HLS does not support pointers in high-level descriptions.

The authors propose a source-to-source translation of the recursive C code using

dynamic memory allocation to transform it into format acceptable by Vivado HLS.

Tools for extracting control and data flow graphs from high-level descriptions have

been proposed in [106], [107]. [106] is focused on extracting task graphs from C. It

does not support some of the features of C like functions defined within functions

and pointers to functions. As a first step, it divides the C code into tokens, which

are then organised into an abstract syntax tree (AST) using Lex and YACC. The

next step is keyword extraction. Then, dependence analysis based on ordered list

of events is performed, generating a dependence graph. The tool proposed in [107]

can extract control and data flow graphs (CDFG) from behavioral descriptions

of algorithm in VHDL. Similar to [106], it also uses Lex and YACC for parsing

VHDL code, to generate a parse tree, which is then converted into a CDFG. A

tool called Task Graphs For Free (TGFF) was proposed in [108], which generates

pseudo-random task graphs, which can be used to verify allocation and scheduling

algorithms.

The high-level synthesis system Helios, proposed in [109] takes a behavioral de-

scription of an algorithm in a C-like language and generates a synthesisable RTL

code for the algorithm. The process is divided into four major steps: DFG genera-

tion, Scheduling, Resource Binding, and HDL Generation. Helios does not restrict
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the design space at the stage of DFG generation, i.e., instead of generating only

one DFG in first stage, it generates multiple DFGs of the algorithm by apply-

ing different transformations, which includes tree height reduction and retiming.

From the generated DFGs, a fast scheduling and resource binding process is exe-

cuted on each selected DFG and a small number of good datapath candidates are

selected based on their cost and performance. Optimum scheduling and resource

binding algorithms are applied to these selected DFGs and a final datapath design

is obtained, for which HDL files are generated.

In the process of implementing designs onto FPGAs, designs are flattened to gates

and further steps are applied on these Boolean networks. In [110], the authors pro-

posed a different approach. Instead of flattening the design to gates, the datapath

is preserved. The idea is to preserve the structure, which can allow exploitation

of specialised datapath features in FPGAs. Another extreme approach is to map

each node of the datapath to a pre-fabricated module. But, this approach restricts

the optimisations which can be done across different nodes, and also results in un-

derutilisation of resources. The ideal approach can be merging operations across

different nodes while maintaining the regularity of the datapath. The proposed

approach is implemented in a datapath mapping tool GAMA [110]. GAMA does

not flatten the modules to gates and tries to leverage features of hard-blocks of

FPGAs like fast carry logic. GAMA performs module placement simultaneously

with mapping, but it does not guarantee optimal results for placement.

In [111] and [112], Sun et al. proposed a methodology for pipelined implementa-

tions of untimed synchronous dataflow graph while merging module selection and

resource sharing stages to obtain better results. The proposed approach performs

pipeline scheduling, considering user-specified throughput constraints, rather than

latency or resource usage as constraints. It schedules the dataflow descriptions

onto pre-pipelined library elements. This library contains multiple implemen-

tations of each behavioral operation, with different number of pipeline stages,

operating frequency, area, etc. This results in a large library of pre-pipelined im-

plementations and thus, design space exploration becomes critical. Two different

algorithms are proposed for design space explorations. The first approach is a
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recursive branch-and-bound algorithm, which uses As Soon As Possible (ASAP)

scheduling. Although this algorithm results in decent results, it is very computa-

tionally expensive and is not practical for large circuits. The second approach is

a heuristic approach which is based on iterative modulo scheduling (IMS) [113].

This approach allows backtracing to explore solutions which cannot be attained by

the greedy branch-and-bound algorithm. Although, both the algorithms explore

the trade-off between various library modules of operations, the large size of the

library becomes a limiting factor, which grows exponentially with the number of

operations.

FloPoCo (Floating-Point Cores) is an open-source tool written in C++, to gener-

ate custom arithmetic cores with floating-point operations [114]. The output of the

tool is synthesisable VHDL with an option of generating a testbench too. FloPoCo

is a collection of some basic operators which are highly parameterised, and can be

used to generate custom architectures satisfying user-defined parameters. These

parameters include the precision of inputs/outputs and target frequency. It can

also generate a pipelined implementation of these operators, which can be enabled

or disabled. Pipelining done by FloPoCo is frequency-directed, i.e., depending

on the target frequency, the tool automatically manages the number of pipeline

stages required. FloPoCo supports a wide range of FPGA devices and optimised

architectures are generated depending on the device selected. It also provides the

functionality to enable/disable the use of DSP blocks, widely available on mod-

ern FPGAs. Devices supported by the latest version of FloPoCo are the Xilinx

Spartan III, Virtex IV, V, 6, and the Altera Stratix II, III, IV, V, Cyclone III, IV,

V [115].

With advancements in HLS tools, significant research has been undertaken to im-

prove the productivity of tools and widen support for data structures like pointers.

Runtimes of the back-end tool flow chains remain one of the major bottlenecks for

HLS tools and they affect productivity in a major way. For most HLS tool, any

small change in the code requires a full re-compile. Recent work in [116] proposes

a back-end tool flow chain which is able to re-use pre-compiled (synthesised and

placed) modules of the design. These pre-compiled sub-circuits are called “macros”
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and stored in a library. For HLS, the functionality of the designs is described in a

high-level language and back-end tools generate the RTL. For the proposed tool

flow, instead of generating RTL, optimum pre-compiled sub-circuits are selected

from the library and stitched together, bypassing the synthesis and place-and-route

stages of the implementations, thus, significantly reducing the design runtime.

RapidSmith [117], RapidSmith 2 [8], and Torc (Tools for Open Reconfigurable

Computing) [118] are open-source frameworks for CAD tool development and ar-

chitecture exploration for Xilinx FPGAs. Xilinx devices are detailed in a verbose

way in XDL (Xilinx Design Language) descriptions, which provide an insight into

the architecture, however, these files are very verbose. RapidSmith use a custom

compact file format which provides all the necessary information required to de-

velop CAD algorithms for a wide range of devices. It also includes an API for

modifying XDL designs for the purpose. RapidSmith provides access to Xilinx

FPGAs at the level of Slices. In RapidSmith 2 [8], the authors further improved

the tools and enable the user to access the lowest level logic blocks: LUTs and

registers. One of the important advantage of RapidSmith is its ability to interface

with vendor tools. This allows modification of individual stages without breaking

the vendor tool chain. Torc [118] provides four set of APIs to interface with and

modify the Xilinx tool chain. The four APIs are for: generic netlist, physical

netlist, device architecture, and bitstream stages of the design flow.

2.7 Resource Sharing

Generally, the resources available on FPGAs are mapped to by partitioning a dat-

apath into spatially interconnected functional units, assuming sufficient resources

are available to map the entire design on the target device. Designs with high

performance requirements adopt this strategy. However, this is not preferable or

possible in two cases:

1. The device does not have sufficient resource to fully implement the design
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2. The throughput requirements of the design are lower than those achieved by

a fully pipelined implementation

In the first case, resources can be shared in a time-multiplexed manner in order to

fit the full design on a device. For the second, if the throughput requirement is not

high, resources should be shared to the extent possible while meeting the required

throughput. A fully pipelined implementation would represent under-utilisation

of resources, which could otherwise be freed up for other uses.

Resource sharing should be applied where possible, however, the impact of resource

sharing also depends on the type of hardware blocks being shared. Generally,

resource sharing requires multiplexers at the inputs and demultiplexers at the

outputs of hardware blocks to be shared. A simple criterion is if the cost of

control logic required for the resource sharing is less than the resources saved,

resource sharing is beneficial. Hadjis et al in [119] argue that the architecture of

an FPGA logic element determines the utility of resource sharing and they present

a cost-benefit analysis. The authors first show that operators like add/sub do not

result in significant savings for 4-LUTs, however, for 6-LUT architectures, some

resources are saved. Sharing resource intensive operations like multipliers results

in significant savings. [119] also presents a pattern discovery and sharing approach,

considering multiple operations as a composite operation. Sharing these patterns

can result in considerable area reduction for composite operations consisting of

add/sub too. In [120], the authors evaluate the impact of various resource sharing

techniques. In addition to sharing computational resources, the impact of register

sharing and register renaming is also discussed on the area and performance of

large designs.

In many medium-rate DSP applications, the design goal is to minimise the total

system area cost by mapping the computation onto the smallest (i.e., cheapest)

possible FPGA device. Currently, designers manage this problem by manually se-

lecting more area-efficient arithmetic implementations and/or constructing control

logic to time share multiple operations on a single arithmetic unit. Automated

synthesis of datapaths with fine-granularity optimisations in area and throughput
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gives designers the options to meet the increasing demands of design productivity,

high performance, limited memory bandwidth, and FPGA resources.

Scheduling is an important step in the process of implementing a design onto

FPGAs, whether RTL is generated using an HLS tool or manually optimised

hand-written RTL. Scheduling greatly impacts the cost and performance of the

final design. A significant amount of research has been done on automated resource

sharing by providing either:

• A constraint on the resources available

• A target throughput constraint

The Sehwa tool in ADAM allows generation of pipelined implementations and ex-

ploration of the design space by generating multiple solutions [121]. The authors

developed two heuristics for pruning the search space of an exhaustive pipeline

scheduler. Sehwa breaks synthesis into three steps: scheduling, resource alloca-

tion, and register-transfer synthesis. High-level synthesis (HLS) tools developed

since continue to follow these three basic steps. In [122], the authors proposed

PLS (a scheduler) to evaluate the area-time trade-off and compared the generated

implementations with [121].

Constrained scheduling problems can be broadly categorised into: resource con-

strained, time constrained, and resource and time constrained. A constraint on

resources limits the number of functional units of each type available to implement

the datapath. Given the available resource, the objective is to find a schedule with

maximum performance. Given the constraint on throughput, the objective is to

find a schedule consuming minimum hardware. Resource and time constrained

schedules generally determine the feasibility of a possible solution satisfying both

resource and time constraints.

A significant amount of work has been done on resource sharing at RTL level as

well as in HLS. List scheduling was first used for microcode compaction in [123].

Variants with different optimisation goals for list scheduling have been explored
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in [124, 125]. Force-Directed Scheduling (FDS) [126] is a heuristic scheduling

algorithm which can perform scheduling and resource allocation simultaneously.

It takes a dataflow graph as an input and determines the number of different

functional units required to implement the graph and simultaneously determines

the schedule depending on data dependencies between the different nodes. FDS

constrains the schedule according to input timing-constraints and tries to minimise

the number of resources required to satisfy the schedule. It computes the mobility

of the nodes from As Soon As Possible (ASAP) and As Late As Possible (ALAP)

scheduling algorithms and then nodes with non-zero mobility are scheduled to

achieve minimum resource usage. Variants of FDS presented in [127, 128, 129, 130]

have optimised the algorithm for different optimisation goals, such as, throughput,

dynamic power, hardware/software partitioning. Recently, an algorithm based on

FDS specifically targeted for streaming applications was proposed in [131].

Problem formulations based on integer linear programming (ILP) for scheduling in

high-level synthesis have been explored in [132]. This paper discuss ILP formula-

tions for resource constrained and time constrained scheduling. In addition to this,

a “feasible scheduling” is also discussed, which explores the design space to pro-

vide a trade-off between both the resource and time constraints. The scheduling

algorithm attempts to determine a schedule which satisfies both the constraints.

[133] present simultaneous allocation and scheduling based on ILP to determine

the global optimum solution.

Heuristic scheduling algorithms such as list scheduling [124] or FDS [126] can gen-

erate a sub-optimal schedule, as these methods attempt to determine a locally

optimum solution instead of applying global optimisations. ILP [132] can pro-

vide a globally optimum solution, however, these formulations are difficult to scale

for large designs. Recently, an efficient and scalable approach called the system

of difference constraints (SDC) based on a linear-programming formulation was

proposed [134]. Scheduling constraints are converted into a set of difference con-

straints, with objective function also as a linear function, which can be solved using

linear programming solvers. SDC supports a wide range of optimisation goals like

resource constraints, timing constraints, latency constraints. For control and data
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flow graph (CDFG), inter-basic-block constraints are handled at the boundary of

basic blocks. Resource sharing across basic blocks is not considered. [135] presents

scheduling heuristics addressing the problem of global resource sharing for CDFGs.

The proposed techniques focuses on inter-basic-block sharing, in addition to re-

source sharing for each basic block. Computational modules across basic blocks

are analysed to minimise connections and functional resources. Patterns for com-

bining resources are extracted and prioritised, resulting in more effective sharing

than when considered individually.

More recent work in [112] has focused on resource sharing and loop optimisa-

tions targeting fully pipelined functional units from HLS descriptions. The au-

thors introduced a pipeline synthesis flow which exploits resource sharing and

module selection, yielding a 2–3× reduction in resources compared to existing

approaches. The authors proposed approaches to address the need for improved

pipeline synthesis techniques for FPGAs; for design space exploration aimed at au-

tomatically identifying the lowest cost circuit architecture that meets a minimum

throughput constraint; for scheduling data-flow specifications onto pre-pipelined

library elements. In [136], the authors describe a heuristic for generating an I/O

port-constrained pipeline for an arbitrary acyclic DFG and compare its results in

terms of resource overhead and routing complexity (in terms of fan-in and fan-

out) against those of an exhaustive branch-and-bound enumeration and those of

a state-of-the-art commercial HLS tool.

An approach based on extracting patterns from the dataflow graphs of designs to

maximise resource sharing was proposed in [137]. It mainly consists of two impor-

tant tasks: pattern matching and pattern recognition. The proposed techniques

attempt to determine the common pattern, i.e., a set of operations occurring

repetitively, so that different instances of the same pattern can share the same

hardware resources. Finding and sharing exactly the same pattern does not result

in significant resource sharing opportunities. In order to share patterns which are

not exactly the same but similar, the authors use a graph similarity index, called

the edit distance [138] to handle variations in ports, wordlengths, operation types,

and other properties. To avoid small sub-graphs, which can also be sub-graphs of
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identified patterns, sub-graph enumeration and pruning is proposed. To find large

and useful patterns, the authors propose an approach combining the benefits of

breath-first search and depth-first search.

In [139], the authors propose an area-efficient design for binary tree shaped ex-

pressions (n input) having a latency of (3n+ (α− 1) lg n− 2) as upper bound (α

is the latency of one floating point FU). The authors use one floating-point core

for each operation type to evaluate an expression whose inputs arrive sequentially.

The area efficient architecture and algorithm reuses the same core for a series of

floating-point computations which are dependent upon one another. However, the

algorithm is limited to generating pipelines that can receive only one input every

clock cycle.

2.8 Summary

The increased capabilities of FPGAs mean a wider range of algorithms can be

completely implemented on FPGAs. Our focus is on exploiting the DSP blocks

available on modern FPGAs to efficiently implement computational kernels of

large applications, exploiting the capabilities of these blocks. One of the major

limitations of most of the available tools is they do not consider the architectural

details of the DSP block and rather rely on vendor tools to use them. Information

available in the high-level of design description is lost during this translation, and

thus, the backend tools cannot utilise these blocks optimally.

The techniques proposed in this thesis are independent of much of the existing work

we have covered, meaning that our approaches can be included in existing tools.

We are focused on exploiting both the computational and control capabilities of

DSP blocks. This means using the multiple sub-blocks offered, and using the

dynamic flexibility. Both of these offer us opportunities for implementing more

efficient designs.



3
The DSP48E1 DSP Block Primitive

For computationally-dominated applications, one fundamental step to bridge the

gap between FPGAs and ASICs is to ensure that arithmetic is performed as ef-

ficiently as possible. In this chapter, we discuss the evolution of DSP blocks on

FPGAs to improve the speed and efficiency of arithmetic. We then discuss the

architecture of the modern DSP48E1 available on Xilinx Virtex-6 and 7 series

devices. DSP48E1 blocks can be configured in many different ways to perform

different arithmetic operations and support internal pipelining. We discuss how

the performance of these blocks varies depending on configuration and also demon-

strate how dynamic programmability can be exploited to implement different func-

tions using a single DSP block.

The versatility of DSP blocks has been used in a variety of ways in literature.

In [140, 141], a soft processor called iDEA was built around the DSP block. By

56
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exploiting its dynamic flexibility, most of the functions of the soft processor could

be absorbed into the DSP block leading to a highly compact design which could

still run at very high frequency. In [142], the authors proposed a general floating

point operator, again using the DSP block’s dynamic programmability to enable

a number of different operations in a single general purpose floating point block.

In [143], the authors showed how a general purpose FPGA overlay architecture

called DySER [144] could be significantly improved by swapping the functional

unit for a flexibly configured DSP block. A more capable overlay was proposed

in [145], again using the DSP block at close to its maximum frequency in a general

purpose overlay.

3.1 DSP Block Evolution

With the growing application of FPGAs to different areas like digital signal pro-

cessing and image processing, vendors sought to improve the efficiency of oper-

ations that find widespread use across these applications. Implementations of

multipliers using LUTs are slow and consume significant amounts of resources. To

speed-up these operations, Xilinx first introduced hard-wired multipliers in the

Virtex-II family of FPGAs. With growing performance demands, many features

have been added in subsequent generations to support wide range of operations.

Xilinx first introduced 18×18 bit hard-wired multipliers, which could generate

a new result every clock cycle and can operate at frequency of 150 MHz in the

Virtex-II. In the Virtex-IV, these multiplier blocks were extended to DSP blocks

(DSP48), by adding a 48-bit adder/subtractor, with a maximum frequency of up

to 500 MHz. In the Virtex-V, the width of the multiplier was increased from

18×18 bits to 25×18 bits, with a maximum frequency of 550 MHz. Adding more

functionality, in the Virtex-VI DSP blocks (DSP48E1), a 25-bit pre-adder was

included at the multiplier input, and DSP48E1 can generate outputs at 600 MHz.

More importantly, in the latest 7 Series FPGAs from Xilinx, the same DSP block

is used across all device families and they are capable of running at up to 740 MHz.
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Device Capabilities Speed No of DSP Blocks

Virtex-2 18×18 bit multiplier Up to 150 MHz 4 - 168

18×18 bit multiplier Up to 500 MHz 32 - 512

Virtex-4 48-bit adder/subtractor

(DSP48)

18×25 bit multiplier Up to 550 MHz 32 - 1056

Virtex-5 48-bit ALU

(DSP48E)

25-bit pre-adder Up to 600 MHz 288 - 2016

Virtex-6 18×25 bit multiplier

48-bit ALU (DSP48E1)

25-bit pre-adder Up to 740 MHz 60 - 2520

Virtex-7 18×25 bit multiplier

48-bit ALU (DSP48E1)

27-bit pre-adder Up to 740 MHz 600 - 2880

Virtex-Ultrascale 18×27 bit multiplier

48-bit ALU (DSP48E2)

Table 3.1: DSP blocks evolution on Xilinx Virtex devices.

The number of DSP blocks available on devices has also increased significantly

over the generations. Virtex-II and Virtex-II Pro had between 4 to 168 and 12

to 444 hard-wired 18×18 multipliers respectively. After introducing full-fledged

DSP blocks, Virtex-4 had between 32 to 512 DSP48 blocks. Virtex-5 devices

had a minimum of 32 DSP48Es to a maximum of 1056. Virtex-6 have number

of DSP48E1 blocks between 288 to 2016. Table 3.1 shows the evolution of DSP

blocks over generations on Xilinx FPGAs.
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Figure 3.1: Basic structure of the DSP48E1 primitive.

3.2 The DSP48E1 Primitive

The latest DSP blocks support many functions, including add-multiply, multi-

ply, multiply-accumulate, multiply-add, three-input add, barrel shift, bitwise logic

functions, pattern detection, and wide-counters. One of the most important fea-

tures of the DSP blocks is dynamic programmability. The functionality of these

DSP blocks can be modified in every clock cycle, greatly enhancing the flexi-

bility of these blocks. Pipeline registers are also embedded in DSP blocks to

enhance throughput. Dedicated connections are available for cascading multiple

DSP blocks without using the FPGA fabric. This results in better performance

and saves resources for other uses. A simplified representation of DSP48E1 block

is shown in Figure 3.1.

The DSP48E1 is available on the latest generation of Xilinx’s FPGAs [146]. These

DSP blocks can be divided into three stages: pre-adder, multiplier, and ALU. The

Pre-adder is a 25-bit two-input adder/subtractor. Its output is fed as one of the

inputs of the Multiplier which has asymmetric 18-bit and 25-bit inputs. The

ALU is 48 bits wide and operates on the output of the multiplier and another

input. When using the ALU for Boolean logic, the multiplier cannot be used.

Logic functions supported by the ALU are AND, OR, NOT, NAND, NOR, XOR,

and XNOR. Three multiplexers X, Y, and Z, are used to select appropriate inputs

for the ALU block. A detailed internal view of the DSP48E1 is shown in Figure 3.2.
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Register Control Attributes

AREG ACASCREG BREG BCASCREG

CREG DREG MREG PREG

ALUMODEREG INMODEREG OPMODEREG

CARRYINREG CARRYINSELREG

Feature Control Attributes

A INPUT B INPUT USE DPORT USE MULT

USE SIMD

Table 3.2: DSP48E1 Attributes.

Specific configuration inputs determine which components should be used. As

different components support multiple functions, configuration inputs also set the

operation of these components. Multiple pipeline registers are also available which

can be configured according to requirements of the application.

As we can see in Figure 3.2, the DSP48E1 can be divided into a maximum of four

pipeline stages. Two of the pipeline stages are available at inputs A and B, one

at the output of the multiplier, and one at the output of the ALU. These pipeline

stages are parametrised, i.e., the pipeline stages are configured while instantiating

the primitive, and cannot be enabled/disabled dynamically. However, pipeline

registers can be clock-gated.

Multiplication is done in two stages. In the first stage, the multiplier block gen-

erates two 43-bit partial products. These partial products are then sign-extended

to 48-bits in the X and Y multiplexers. In the second stage, the ALU block adds

these two partial products to generate the final multiplier output. Therefore, when

the multiplier is used, the ALU effectively becomes a two-input adder/subtractor.

We now discuss various attributes and input/output ports of DSP48E1 primitive.

3.2.1 Attributes

Attributes are set at the time of instantiation. They can be divided into attributes

that control pipeline registers and the attributes that control functionality. A list
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of all the attributes is shown in Table 3.2.

3.2.1.1 Register Control Attributes

AREG, ACASCREG, BREG, BCASCREG set the number of input pipeline reg-

isters at input ports A and B. These can be set to 0, 1, or 2. All other attributes

can be either 0 or 1 which disable or enable the corresponding pipeline register.

3.2.1.2 Feature Control Attributes

A INPUT and B INPUT can have values DIRECT or CASCADE, which select

from where port A and port B receive their inputs respectively. In DIRECT mode,

A is connected to the DSP block input, while in CASCADE mode, it is connected

to the adjacent DSP block.

USE DPORT determines whether to use the D port and pre-adder block.

The multiplier block can be used in three modes. It can be either disabled (when

the DSP block is used as a two-input 48-bit adder/subtractor or for Boolean

logic operations), enabled (when it is always used as multiplier), or in dynamic

mode (when the application is required to switch operations between multiplier

or two-input 48-bit adder/subtractor). These correspond to values of NONE,

MULTIPLY, or DYNAMIC assigned to USE MULT.

The 48-bit ALU block can be used as a single 48-bit ALU Block or can be split

into multiple small wordlength ALU blocks, which is determined by USE SIMD,

with possible values of ONE48, TWO24, or FOUR12.

3.2.2 Input Ports

The main input ports of the DSP48E1 primitive are: A, ACIN, B, BCIN, C,

D, CARRYIN, CARRYCASCIN, INMODE, OPMODE, ALUMODE, CARRYIN-

SEL, PCIN, and MULTSIGNIN, along with their clock enables and reset inputs.
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Input ports A, B, C, and D are connected to the input paths of the pre-adder,

multiplier, or ALU. These inputs are of different wordlengths. A, B, C, and D are

30 bits, 18 bits, 48 bits, and 25 bits wide respectively. ACIN, BCIN, and PCIN

are cascaded inputs which are 30 bits, 18 bits, and 48 bits wide respectively, and

are used when multiple DSP blocks are cascaded to implement wide operations.

PCIN and 17-bit shifted PCIN are inputs to the Z multiplexer, which connects one

of the inputs of the ALU block. CARRYIN and CARRYCASCIN are each 1-bit

wide carry inputs. CARRYIN is the direct carry input and CARRYCASCIN is

the cascaded carry input port, which is the carry output of the adjacent DSP48E1

block. Four control inputs are used to control and configure the operations of

DSP48E1. These are INMODE, OPMODE, ALUMODE, and CARRYINSEL.

MULTSIGNIN is the sign of the multiplied result of the previous DSP block which

is used when cascading multiple DSP blocks.

A, ACIN, B, BCIN, C, D

Port A or ACIN serves as the input to the pre-adder and the multiplier blocks.

As the pre-adder is 25 bits wide and one of the inputs of the multiplier is also 25

bits wide, the lower 25 bits of A (or ACIN) are used. The full 30 bits of A (or

ACIN) are used when the DSP48E1 is used as a two-input 48-bit adder/subtractor,

bypassing the multiplier block.

Port B or BCIN serves as the 18-bit operand of the multiplier block. Port C is an

input to the ALU block, which can be selected by properly configuring multiplexer

Y or Z (depending on the configuration of the multiplier block). Port D is an input

to the pre-adder block. It can also be used as an alternative input to the multiplier

block.

When the ALU block is used as a 48-bit adder, the multiplier is bypassed and

48-bit wide concatenated A and B ports (A:B) through X multiplexer are used as

one of the inputs of the ALU. The other input is the output of the Z multiplexer.
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INMODE[3:0] Multiplier A Port

0000 A2

0001 A1

0010 Zero

0011 Zero

0000 A2

0001 A1

0010 Zero

0011 Zero

0100 D+A2

0101 D+A1

0110 D

0111 D

1000 -A2

1001 -A1

1010 Zero

1010 Zero

1100 D-A2

1101 D-A1

1110 D

1111 D

Table 3.3: INMODE[3:0] configurations.

INMODE [4] Multiplier B Port

0 B2

1 B1

Table 3.4: INMODE[4] configurations.

INMODE

INMODE is a 5-bit control input. INMODE[3:0] selects the functionality of the

pre-adder block, which serves as a 25-bit input to the multiplier block and input

registers of A and D. INMODE[4] selects the input register of the multiplier B port.

INMODE configurations are shown in Table 3.3 and Table 3.4. The USE DPORT

attribute controls the pre-adder functionality. INMODE bits can be optionally

registered using the INMODEREG attribute.
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Z Y X X

OPMODE[6:4] OPMODE[3:2] OPMODE[1:0] Mux Output

xxx xx 00 0

xxx 01 01 M

xxx xx 10 P

xxx xx 11 A:B

Table 3.5: OPMODE control bits to select X Multiplexer output.

OPMODE

Z Y X Y

OPMODE[6:4] OPMODE[3:2] OPMODE[1:0] Mux Output

xxx 00 xx 0

xxx 01 01 M

xxx 10 xx 48’FFFFFFFFFFFF

xxx 11 xx C

Table 3.6: OPMODE control bits to select Y Multiplexer output.

Z Y X Z

OPMODE[6:4] OPMODE[3:2] OPMODE[1:0] Mux Output

000 xx xx 0

001 xx xx PCIN

010 xx xx P

011 xx xx C

100 10 00 P

101 xx xx 17-bit shift (PCIN)

110 xx xx 17-bit shift (P)

111 xx xx xx

Table 3.7: OPMODE control bits to select Z Multiplexer output.

OPMODE is a 7-bit control input, that controls the outputs of the X, Y, and

Z multiplexers. OPMODE[1:0] selects the X multiplexer input as shown in Ta-

ble 3.5, OPMODE[3:2] selects the Y multiplexer input as shown in Table 3.6, and

OPMODE[6:4] selects the Z multiplexer input as shown in Table 3.7. OPMODE

bits can be optionally registered using the OPMODEREG attribute.
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DSP Operation OPMODE[6:0] ALUMODE[3:0]

Z+X+Y+CIN Any legal OPMODE 0000

Z-(X+Y+CIN) Any legal OPMODE 0011

-Z+(X+Y+CIN)-1 = Any legal OPMODE 0001

not(Z)+X+Y+CIN

not(Z+X+Y+CIN) = Any legal OPMODE 0010

-Z-X-Y-CIN-1

Table 3.8: ALUMODE configurations.

CARRYINSEL CIN

000 CARRYIN

001 PCIN[47]

010 CARRYCASCIN

011 PCIN[47]

100 CARRYCASCOUT

101 P[47]

110 A[24] XOR B[17]

111 P[47]

Table 3.9: CARRYINSEL encoding.

ALUMODE

ALUMODE is a 4-bit control input, that controls the behavior of the ALU block.

The values of ALUMODE for different operations are shown in Table 3.8. CIN is

the output of the CARRYIN multiplexer. ALUMODE bits can also be optionally

registered using the ALUMODEREG attribute.

CARRYINSEL

CARRYINSEL is a 3-bit control input, which selects the appropriate source for

CIN. The values of CARRYINSEL are shown in Table 3.9. CARRYINSEL can be

optionally registered using the CARRYINSELREG attribute.
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3.2.3 Output Ports

The main output ports of the DSP48E1 primitive are: P, PCOUT, CARRYOUT,

CARRYCASCOUT, MULTSIGNOUT, ACOUT, BCOUT.

P and PCOUT are each 48 bits wide. P is the main output of the DSP block,

which comes from the ALU block. The output is also connected to the adjacent

DSP block through PCOUT port for cascading multiple DSP blocks.

CARRYOUT and CARRYCASCOUT are each 4 bits wide. CARRYOUT[3] is

the valid carry output if the DSP block is used in non-SIMD (Single Instruction

Multiple Data) mode. Other bits are used in SIMD mode. CARRYCASCOUT is

the cascaded carry output which is directly connected to the adjacent DSP block.

MULTSIGNOUT is a 1-bit output, which is the sign bit (MSB) of the multiplier

output. This is mainly used for implementing wide multipliers.

ACOUT and BCOUT are 30 bits and 18 bits wide respectively, and pass the inputs

A and B to adjacent DSP blocks, when they are used in cascaded fashion.

3.3 DSP48E1 Template Database

As discussed in Section 3.2, DSP48E1 primitive blocks can be configured in many

ways and support dynamic programmability in every clock cycle. We analysed

all the possible configurations of DSP48E1 primitive, and prepared a database

of all configurations. We call this the “template database” and it consists of 29

arithmetic configurations of the DSP48E1. Many more templates can be generated

for bitwise logic operations, barrel shift functionality, magnitude comparison, and

pattern detection, however these are of limited use in arithmetic datapaths, so we

have restricted the database to configurations containing pre-adder, multiply, and

ALU blocks only. A list of all 29 templates with their equivalent expressions is

shown in Table 3.10 and dataflow graphs of some of these templates are shown in

Figure 3.3. Templates T1–T5 use the pre-adder and multiplier only (ALU block is
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Template Expression Template Expression

T1 (A×B) + CIN T6 C + (A:B + CIN)

T2 (−A×B) + CIN T7 C − (A:B + CIN)

T3 ((D+A)×B) + CIN T8 −C + (A:B), CIN=1

T4 ((D−A)×B) + CIN T9 [−C − (A:B + CIN) −1]

T5 (D×B) + CIN

T10 C + [A×B + CIN] T20 −C + [A×B + CIN]

T11 C − [A×B + CIN] T21 −C − [A×B + CIN]

T12 C + [(−A)×B + CIN] T22 −C + [(−A)×B + CIN]

T13 C − [(−A)×B + CIN] T23 −C − [(−A)×B + CIN]

T14 C + [((D+A)×B) + CIN] T24 −C + [((D+A)×B) + CIN]

T15 C − [((D+A)×B) + CIN] T25 −C − [((D+A)×B) + CIN]

T16 C + [((D−A)×B) + CIN] T26 −C + [((D−A)×B) + CIN]

T17 C − [((D−A)×B) + CIN] T27 −C − [((D−A)×B) + CIN]

T18 C + [(D×B) + CIN] T28 −C + [(D×B) + CIN]

T19 C − [(D×B) + CIN] T29 −C − [(D×B) + CIN]

Table 3.10: Template Database.

used only for adding partial products of multiplier), templates T6–T9 bypass the

multiplier and the DSP block is used as a 48 bit wide adder/subtractor, templates

T10–T29 use the multiplier and ALU blocks with some templates also using the

pre-adder.

3.4 DSP48E1 Characterisation

The DSP48E1 includes internal pipelining that can allow significantly increased

throughput without using additional FPGA resources. This results in a trade-

off between latency and frequency, and can be configured effectively depending

on the design requirements. Depending on the arithmetic configuration chosen,

pipelining benefits can be gained with fewer or more stages.

Figure 3.4 shows the maximum achievable frequency for different arithmetic con-

figurations, as pipeline depth varies. The DSP48E1 supports up to four internal

pipeline stages; two at the inputs, one at the output of multiplier, and one at
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Figure 3.5: Setup for DSP48E1 characterisation.

the output of ALU. We add one pipeline stage at the inputs and one at output

to determine the maximum frequency for different configurations (as shown in

Figure 3.5).

Pipeline depths:

• Zero: No internal pipeline stage is enabled and the DSP block is used as

a combinational block. Configurations using the pre-adder cannot be used

without enabling at least one input pipeline stage.

• One: One pipeline stage is added at either the inputs, output, or at the

output of the multiplier. For configurations using the multiplier but not

using the pre-adder, a pipeline stage at the output of the multiplier results

in the best performance. Configurations with the pre-adder require a pipeline

stage at the inputs. For configurations not using the multiplier, a pipeline

stage at output results in best performance.

• Two: Any two pipeline stages can be selected. For configurations using

the multiplier, pipeline stages at inputs and output result in the best per-

formance. A pipeline stage at the output of multiplier does not affect the

performance for non-multiplier configurations since it is not in the datapath.

• Three: For configurations using the multiplier, pipeline stages at the output

of multiplier are also enabled. For non-multiplier configurations, we enable

another pipeline stage at the inputs.
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Figure 3.6: DSP48E1 configuration word.

• Four: All four pipeline stages are enabled for all configurations. Enabling

the fourth pipeline stage improves the performance of configurations using

the pre-adder.

For configurations using just the multiplier or the multiplier and ALU, the DSP

block can achieve maximum frequency using three pipeline stages. However, when

the pre-adder is also enabled, all four pipeline stages are necessary to achieve

maximum performance. For configurations without the multiplier, two stages are

sufficient to achieve maximum performance. With this trade-off between maximum

frequency and latency, appropriate pipeline depth can be chosen to satisfy design

constraints.

3.5 Dynamic Programmability

As discussed above, the control inputs of the DSP48E1 (INMODE, OPMODE,

and ALUMODE ) allow it to be configured to implement different operations. A

key feature of the Xilinx DSP block is its dynamic programmability. This allows

the functionality of DSP block to be modified at runtime in each clock cycle.

This feature greatly enhances the usability of the DSP block as same specific

primitive can be used to implement different arithmetic operations. The DSP block

configuration can be dynamically changed to any of the 29 templates discussed in

Section 3.3. The configuration word for the DSP block is 17 bits wide, as shown

in Figure 3.6.

Figure 3.7 shows the timing diagram of a DSP48E1 primitive when its function-

ality is modified in each clock cycle, assuming all four pipeline stages are enabled.

Input control signals (INMODE, OPMODE, and ALUMODE) are also internally
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Clock

inA ina1 ina2 ina3 ina4 ina5 ina6

inB inb1 inb2 inb3 inb4 inb5 inb6

inC inc1 inc2 inc3 inc4 inc5 inc6

inINMODE inm1 inm2 inm3 inm4 inm5 inm6

inOPMODE opm1 opm2 opm3 opm4 opm5 opm6

inALUMODE alum1 alum2 alum3 alum4 alum5 alum6

A1 ina1 ina2 ina3 ina4 ina5

B1 inb1 inb2 inb3 inb4 inb5

regC1 inc1 inc2 inc3 inc4 inc5

INMODE inm1 inm2 inm3 inm4 inm5

regOPMODE1 opm1 opm2 opm3 opm4 opm5

regALUMODE1 alum1 alum2 alum3 alum4 alum5

A2 ina1 ina2 ina3 ina4

B2 inb1 inb2 inb3 inb4

regC2 inc1 inc2 inc3 inc4

regOPMODE2 opm1 opm2 opm3 opm4

regALUMODE2 alum1 alum2 alum3 alum4

M p1 p2 p3

C inc1 inc2 inc3

OPMODE opm1 opm2 opm3

ALUMODE alum1 alum2 alum3

P out1 out2

Figure 3.7: Timing diagram for DSP block with dynamic programmability.

registered. Signals prefixed with in and reg are input signals to the DSP block

primitive (inA, inB, inC, inINMODE, inOPMODE, inALUMODE) and external

registers required to balance the latency of DSP block (regC1, regC2, regOP-

MODE1, regOPMODE2, regALUMODE1, regALUMODE2), respectively. The

remaining signals are internal to the DSP block primitive and not accessible from

the fabric (refer to Figure 3.2). Inputs C, OPMODE, and ALUMODE requires

two extra registers as these are consumed after the second cycle. In Figure 3.7,

we assume that the pre-adder block is not utilised, however, the timing diagram

can be easily extended to include the D input in that case.
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Figure 3.8: Implementation of Equation 3.1 (a) without using dynamic
programmability (b) using dynamic programmability.

We use a polynomial implementation as a case study to demonstrate the dynamic

programmability feature of the DSP48E1. The required polynomial to compute

is:

outp = yx2 + zx− w (3.1)

This equation can be broken into two steps:

t1 = y × x+ z (3.2)

outp = x× t1− w (3.3)

Each of the above equations (3.2 and 3.3) can be mapped to a DSP block. For

Equation 3.2, the DSP block should be configured with the multiplier enabled

and the ALU block used as an adder. Similarly, for Equation 3.3, the DSP block

should be configured with the multiplier enabled and the ALU block used as a

subtractor. Hence, the polynomial can be implemented fully and parallely using

two DSP blocks and no additional logic.

It is also possible to implement the whole computation on a single DSP block by

using dynamic programmability to change the functionality of the DSP block on-

the-fly. Figure 3.8a shows the implementation of Equation 3.1, using multiple DSP

blocks. The configuration word for DSP1 should be: “00101 0110101 0000 0”

and for DSP2 it should be: ”00101 0110101 0001 1”. Assuming the DSPs are

fully pipelined, i.e., 4 stages, the latency will be 8 cycles, and a new input can be

processed in every clock cycle.
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Clock

x 1 5

y 2 10

z 3 15

w 4 20

A 1 1 5 5

B 2 5 10 65

C 3 4 15 20

INMODE 00101

OPMODE 0110101

ALUMODE 0000 0001 0000 0001

P 5 1 65 305

Figure 3.9: Timing diagram for case study example.

Figure 3.8b shows an implementation using only one DSP block. This uses the

dynamic programmability feature to execute equations 3.2 and 3.3 on the same

DSP block successively. Implementing multiple operations on one DSP block re-

quires a control unit to connect the correct inputs and generate configurations

for the DSP block. Generally, when consecutive operations are not dependent,

the functionality of DSP blocks can be changed in every clock cycle. However,

in this case study example, the input of Equation 3.3 is dependent on the output

of Equation 3.2. Considering fully pipelined DSP blocks (4 stages), the result of

Equation 3.2 is generated after 4 clock cycles, and in fifth clock cycle, the control

unit can change the configuration of the DSP block, and apply the correct inputs.

The system can take a new input in every sixth cycle. Figure 3.9 shows the timing

diagram for the case study example. The output of Equation 3.2 is generated

after the fourth clock cycle, and then used as input for Equation 3.3, by chang-

ing the DSP block configuration after the fourth cycle. As computations for the

next set of operations do not depend on outputs of the previous set of inputs, the

DSP block can be programmed for next set of inputs after one clock cycle. The
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latency remains same at 8 clock cycles for final output, though the throughput is

drastically reduced.

3.6 Summary

In this chapter, we discussed how 18 × 18-bit multipliers evolved into the highly

functional DSP blocks we have today. Alongside arithmetic functions like mul-

tiply, multiply-add, add-multiply-add, multiply-accumulate, DSP blocks can also

be used for bitwise logic, pattern detection, and other functions. We described the

internal architecture of DSP48E1 primitive in detail and showed how they can be

configured for implementing different functions. We also presented a “template

database” containing all arithmetic configurations of the DSP block. We charac-

terised their performance as a function of configuration. Finally, we discussed the

dynamic programmability that allows them to implement different functions on

successive clock cycles.



4
Automated Mapping to DSP Blocks from

Flow Graphs

4.1 Introduction

As discussed in Chapter 3, DSP blocks have advanced from simple hard-wired

multipliers to highly functional DSP48E1 blocks, which can be efficiently used

to speed up computationally intensive applications on FPGAs. By performing

arithmetic operations in optimised silicon rather than building these datapaths out

of LUTs, significant gains in performance and efficiency are achieved. A simplified

DSP48E1 primitive is shown in Figure 4.1 (reproduced from Figure 3.1).

76
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Figure 4.1: Basic structure of the DSP48E1 primitive.

The DSP48E1 primitive with its sub-blocks provides a wide range of configu-

rations which can be exploited to implement circuits with high-throughput and

low resource usage. However, the increased functionality of the DSP blocks also

increases the complexity of tools that are required to efficiently utilise all these

capabilities. Traditionally, designs are described using either high-level languages

like C/C++, which are then translated to RTL HDL using HLS tools or directly

implemented in RTL HDL. These are then implemented onto FPGAs using ven-

dor tools that optimise designs according to the target device. We have observed

that vendor tools have not always developed to take full advantage of the evolving

hardware capabilities, and hence, there is a gap between expected and achieved

performance.

Pipelined RTL code can be mapped to DSP blocks by vendor tools when its struc-

ture is similar to one of its possible configurations. However, complex functions

requiring multiple DSP blocks do not achieve performance close to the capabilities

of the DSP blocks because the vendor tools fail to effectively map them to the DSP

blocks. Our experiments in [15] show that mapping is primarily focused around

using the multipliers in the DSP block, and often other operators are simply im-

plemented in LUTs.

In this chapter, we present an automated tool that can map complex mathemati-

cal functions to DSP blocks, achieving throughput close to their theoretical limit.

Our focus is on exploiting the full capabilities of the DSP block while maintaining



4 Automated Mapping to DSP Blocks from Flow Graphs 78

throughput through matched pipelining throughout the computational graph. A

function graph is first segmented into sub-graphs that match the various possible

configurations of the DSP block primitive, then balancing pipeline registers are

inserted to correctly align all datapaths. We show that generic RTL mapped in

this manner achieves identical performance to code that instantiates the DSP48E1

primitives directly. The proposed mapping approach can be incorporated into a

high-level synthesis flow to allow inner loops involving significant amounts of arith-

metic to be mapped for maximum throughput. To understand the effectiveness

of the proposed methods, we compare the implementations generated by the tool

with a number of techniques, discussed in detail in further sections. We also

compare the implementations generated by our tool with Xilinx Vivado HLS, a

state-of-the-art HLS tool for Xilinx FPGAs, to understand if HLS tools are capable

of exploiting DSP block functionalities to generate high-throughput implementa-

tions.

The main contributions of this chapter are:

• A tool to segment complex mathematical expressions across DSP blocks,

considering their internal capabilities and pipeline registers, with both a

greedy and improved heuristic method demonstrated.

• Automation of mapping to a number of different techniques, including pipeli-

ned RTL and Vivado HLS, to demonstrate the effectiveness of our approach.

• Full automation of the design flow for both the proposed and comparison

methods, allowing a thorough investigation of the performance metrics.

• Comparison of the proposed approach against the other methods for 18

benchmarks, as well as a case study application, demonstrating significant

improvements in throughput over other methods.

The work presented in this chapter has also been discussed in:

• Bajaj Ronak and Suhaib A. Fahmy, Evaluating the Efficiency of DSP Block

Synthesis Inference from Flow Graphs in Proceedings of the International
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Conference on Field Programmable Logic and Applications (FPL), Oslo,

Norway, 2012, pp. 727-730. [15]

• Bajaj Ronak and Suhaib A. Fahmy, Experiments in Mapping Expressions

to DSP Blocks, poster in Proceedings of the IEEE Symposium on Field

programmable Custom Computing Machines (FCCM), Boston, MA, May

2014, pp 101. [16]

• Bajaj Ronak and Suhaib A. Fahmy, Efficient Mapping of Mathematical Ex-

pressions into DSP Blocks, in Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), Munich, Germany,

September 2014, pp. 1-4. [17]

• Bajaj Ronak and Suhaib A. Fahmy, Mapping for Maximum Performance

on FPGA DSP Blocks in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 35, no. 4, pp. 573-585, April

2016. [19]

4.2 Related Work

As DSP blocks can offer increased performance when mapping computationally

intensive datapaths, many algorithms have been implemented with careful map-

ping to these blocks. Examples include colour space conversion [147], floating

point operators [148], and filters [149, 150], where the DSP blocks offer an overall

increase in system performance over LUT-only implementations. This requires

the datapaths to be manually tailored around the low-level structure of the DSP

block, maximising use of the various features provided. More general application

to polynomial evaluation has also been proposed, again with detailed low-level

optimisation around the DSP block structure [151].

While synthesis tools can infer DSP blocks from general pipelined RTL code,

system design is increasingly being done at higher levels of abstraction. Widely

used High-level synthesis (HLS) tools today include Impulse-C [90], Bluespec [5],
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LegUp [4], Xilinx Vivado HLS [3]. These tools synthesise to general RTL code

which is then mapped through vendor tools to a specific target device. The main

challenge here is that some optimisations made in the conversion to RTL may

prevent efficient mapping to the hard macros available in the device, especially

when the functionality to be mapped is beyond the “standard” behaviour of a

single block. In a typical HLS flow, the datapath is extracted from the high-level

description and scheduled before RTL is generated. This scheduling is architecture

agnostic and primitives are inferred instead during the synthesis and mapping

phases. Hence, if the scheduling does not fit the structure of the DSP block, it

may not be inferred to the fullest extent.

FloPoCo [152] is an open-source tool written in C++, that generates custom

arithmetic cores using optimised floating-point operators, generating synthesis-

able VHDL. It comprises a collection of parametrised basic operators and can be

used to generate custom architectures satisfying user-defined constraints, including

precision and target frequency. It also includes a polynomial function evaluator,

which can implement arbitrary single-variable polynomial circuits. However, it

generally uses DSP blocks as fast multipliers, and does not consider the other sub-

blocks (pre-adder and ALU), except insofar as the synthesis tool is able to infer

them.

General mapping to hard blocks has been considered in various implementation

flows. Verilog-to-Routing (VTR) [67] is an end-to-end tool which takes a de-

scription of a circuit in Verilog HDL and a file describing the architecture of the

target FPGA and elaborates, synthesises, packs, places, and routes the circuit,

also performing timing analysis on the design after implementation. Its front-end

synthesis is done using ODIN-II [71], which is optimised for some embedded blocks,

like multipliers and memories. For more complex embedded blocks, the user must

explicitly instantiate them, and they are considered “black boxes” by the tool.

As HLS tools map to RTL code, and experienced designers use RTL design, the

vendor flows integrate hard blocks primarily at the mapping phase. This means
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RTL code (which has already been pipelined) that does not directly fit the struc-

ture of the DSP block and its internal sub-blocks and register stages can result in

poor mapping, as we demonstrate in this chapter. This is especially true of flexible

primitives like the DSP48E1 in modern Xilinx devices that support a variety of

configurations. At present, there are no tools that automatically map to flexible,

multi-function hard macro blocks efficiently because this is left to the mapping

stage. We present a DSP block mapping flow that results in hardware implemen-

tations that operate at close to maximum frequency, while consuming comparable

resources to HLS tools. This flow could be integrated into an HLS tool to allow

its benefits to be gained in larger, more complex applications.

4.3 Dataflow Graph Representation

A digital system can be described in multiple ways, at various levels of abstraction.

For high-level description, it can be represented in one of the high-level languages

like C/C++ or a behavioural description of the design in HDLs like Verilog and

VHDL. Designs can also be described at RTL level using Verilog and VHDL, which

is generally more complex compared to behavioural description.

As discussed in Section 2.2, the three major steps of hardware implementation

are: synthesis, technology mapping, and place-and-route. However, before the

implementation processes, the high-level description of the designs are generally

translated to a graph-based representation. The goal of this is to generate a

representation of the system which describes the operations to be executed, with

their dependencies and constraints. Control and data flow graphs (CDFGs) are

widely used for this intermediate representation.

A CDFG is a directed flow graph, which is a combination of the control flow graph

(CFG) and data flow graph (DFG) of the design. Nodes of the CFG include the

decision nodes, which determine the flow of the graph, i.e., selecting the operations

required to be executed for the current state of the design. DFG includes the

computation operations and their dependencies.
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Figure 4.2: Dataflow graph for expression 16x5 − 20x3 + 5x.

In our work, we are mainly focused on an efficient implementation of a compu-

tationally intensive inner loop of a larger system. Thus, we use DFGs as an

intermediate representation of the benchmark algorithms. An important charac-

teristic of DFGs in the context of our work is the ease of determining computation

patterns. An example DFG of a mathematical expression 16x5− 20x3 + 5x, which

can be equivalently represented as, x(((4×x)×x)× ((4×x)×x−5)+5), is shown

in Figure 4.2.

4.4 Dataflow Graph Implementation

We consider graphs of add-multiply nodes typical of a wide range of algorithms.

Recall that we are focused here on what would be the inner loop mapping for a
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typical HLS design. Ideally, these graphs can make use of the various sub-blocks

present in the DSP48E1 primitive, as shown in Figure 4.1, if mapped correctly,

meaning extra LUT-based circuitry is reduced, and the resulting mapping should

reach close to the DSP block maximum frequency of around 500 MHz (on the Vir-

tex 6 family). The configuration inputs to DSP48E1 primitive determine how data

passes through the block, and which sub-blocks are enabled. These configuration

inputs can be set at run time, or fixed at design time. Considering all combina-

tions of arithmetic operations, the DSP48E1 supports 29 different datapath con-

figurations, which we store in a template database (as discussed in Section 3.3).

In addition to these 29 DSP templates, we have two templates for LUT-based

parametrised adders and subtracters for nodes that are not merged into DSP

blocks. The template database can also be expanded to include custom-designed

optimised operators like division or wide multiplications, allowing operations like

normalisation to be supported. Note that such templates would typically map

a single graph node, since they take advantage of multiple DSP blocks and their

sub-blocks internally, hence they do not exhibit the same flexibility we are exploit-

ing in the DSP blocks. For our work, we have limited our scope to add-multiply

graphs to explore the limits of individual DSP blocks.

Mapping an add-multiply flow graph to a circuit can be done in various ways.

A very simple and naive approach that fully relies on vendor tools, is to write

combinational Verilog statements that represent the required flow and add registers

at the output, allowing the tools to redistribute these during re-timing, with the

mapping phase then inferring DSP blocks. Synthesis tools can generally map

individual Verilog arithmetic operators efficiently. A more informed approach is

to write a pipelined RTL implementation, after scheduling the flow graph, and

to ensure the addition of pipeline registers between stages. Alternatively, the

dataflow graph can be described in a high level language and high-level synthesis

tools used to map this to a hardware implementation.

Although, none of these techniques take into account the internal structure of the

DSP blocks, we expect the vendor mapping tool to efficiently utilise the different



4 Automated Mapping to DSP Blocks from Flow Graphs 84

configurations of the DSP blocks in implementation. In the combinational imple-

mentation with re-timing, we expect the synthesis tools to re-time the design, by

absorbing the output registers into the datapath, allowing portions of graph to be

mapped to the sub-blocks and pipeline stages of the DSP blocks. However, our

experiments show that vendor tools do not re-time deeply into the graph, resulting

in DSP blocks being used only for multiplication.

In a scheduled pipelined RTL implementation, depending on the scheduling algo-

rithm used, the schedule of operations has been fixed, and the tools have little

flexibility to re-time the design, but will nonetheless map to DSP block config-

urations when a set of subsequent operations and intermediate registers match.

High-level synthesis tools generate a generic intermediate RTL representation, sim-

ilar to manually scheduled pipelined RTL, though we might expect them to do this

in a more intelligent manner when dealing with DSP blocks. Our experiments have

shown that none of the above methods result in implementations that maximise

DSP block usage or achieve high performance, as we discuss in Section 4.7.

The tool discussed in this chapter translates an add-multiply dataflow graph to

RTL code that maximises performance through efficient mapping to FPGA DSP

blocks. First, the graph is segmented into portions, or sub-graphs, which can be

mapped to one of the DSP block configurations in the template database discussed

earlier. The sub-graphs can then be converted to either direct instantiations of

DSP48E1 primitives with the correct configuration inputs, or RTL representations

of the same templates. While direct instantiation ensures the DSP blocks are

adequately used, it makes the output code less portable and readable, and this

might not be preferable where the flow graph is only a part of larger system. The

tool creates different implementations from any given input graph and generates

the area and frequency results for comparison. We now discuss how these different

techniques are implemented.
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always @(*) creg1 = D + A;

always @(*) creg2 = creg1 * B;

always @(*) creg3 = creg2 + C;

always @ (posedge CLK)

begin

preg1 <= creg3;

preg2 <= preg1;

preg3 <= preg2;

preg4 <= preg3;

end

assign outp = preg4;

Figure 4.3: Sample Verilog code for Comb.

4.4.1 Combinational Logic with Re-timing: Comb

All nodes of the dataflow graph are implemented as combinational Verilog assign

statements. Sufficient pipeline stages are added at the output node(s) to allow

retiming. We enable the register balancing Synthesis Process property in Xilinx

ISE. Ideally, this should allow the tool to re-time the design, pulling register stages

back through the datapath to allow more efficient DSP block mapping. A sample

code for expression [(D + A)×B + C] is shown in Figure 4.3.

4.4.2 Scheduled Pipelined RTL: Pipe

Pipe represents how an experienced designer implements a DFG. We generate

schedule variations using two of the commonly used scheduling algorithms, As

Soon As Possible (ASAP) and As Late As Possible (ALAP), with pipeline stages

inserted between dependent nodes, mirroring what a typical RTL designer might

do. Additional registers are added to ensure all branches are correctly aligned.
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4.4.3 High-Level Synthesis: HLS

We use Vivado HLS from Xilinx because it is likely to be the most architecture

aware of any of the HLS tools available for Xilinx devices. Similar to Comb, each

node is implemented as an expression, and directives are used to guide the RTL

implementation to fully pipeline the design. Since C++ code can have only one

return value, dataflow graphs with multiple outputs are implemented by concate-

nating all the outputs, which can later be sliced to obtain individual outputs.

4.4.4 Direct DSP Block Instantiation: Inst

The dataflow graph is segmented into sub-graphs that can be mapped to one of

the DSP48E1 templates identified earlier. Two graph segmentation approaches

are explored. The first is a greedy approach, in which the graph is traversed

from input to output with appropriate sub-graphs identified during traversal. The

second approach applies a heuristic to try and fit as many nodes as possible into

each sub-graph. Both of these methods are discussed in Section 4.5. For Inst, the

determined sub-graphs are then swapped for direct instantiations of the DSP48E1

primitive, with all the control inputs set to the required values. Additional registers

are added to ensure all branches are correctly aligned.

4.4.5 DSP Block Architecture Aware RTL: DSPRTL

Rather than instantiating the DSP48E1 primitives directly, we replace each sub-

graph with its equivalent RTL code directly reflecting the template’s structure.

This variation will make it clear if it is the instantiation of the primitives, or the

structure of the graph that has a fundamental effect on performance. Sample code

for expression [(D + A) × B + C], which represents a DSP template utilising all

three sub-blocks with four pipeline stages, is shown in Figure 4.4. In this case,

two extra registers will be required to balance the datapath of input C, similar to

Inst.
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always @ (posedge CLK)

begin

pregA1 <= A;

pregB1 <= B;

pregD <= D;

pregB2 <= pregB1;

pregAD <= pregD + pregA1;

pregC <= C;

pregM <= pregAD * pregB2;

pregP <= pregM + pregC;

end

assign outp = pregP;

Figure 4.4: Sample Verilog code for DSPRTL.

4.4.6 Ensuring a Fair Comparison

Along with generating all 5 different implementations from the same graph de-

scription, a number of factors must be considered to ensure a fair comparison.

The first is the overall latency of an implementation, as it impacts the resource re-

quirements. Inst uses fully pipelined DSP blocks, which results in a deep pipeline,

and thus many balancing registers. For Comb, we add as many pipeline stages

after the combinational logic for re-timing, as there are pipeline stages in Inst.

This gives more flexibility to the tools to re-time the circuit, and ensures that

there are sufficient cycles for a similarly pipelined implementation to be achiev-

able in theory. Similarly, for HLS, we enforce a constraint on latency, equal to

the latency of Inst, using a directive in the Tcl file. However, for Pipe, we let the

schedule determine the number of pipeline stages as this reflects what an expert

designer might do, and adding more stages might increase area for the purposes

of comparison.

Another factor is wordlength. The input and output ports of the DSP block have

different wordlengths. When the output of a DSP block is passed to another’s

input, it must be either truncated, or the latter operations should be wider. We

choose to truncate wide outputs. This is equivalent to a multi-stage fixed point
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Figure 4.5: Dataflow through the DSP48E1 primitive.

implementation, although we can optimise for known and fixed inputs. Primary

inputs that are narrower than the input ports of the DSP block are sign extended.

To ensure that comparisons between all implementation techniques are fair, we

manually handle the intermediate wordlengths in Comb, Pipe, and HLS to match

those determined for Inst for all operations. This is necessary, because, other

techniques may implement wider operations in intermediate stages, thus skewing

resource usage as well as accuracy, resulting incomparable implementations. Note

that in the case where the designer does require wider intermediate operations, the

tool can be modified to instantiate optimised multi-DSP-block operators thereby

still guaranteeing performance. Finally, since Comb requires the register balancing

synthesis feature to be enabled, we do so for all methods.

4.5 DFG Segmentation for DSP Blocks

For the proposed mapping (Inst and DSPRTL), we attempt to map as many nodes

as possible of the dataflow graph to DSP blocks, as this should result in high op-

erating frequency without consuming additional LUT resources. In order to map
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as many nodes to DSP blocks, we first segment the input dataflow graph into sub-

graphs, such that each matches a DSP block template as defined in Section 3.3.

A DSP48E1 primitive can perform up to three operations, so a DSP48E1 primi-

tive can be represented as a dataflow graph comprising three nodes, as shown in

Figure 4.5.

Segmentation is a critical step in our flow, as the performance of the final imple-

mentation largely depends on how operations are mapped on to DSP48E1 prim-

itives. We explore two approaches to this segmentation problem. The first is

a greedy algorithm, which selects the best sub-graph for the current node while

stepping through the graph. The second approach applies a more global heuristic

optimisation to maximise the number of nodes in each sub-graph, i.e., maximising

the utilisation of each DSP block instantiated.

4.5.1 Greedy Segmentation

The input to the segmentation algorithm is the DFG of the input application and

it starts with a randomly selected primary input node. A primary input node

is a node where both inputs are either one of the primary inputs or a constant.

If that node has multiple outputs, it cannot be combined with a child node into

a DSP block template since the DSP48E1 primitive is designed in such a way

that intermediate outputs of sub-blocks cannot be accessed externally without

bypassing later sub-blocks. If the node has a single child, they are combined into

a sub-graph, and the same process is repeated to add a third node to the sub-graph

if possible. Sub-graph merging is also terminated if a node is a primary output of

the graph.

Each time a sub-graph of 1, 2, or 3 nodes is extracted, it is matched against the

template database, and if a match is found, those nodes are marked as checked

and not considered in subsequent iterations. If only a partial match is found,

only those matched nodes are marked as checked and the remaining nodes are

re-separated to be considered for further iterations. The process is repeated until
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all nodes are checked. Sub-graphs combining two add/sub nodes with no multiply

nodes are re-separated with the root node implemented in LUTs, and the child

node left for re-merging with other nodes in further iterations. The output of this

process is a graph consisting of DSP block templates (each with an associated

latency) and some adder/subtractor nodes to be implemented in logic, and we call

this the DSP Dataflow Graph (DDFG).

In each iteration, Greedy Segmentation selects the best sub-graph, i.e., the one

with the maximum number of nodes, with the current node at its root. The

solution is considered globally optimal when the sub-block utilisation is maximum

for the extracted set of sub-graphs. Greedy Segmentation cannot always achieve

an optimal solution as root nodes for sub-graphs are selected in the order in which

they are traversed. The determined solution is only optimal when the structure

of input DFG is such that order of root nodes results in maximum sub-block

utilisation.

The runtime complexity of the greedy segmentation algorithm is directly propor-

tional to n, where n is the number of nodes in the graph.

The algorithm is detailed in Algorithm 1.

4.5.2 Improved Segmentation

The greedy algorithm discussed above can result in sub-optimal segmentation as

it only considers local information starting from the inputs. We try an improved

algorithm that instead first finds possible sub-graphs which can be mapped to

a DSP block template utilising all three sub-blocks, then subsequently finds the

sub-graphs with two nodes, and then remaining single nodes.

The segmentation process is broken into four iterations. In the first iteration, only

valid sub-graphs of three nodes are matched to the template database, as discussed

in Section 4.5.1, and if a full match is found, these nodes are marked as checked. If

only a partial match is found, all nodes are re-separated. In the second and third
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Algorithm 1: Greedy Segmentation

def greedySeg(dfg, outNodes):
Data: Dataflow Graph (dfg); List of output nodes (outNodes)
Result: Dataflow graph of identified templates (ddfg)

begin
#dataflow graph of templates identified
ddfg = [ ]

#for each node n in dfg
for n in dfg:

#empty graph of 3 nodes
subGraph = [0, 0, 0]
if n not checked :

subGraph[0]=n
if terminateSubGraph(n, outNodes):

template = getTemplate(subGraph)
else:

nNext = n[out]
if nNext not checked :

subGraph[1]=nNext
if terminateSubGraph(nNext, outNodes):

template = getTemplate(subGraph)
else:

nNextNext = nNext[out]
if nNextNext not checked :

subGraph[2]=nNextNext

template = getTemplate(subGraph)

else:
template = getTemplate(subGraph)

if template:
ddfg.add(template)
#mark nodes of subGraph assigned to template checked
subGraph.checked()

else:
continue

return ddfg

def terminateSubGraph(n, outNodes):
#if the node has been assigned to a template
if n is checked :

return True
#if output going to multiple nodes
if len(n[out]) > 1 :

return True
#if output is primary output
if n[out] in outNodes:

return True
return False
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Algorithm 2: Improved Segmentation

def improvedSeg(dfg, outNodes):
Data: Dataflow Graph (dfg); List of output nodes (outNodes)
Result: Dataflow graph of identified templates (ddfg)
ddfg = [ ] #dataflow graph of templates identified
numNodesList = [3, 2, 2, 1] #add-mul-add, mul-add, add-mul, mul/add
for numNodes in numNodesList:

for n in dfg:
subGraph = getNextNodes(n, numNodes, dfg, outNodes)
if subGraph:

template = getTemplate(segList)
if template.valid():

ddfg.add(template)
subGraph.checked()

else:
continue

return ddfg

def getNextNodes(startNode, numNodes, dfg, outNodes):
for n in dfg:

subGraph = [0, 0, 0] #empty graph of 3 nodes
if n[name] == startNode[name]:

if n not checked :
subGraph[0]=n
if numNodes == 1 :

return subGraph

if terminateSubGraph(n,outNodes):
return 0

else:
nNext = n[out]
if nNext not checked :

subGraph[1]=nNext
if numNodes == 2 :

return subGraph

if terminateSubGraph(nNext,outNodess):
return 0

else:
nNextNext = nNext[out]
if nNextNext not checked :

subGraph[2]=nNextNext
if numNodes == 3 :

return subGraph

return 0

else:
return 0

else:
return 0

return 0
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iterations, the same process is applied to all remaining unchecked nodes for sub-

graphs of two nodes. There are two types of two-node templates: those that include

the pre-adder and multiplier sub-blocks, and those with the multiplier and ALU

sub-blocks. Since the ALU wordlength is wider than the pre-adder, we consider

sub-graphs of the latter type in this second iteration, as the default option. This

also has the benefit of allowing a 1-cycle reduced latency through the DSP block

(recall the discussion on pipelining in Section 3.4), resulting in a shorter overall

pipeline depth, and hence reduced resource usage. Matched sub-graph nodes are

then marked as checked. In the third iteration two-node sub-graphs using the

pre-adder are matched. The second and third iterations can easily be swapped

using a configuration in the tool, for experimentation. In the fourth iteration

the remaining uncovered nodes are considered individually and mapped to DSP

blocks for multiply operations, or LUTs for additions/subtractions. Similar to

greedy algorithm, improved segmentation also outputs a DDFG.

The runtime complexity of the improved segmentation algorithm is up to four

times higher than for the greedy algorithm, since four passes must be completed

on the graph.

The improved algorithm is detailed in Algorithm 2.

4.6 Automated Mapping Tool

Bringing together the techniques discussed thus far, we have developed a fully

automated mapping tool. It takes a C/C++ description of a mathematical ex-

pression as input, and prepares synthesisable RTL implementations for all the

mapping methods described in Section 4.4 (Comb, Pipe, HLS, Inst, and DSPRTL),

using either of the segmentation algorithms discussed in Section 4.5 for Inst and

DSPRTL. A flow diagram of the proposed tool is shown in the Figure 4.6.
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Figure 4.6: Tool flow for exploring DSP block mapping.

4.6.1 C-to-DOT

The front-end of the tool accepts a computation kernel description in C, with the

list of inputs with their ranges and precision provided in a separate text file (config

file). For the purposes of functional verification, the config file can also contain

set of test vectors for each input. If these are provided, the tool also generates

testbenches for all the resultant implementations. Format of the config file is

shown in Figure 4.7. Precision is discussed in Chapter 5.
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inputs = <list of inputs separated by comma (,)>

input_ranges = <list of range of inputs in {min,max} format,

separated by (;)>

precision = <precision>

test_inputs [optional]

<input1> = <list of test inputs separated by comma>

<input2> = <list of test inputs separated by comma>

...

<inputN> = <list of test inputs separated by comma>

-------------------------------------------------------

N: No of inputs; M: No of instructions

Figure 4.7: config file format.

In the current format of the tool, the expression is written as a series of two

operand operations.

Example: 16x5 − 20x3 + 5x⇒ (x(4× x× x× (4× x× x− 5) + 5))

LLVM is used to translate the input C file in to a set of DOT files, one for each

function. We use LLVM’s frontend compiler clang for compilation, which generates

an intermediate bitcode. We then use opt, LLVM’s optimiser passes, to convert

the bitcode to a readable DOT format, which is a plain text graph description

format.

4.6.2 DFG Generation

After generating DOT files using LLVM, the DOT file of the computation kernel

is parsed and translated into a DFG, with each node in the graph representing

an operation from the input C file. Fixed power-of-2 multiplications can be im-

plemented using shifts, saving multipliers. While translating DOT to DFG, we

combine these multiplications with successive operations.

Example: (x(4× x× x× (4× x× x− 5) + 5))⇒ (x(4x× x× (4x× x− 5) + 5))

Each node in the DFG is tagged with a tool-generated identification name of

the node, its operation (multiplication or addition or subtraction), inputs, and
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outputs. Additional information is added to these nodes in the subsequent stages,

wherever required.

4.6.3 Graph Partitioning

The DFG generated in the previous stage is then translated into a DDFG by par-

titioning it into sub-graphs using either of the algorithms discussed in Section 4.5.

the user can select between greedy (Section 4.5.1) and improved (Section 4.5.2)

segmentation. For improved segmentation, the preference between ‘Pre-adder mul-

tiply’ and ‘multiply ALU’ combinations is also user selectable for experimental

purposes. Each node of the DDFG is either mapped to one of the DSP templates

in the template database or a LUT-based adder/subtractor with input and output

edges mapped to appropriate ports.

4.6.4 Pre-processing

The tool now has a DFG generated from the input C file and a DDFG, in which

each node is either a DSP template from the template database or LUT-based

adder/subtractor. For the different implementation methods, some pre-processing

is necessary to allow generation of synthesisable RTL. Methods Comb, Pipe, and

HLS operates on the DFG; Inst and DSPRTL operate on the DDFG generated

during the graph partitioning stage. Before processing the DFG and DDFG for

individual techniques, we update the wordlengths of the inputs and outputs of

each node in the DFG according to the mapping to DSP blocks in the DDFG, to

ensure a fair comparison.

Comb:

As discussed in Section 4.4, pipeline registers are added at the output node(s)

of the graph to facilitate re-timing during the synthesis process. The number of

pipeline stages added is equal to the pipeline depth of Inst.

Pipe:
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The input DFG is scheduled according to generic scheduling techniques, as an

experienced designer would do. We implement both As Soon As Possible (ASAP)

and As Late As Possible (ALAP) schedules. Pipeline registers are added between

dependent nodes.

Pipeline balancing is then applied to ensure that dataflows through the DFG are

correctly aligned. Nodes of the DFG are assigned a level according to the schedule.

The level of each node input is compared with the level of its source registers, and,

if the difference is greater than 1, balancing registers are added to correctly align

the datapaths.

HLS:

We use Xilinx Vivado HLS for this method. The input expression is converted to

C++, with each node of the DFG implemented as an instruction. We use fixed

wordlengths in C++, and ensure that wordlengths of operations are the same as of

Inst for fair comparison. If unit tests are given in the input file, a C++ testbench

is also generated. Vivado HLS directives are used to set the pipeline latency, which

is set equal to the latency of Inst. Other files required for the Vivado HLS project

are also generated.

Inst, DSPRTL:

After generating the DDFG in the Graph Partitioning stage, a schedule of the

DDFG is generated which is used for RTL generation. We implement both ASAP

and ALAP scheduling techniques, which can be selected by the user. After schedul-

ing, datapaths of the DDFG are balanced to correctly align data flow, as for Pipe.

4.6.5 RTL Generation

The Verilog code implementing the datapaths for all the implementation tech-

niques, with their testbenches (if test vectors are provided in the config file) are

generated. For all the techniques, the wordlengths of the inputs and outputs of

each node are explicitly set to the same as those of Inst for fair comparison.
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For Comb, RTL implementing each node as combinational logic is generated, with

pipeline registers at the output(s), for re-timing.

For Pipe, all the node operations and registers scheduled in a particular schedule

time are implemented as a pipeline stage, in one Verilog always block. Registers

required for pipeline balancing are also generated and assigned accordingly. As

discussed above, we do not add extra pipeline registers at the outputs for Pipe.

For HLS, we run the Vivado HLS project generated in the previous stage, which

translates the high-level C++ implementation of the input expression into syn-

thesisable RTL. It also generates an equivalent RTL testbench from the C++

testbench.

For Inst, Verilog RTL for instantiations of the DSP block templates along with

the balancing registers are generated. DSPRTL is an RTL equivalent of Inst,

reflecting the internal structure of Inst implementation. Instead of instantiating

the DSP48E1 primitive itself, equivalent behavioural Verilog blocks that represent

each of the DSP block templates are used. Intermediate signals are first shifted

then truncated depending on the destination wordlength.

4.6.6 Vendor Tool Flow

The RTL files for all above methods are then synthesised through the vendor

tools. Since this can be time consuming, we have automated the process through

a series of scripts. First, ISE Projects are generated for all the techniques. This

includes setting the specific device and timing constraints. Synthesis is then run,

and the reports stored. The tool then runs the implementation stages iteratively

to determine the best performance, i.e., minimum clock period. It first uses a

default timing constraint, then if the design fails, it reduces the constraint until it

finds the minimum clock period for which the design constraints are satisfied post

place and route. Resource requirements are also extracted from the post place and

route reports for analysis.



4 Automated Mapping to DSP Blocks from Flow Graphs 99

Graph Inputs Outputs Adders/Subs Muls

ARF 26 2 12 16

Chebyshev 1 1 2 3

EWF 21 5 26 8

FIR2 17 1 15 8

Horner Bezier 12 4 6 8

Mibench2 3 1 8 6

Motion Vector 25 4 12 12

Poly1 2 1 5 4

Poly2 2 1 3 5

Poly3 6 1 4 6

Poly4 5 1 3 3

Poly5 3 1 13 11

Poly6 3 1 19 23

Poly7 3 1 18 17

Poly8 3 1 16 15

Quad Spline 7 1 4 13

SG Filter 2 1 6 6

Smooth Triangle 29 14 20 17

Table 4.1: Graph nodes I/O and operations.

4.7 Experiments and Analysis

To explore the effectiveness of our DSP block mapping technique against the other

standard methods described, we implemented a number of benchmark multiply-

add flow graphs. These include the Chebyshev polynomial, Mibench2 filter, Quadr-

atic Spline, and the Savitzky-Golay filter from [153]; The ARF, EWF, FIR2,

Horner Bezier, Motion Vector, and Smooth Triangle from [154]; and 8 polyno-

mials of varied complexity from the Polynomial Test Suite [155]. We prepared

input C files for all 18 of these expressions, and processed them through the auto-

mated tool. Table 4.1 shows the number of inputs, outputs, and number of each

type of operation (add/sub, multiplier), for all benchmarks.
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Benchmarks Greedy Segmentation Improved Segmentation

ARF 12.8 13.0

Chebyshev 36.2 37.9

EWF 67.4 70.7

FIR2 22.2 21.7

Horner Bezier 20.8 21.7

Mibenc2 18.3 17.8

Motion Vector 26.3 27.8

Poly1 18.4 18.8

Poly2 75.7 79.1

Poly3 308.3 363.2

Poly4 231.7 244.9

Poly5 108.3 124.6

Poly6 251.9 266.7

Poly7 358.1 378.3

Poly8 126.0 124.9

Quad Spline 34.4 32.8

SG Filter 45.5 43.8

Smooth Triangle 600.1 606.0

Geometric Mean 67.3 69.6

Table 4.2: Run time (in ms) for Inst using greedy and improved segmen-
tation

As discussed in Section 3.4, a 3-cycle pipeline offers maximum performance when

the pre-adder is not used, and a 4-cycle pipeline is required to achieve the same

frequency if the pre-adder is used. We map only to template configurations that

achieve this maximum frequency of 473 MHz to allow the overall circuit to achieve

near to this limit.
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4.7.1 Tool Runtime

The proposed tool is run on an Intel Xeon E5-2695 running at 2.4GHz with 16GB

RAM.

The times taken to generate synthesisable RTL from the high-level description for

both segmentation methods, averaged over 100 executions, are shown in Table 4.2.

The runtimes are entirely tolerable as part of a larger design flow. Smooth Tri-

angle, which results in the highest number of templates after segmentation, takes

under a second. On an average, a benchmark can generate RTL for the proposed

Inst method in less than 70 ms. Although the time complexity for Improved Seg-

mentation is higher than for Greedy Segmentation, the total runtime depends on

other factors like the number of templates considered, and file operations (read-

/write). This means some benchmarks show marginally higher run time for Greedy

compared to Improved.

4.7.2 Resource Usage and Frequency

All implementations target the Virtex 6 XC6VLX240T-1 FPGA as found on the

ML605 development board, and use the Xilinx ISE 14.6 and Xilinx Vivado HLS

2013.4 tools.

Resource usage and maximum achievable frequency for all 18 benchmarks, with all

5 methods using the improved segmentation method are shown in Figure 4.8. The

improved segmentation method results in more templates with higher sub-block

usage but overall DSP block usage is the same as for greedy segmentation, since

the multipliers generally determine this.

As the number of DSPs and LUTs cannot be compared directly, and to understand

overall resource usage, we compare the area in terms of equivalent LUTs also,

where LUT eqv = nLUT + nDSP × (196), where 196 is the ratio of number of

LUTs (150720) to number of DSP blocks (768) available on the target device

used. This gives a proxy for overall area consumption.
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Figure 4.8: Resource usage and maximum frequency for 18 benchmarks
using the different mapping techniques.

It is clear that the performance of Comb is the worst among all methods. The ven-

dor tools are not able to absorb registers into a very deep combinational datapath.

The maximum frequency for Inst is generally much improved (3.4–15.6×) over

Comb, at a cost of LUT eqv usage going up to 1.3×. Although the throughput of

Pipe and HLS improve significantly, they do not approach the maximum frequency

supported by the DSP blocks (450–500 MHz) for most benchmarks. For Pipe, we

implemented both ASAP and ALAP schedules, and chose the one with higher

throughput. The performance of HLS is generally better than Pipe. For the ARF

and Smooth Triangle benchmarks, which have regular repetitive structures, HLS

is able to achieve a frequency close to that achieved by the Inst method. However,

for FIR2 and Motion Vector, which also have a regular structure, HLS falls short.

The Chebyshev dataflow graph is very narrow, and HLS is able to implement it
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Figure 4.9: DSP48E1 primitive sub-block utilisation.

efficiently. For Motion Vector and EWF, Pipe achieves a higher frequency than

HLS. For Motion Vector, the Pipe graph schedule and structure fit well with the

DSP blocks, and also allow the mapping tool to take advantage of the internal cas-

cade connection between PCOUT(DSP1) to PCIN(DSP2), reducing routing delay

significantly. For EWF, the schedule of the dataflow graph feeds forward with

no parallal delay paths. As a result, all the sub-blocks are used in 4 DSP blocks

while the other 4 use 2 sub-blocks, leading to high throughput. On the contrary,

HLS uses the DSP blocks mostly for multiplications (7 out of 8) with extra nodes

in logic. For complex graphs, both Pipe and HLS are unable to come close the

frequency achievable using our proposed method. The maximum frequency for

Inst is up to 3× and 1.4× better than Pipe and HLS respectively. We expect

Vivado HLS, being the most architecture aware high-level synthesis tool for Xilinx

devices, to represent the most competitive HLS tool for such mappings.

To understand how arithmetic operations are mapped on to DSP blocks in Pipe

and HLS, we analysed the configurations of the DSP blocks used by vendor tools

for implementation of these methods. For Pipe, the vendor tool utilise sub-blocks

of the DSP blocks well but does not use all the pipeline stages of the DSP blocks

due to the fixed schedule and only one register stage is present between dependent

nodes. This significantly affects the throughput, as shown in Figure 3.4. For
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Figure 4.10: Frequency Area trade-off, normalised against HLS.

HLS, we have observed that the sub-blocks of the DSP blocks are not heavily

used. Across all 169 DSP48E1 primitives used by HLS across all benchmarks,

none use all three sub-blocks, while for Inst, 46 such instances exist. Since we set

the pipeline latency for HLS to equal that of Inst, it has sufficient slack to achieve

similar performance, and this also explains some of its advantage over Pipe.

An overview of usage of different sub-blocks of the DSP48E1, across all benchmarks

is shown in Figure 4.8. For Comb and Pipe, over half the DSP blocks are used only

for multiplication, and this is even higher for HLS. The proposed DSPRTL and

Inst methods make more use of the sub-blocks including around 20% of instances

using all three sub-blocks.

Overall, we see that the throughput achievable by existing methods is significantly

less than what we are able to achieve through our proposed Inst and DSPRTL

approaches, though the proposed methods suffer from higher resource usage due to

heavily pipelined structures. The proposed methods use DSP block templates with

either 3 or 4 stages (depending on the sub-blocks used). This pipelining within

the DSP block is “free” since those registers are not implemented in the fabric,

however, extra registers are then required to balance other paths through the

graph. Register utilisation for Inst is higher than for DSPRTL. Since DSPRTL uses
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Benchmarks Pipe Comb/HLS/ Benchmarks Pipe Comb/HLS/

Inst/DSPRTL Inst/DSPRTL

ARF 9 26 Poly5 10 24

Chebyshev 6 14 Poly6 12 31

EWF 15 28 Poly7 13 34

FIR2 10 27 Poly8 12 31

Mibenc2 7 16 Horner Bezier 5 12

Poly1 5 13 Motion Vector 5 11

Poly2 5 13 Quad Spline 7 22

Poly3 6 15 SG Filter 8 14

Poly4 5 12 Smooth Triangle 7 21

Table 4.3: Pipeline depth for Pipe and other approaches.

an RTL equivalent of the DSP block configuration rather than direct instantiation,

this affords the vendor tools more flexibility in how to map registers onto the FPGA

logic, including better optimisation of chains of registers.

Figure 4.10 shows the area and throughput trade-off across HLS and Inst using

DSP block templates of different pipeline depths. The data points for ‘2 stage’ and

‘3 stage’ refer to implementations with the pipeline depth of the DSP blocks set

to 2 or 3 respectively. Resource usage (#Regs + #LUTs) is normalised against

HLS for all benchmarks. Out of 18 benchmarks, only 6 achieve over 400 MHz

using HLS, while Inst implementations can run at frequencies above 450 MHz for

all benchmarks. This higher frequency comes at the expense of resources required

for balancing registers. The Poly3 benchmark in HLS utilises fewer DSP blocks

as it optimises the fixed coefficient multipliers in logic. Inst uses DSP blocks for

these to maintain high frequency and design flexibility.

Benchmarks with no pre-adder templates can achieve high throughput using 2 and

3 stage DSP block templates (as evident from Figure 3.4).

Pipeline depths for the Pipe and other approaches are shown in Table 4.3.
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The two segmentation algorithms result in the same maximum frequency but the

improved algorithm marginally improves the LUT eqv usage by 1–3% in some cases.

Combining frequency results across all benchmarks, the geometric mean in the

frequency improvement of Inst is 7.4× over Comb, 2× over Pipe, and 1.2× over

HLS. These gains are at the cost of 1.1-1.23× LUT eqv usage, compared to other

methods.

A key positive finding of this study is that maximum DSP block frequency can

be achieved without architecture-specific instantiation of the DSP48E1 primitive.

Explicit instantiation of primitives is not desirable as it leads to complex code

and hinders portability to other architectures. With DSPRTL, we instead replace

those direct instantiations with behavioural Verilog code that exactly matches

the required template configuration, including pipeline configuration. We can see

that this offers almost the same performance as Inst but with code that remains

portable. The tools can correctly map these general templates to DSP blocks,

including internal pipeline stages. Just offering sufficient pipeline stages (as we

do for HLS ) does not guarantee maximum throughput. It is essential to take into

account the structure of the DSP blocks when translating the dataflow graph into

Verilog for implementation.

Note, however, that initial experiments with DSPRTL did not demonstrate this

high level of performance. Rather, it was necessary to add an additional register

stage after each extracted DSP block template, likely because the tools could only

correctly map to the DSP blocks with a margin of one cycle between them to break

the possible long routing paths between subsequent DSP blocks and reduce routing

delays. Although there are cascade wires that allow DSP blocks in a column to

be connected without going through the routing fabric, these connect the output

of a DSP block to only the ALU input of the subsequent block, limiting their use

in general mapping where the output of a DSP block may need to be connected

to any other inputs of a subsequent block. This tweak significantly improved the

performance of DSPRTL from a mean frequency of 383 MHz to 470 MHz, close the

471 MHz of Inst, without significantly impacting the final area results.
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Figure 4.11: Segmented dataflow graph for Color Saturation Correction.

4.7.3 Case Study

We also designed an end-to-end case study implementation of “Colour Saturation

Correction”, from high-level description, to implementation, and testing on the

Xilinx ML605 development board. The algorithm takes RGB values, with a per-

centage value of saturation which represents the amount of color to be added back

to the luminance of an image, and outputs the saturation-corrected image.

We use the improved segmentation method with error minimisation using Gappa

(discussed in Chapter 5). The resulting segmented dataflow graph is shown in

Figure 4.11. We validated the generated RTL on board, using the open-source

DyRACT framework [156], which allowed us to test the design with multiple im-

ages easily, interfacing over PCIe.

The resource usage and maximum frequency for all methods are shown in Table 4.4.

Inst achieves a frequency improvement of 5.2× over Comb, 1.8× over Pipe, and

1.3× over HLS. These gains are at the cost of a 4-13% increase in equivalent LUT
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Resource Comb Pipe HLS DSPRTL Inst

Registers 144 110 346 488 495

LUTs 136 68 180 206 210

DSP48E1s 9 9 8 9 9

Eqv LUTs 1900 1832 1748 1970 1974

Max Freq (MHz) 91 263 358 473 473

Table 4.4: Resource usage and frequency for Color Saturation Correction
case study.

usage. We verified the correctness of the implementation against a Python model

of the same algorithm, with negligible error recorded.

4.8 Summary

In this chapter, we have presented an automated tool for mapping arbitrary add-

multiply expressions to FPGA DSP blocks at maximum throughput. This is done

by considering DSP block structure in an initial graph partitioning step prior

to scheduling. A high level description of the expression is partitioned across

DSP blocks, exploiting the various supported configurations and enabling pipeline

stages as needed to achieve maximum throughput, including balancing of paral-

lel flows. We modified our tool to produce a number of other typical mappings

and presented detailed results comparing our approach. We were able to show

consistently better throughput than all other methods, including a mean 1.2×
and 2× improvement over Vivado HLS and generic ASAP/ALAP schedule imple-

mentations respectively, at the cost of a 1.1–1.23× increase in LUT area. The

key take-away has been that primitive structure is an important consideration in

scheduling, and hence, this architectural information should be taken into account

further up the design flow than at RTL level.



5
Error Minimisation

5.1 Introduction

As discussed in Section 3.2, the DSP48E1 primitive has varied input and output

wordlengths. Inputs A, B, C, D are 30 bits, 18 bits, 48 bits, and 25 bits respectively

and output P is 48 bits wide. So while mapping operations onto DSP blocks, the

output of one DSP block that serves as an input to another DSP block must be

either truncated to fit input width or the operation must be widened. In the work

discussed in Chapter 4, we chose to truncate wide outputs to fit the narrow inputs

of subsequent DSPs. However, this truncation leads to errors in the final output.

In Chapter 4, we determined the required wordlengths of intermediate outputs

by considering the maximum possible output wordlength. Since the inputs are in

109
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fixed-point representation, we truncate intermediate signals when necessary while

ensuring that the integer part is preserved; only the least significant fractional

bits are trimmed. This is equivalent to multi-stage fixed-point implementation,

though we can optimise for known and fixed inputs. For example, for a 25×18 bit

multiplication, we always assume that the required wordlength for the output is at

least 43 bits. This could lead to over-pessimistic implementations as the required

wordlength for the output mainly depends on the real range of inputs rather than

their wordlengths. Pessimistic wordlength calculation leads to extra truncation at

earlier stages in the graph than required since an over-conservative integer width

leads to more truncation of the fractional part, adding error. Gappa [157] is an

open-source tool, which analyses a mathematical expression and produces a tight

bound on the output range of each operation, for a given input range. Avoiding

the over-pessimistic wordlengths considered in the previous chapter, we integrate

Gappa in our tool to determine realistic wordlengths and apply truncation accord-

ingly to minimise error.

In this chapter, we first introduce some preliminary steps used when binding nodes

of a DFG to DSP block ports, which reduces the error to some extent. Then, we

discuss a technique to minimise errors by determining tight bounds for interme-

diate outputs using Gappa. First, ideal wordlengths for each operation are de-

termined using Gappa, and then the DFG is resegmented considering the ideal

wordlengths, which results in either wide operations or intelligent truncation of

intermediate data. The updated tool flow is also presented, with the integration

of error minimisation techniques discussed. As the error minimisation process re-

sults in multiple executions of the segmentation stage, we discuss how it affects

the runtime of the tool and then we discuss the impact of Gappa on error in the

final output for all the benchmarks discussed in Chapter 4.

The main contributions of this chapter are:

• Error minimisation methodology based on realistic wordlength calculation

for intermediate outputs using Gappa.
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• Integration of Gappa error minimisation for improved mapping to minimise

error.

• Demonstration of the accuracy benefits of this error minimisation and its

impact on area usage.

The work presented in this chapter has also been discussed in:

• Bajaj Ronak and Suhaib A. Fahmy, Mapping for Maximum Performance

on FPGA DSP Blocks in IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 35, no. 4, pp. 573-585, April

2016. [19]

5.2 Related Work

Traditionally, for designs implemented directly in RTL, the designer explicitly sets

the wordlengths of all the operations, depending on the acceptable error tolerance.

In many cases, this is done on worst-case assumptions, though additional tools can

be used to inform this process. In the case of HLS tools, most of the tools assume

worst-case pessimistic width and automatically generate these for internal signals,

while explicitly declared signals are truncated to the user defined wordlengths.

HLS tools accepts a design description in high-level languages like C/C++, which

supports standard data types, which are of 8, 16, 32, and 64 bits wide. Vivado

HLS supports arbitrary precision data types which can be used to enforce exact

wordlengths. However, for composite mathematical operations, worst-case widths

are considered for intermediate outputs. LegUp [4] uses a range and bitmask anal-

ysis to minimise the wordlengths of operations [158]. Authors presents the case

for both the range analysis and bitmask analysis individually as well as together

and show that combination of both the techniques can significantly improve the

wordlengths compared to using one of the techniques individually. In [159], au-

thors presented an approach where hardware is generated for the common input
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cases, instead of considering worst-case inputs. To address the worst case sce-

narios, a software implementation is also generated. Although this approach can

significantly reduce the wordlengths, it is applicable to only cases where FPGAs

are used as an accelerator instead of as an end-to-end system.

Gappa [157] is an open-source tool intended for verification and formal proof gen-

eration on numerical expressions, supporting both fixed-point as well as floating-

point arithmetic. It can generate tight bounds on computational error at interme-

diate and output nodes, and can be used for output range determination for given

input ranges. In [160, 161, 162], the authors use Gappa to determine tight bounds

for datapath optimisation and precision analysis for polynomial evaluation. Gappa

was used for formal verification of floating-point implementations in [163]. Gappa

and Gappa++ [164] were also used for dataflow computation function precision

analysis for SPICE simulations in [165] and [166]. We integrate Gappa in our flow

to help improve the accuracy of the resulting implementations.

5.3 Error Minimisation

There are two straightforward ways to reduce error when mapping to DSP blocks.

The first is to ensure that we consider the width of operands when assigning them

to inputs. Wider inputs should be bound to the wider inputs of the DSP block,

especially when dealing with the 25× 18-bit multiplier. Secondly, when mapping

a two-node sub-graph to a DSP block template, those that use the ALU sub-

block are preferred to those using the pre-adder since that offers a wider 48-bit

adder/subtractor, compared to the 25 bits of the pre-adder.

Although, these improvements reduce the error to some extent, we must still con-

sider situations where the output of one DSP block is used as the input to another.

Consider the output of a DSP block performing a 25×18 bit multiplication con-

nected to the 25-bit pre-adder of a subsequent DSP block, a naive truncation of
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18 bits could introduce significant error. However, analysing the range of the mul-

tiplier operands we may find that the result precision does not in fact exceed 25

bits, and hence truncation can be done without introducing error.

Gappa [157] is an open-source tool, which analyses a mathematical expression

and produces a tight bound on the output range of each operation, for a given

input ranges. We have integrated Gappa into our tool flow to determine realistic,

tight bounds for output ranges, to avoid over-pessimistic implementation, while

minimising error in our mapping.

Error minimisation using Gappa is done in two steps.

5.3.1 Ideal Wordlength Calculation

From the dataflow graph of the input expression, ideal wordlengths for all inter-

mediate outputs are determined using Gappa, based on the provided input range

and precision. A Gappa script is generated and executed; an example is shown in

Figure 5.1.

xMul4 = fixed<-15,ne>(4) * fixed<-15,ne>(x);

node1 = fixed<-15,ne>(xMul4) * fixed<-15,ne>(x);

node2 = fixed<-15,ne>(node1) - fixed<-15,ne>(0.625);

node3 = fixed<-15,ne>(node2) * fixed<-15,ne>(node1);

node4 = fixed<-15,ne>(node3) + fixed<-15,ne>(0.625);

node5 = fixed<-15,ne>(node4) * fixed<-15,ne>(x);

{

(x in [0,1]) ->

(

xMul4 in ? /\

node1 in ? /\

node2 in ? /\

node3 in ? /\

node4 in ? /\

node5 in ?

)

}

Figure 5.1: Example Gappa script for expression x(4x2(4x2 − 0.625) +
0.625).
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This script has been generated for input x between 0 and 1, with the precision

of 15 bits. Numbers are rounded to nearest, with tie breaking to even mantis-

sas. Execution of this script gives the range of all six intermediate outputs, from

which the wordlengths of each intermediate output are calculated, ignoring the

wordlength constraints of the DSP blocks, resulting in ideal wordlengths for an

error-free implementation.

5.3.2 Resegmentation

Firstly, the segmented graph’s intermediate outputs are bound to template ports

based on signal width. Using this initial binding and the ideal wordlengths calcu-

lated in the previous step, an iterative process follows, which identifies intermediate

outputs not satisfying the ideal wordlength and tries to minimise the error.

The segmented graph is reformed in terms of the templates used (DDFG), and all

nodes are initially marked as unchecked. In each iteration, the DDFG is traversed

from the inputs down. For each DDFG node, all the corresponding nodes in the

DFG are checked for error and if they satisfy the ideal wordlength, the DDFG

node is marked as checked for all further iterations. If any DFG node does not

meet the required wordlength, it is marked as an error node. If the error node

is an add/sub node, it is moved out of the DSP template, and is mapped to a

LUT-based adder/subtractor template of width matching the ideal wordlength

and then marked as checked. The remaining unchecked nodes are then segmented

again (re-segmentation) for further iterations. As we are using single DSP block

templates, if the error node is a multiply node, inputs to the node are truncated

to fit the wordlength of the DSP block port it is bound to.

After each iteration, the wordlengths of the checked nodes can be wider (if ideal

wordlength is less than the DSP port width) or narrower (if multiply node inputs

are truncated) than the ideal wordlengths. For further error analysis for unchecked

nodes, Gappa scripts are generated, using the updated wordlengths of the checked

nodes. This iterative process is terminated once all nodes have been checked for
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error. Using Gappa in this manner allows us to ensure that truncations take into

account range properties to minimise error significantly.

5.4 Updated Tool Flow

As discussed above, integrating error minimisation using Gappa adds two stages in

the tool flow. Ideal wordlength calculation is integrated with the DFG generation

stage, where the DFG is generated from DOT files. Then, an initial graph par-

titioning is performed (using one of the methods discussed in Section 4.5). Error

minimisation is performed using the ideal wordlengths and the initial DDFG. The

updated tool flow integrating error minimisation is shown in Figure 5.2.

5.4.1 DFG Generation and Ideal Wordlength Calculation

First, the DFG is generated from DOT files, as discussed in Section 4.6.2. The

tool then generates a Gappa script for the DFG to determine the range and ideal

wordlengths of all the intermediate outputs and primary outputs, based on the in-

put precision and ranges provided in the config file. Each node of the graph is then

tagged with its input and output ideal wordlengths. Restrictions based on DSP

block wordlengths and segmentation are not considered during ideal wordlength

calculation as we are determining the wordlengths for given input ranges which

would result in an error-free implementation.

5.4.2 Error Minimisation

After calculating ideal wordlengths for the DFG and initial partitioning, Gappa

with resegmentation is used to iteratively minimise errors due to truncation and

port assignment, as discussed in Section 5.3.2. Signal wordlengths after segmen-

tation are compared with ideal wordlengths to determine nodes with truncation

error. If the error nodes are add/sub, these nodes are implemented using wide
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Figure 5.2: Tool flow for DSP block mapping with error minimisation.



5 Error Minimisation 117

operators in the logic fabric. For multiply nodes, inputs are truncated to match

the template’s input port widths. The remaining nodes are then re-segmented and

the process is repeated until all nodes of the graph have minimised error.

All further steps, after determining the DDFG remain as discussed in Section 4.6.

5.5 Experiments and Analysis

To explore the effectiveness of error minimisation techniques, we implement all 18

benchmarks discussed in Chapter 4, with error minimisation using Gappa enabled.

5.5.1 Tool Runtime

The updated tool is run on an Intel Xeon E5-2695 running at 2.4GHz with 16GB

RAM. The times taken to generate synthesisable RTL from the high-level descrip-

tion for both segmentation methods, with and without the error minimisation step,

averaged over 100 executions, are shown in Table 5.1. These runtimes include the

times taken by Gappa to determine intermediate signal wordlengths for inputs in

range [0, 1] with 15-bit precision.

Q5(b). We have chosen an input range of [0,1] with 15-bit precision, as this is

common in signal processing applications. However, to explore the scalability of

our technique, we also tested input ranges of [0,1] with 31-bit precision and [0,15]

with both 15-bit and 31-bit precision.

As shown in Table 5.1, using Gappa error minimisation noticeably increases tool

runtime, compared to generating RTL without error minimisation. For greedy

segmentation, the increase in runtimes varies from a modest 10% for Poly3 to

almost doubling (104%) for SG Filter. For improved segmentation, the increase in

runtimes rises to 115% for SG Filter. On an average, for both the segmentation
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Benchmarks Greedy Segmentation Improved Segmentation

w/o Gappa w/ Gappa w/o Gappa w/ Gappa

ARF 12.8 21.5 13.0 21.5

Chebyshev 36.2 48.6 37.9 49.1

EWF 67.4 81.3 70.7 82.5

FIR2 22.2 32.4 21.7 31.5

Horner Bezier 20.8 29.6 21.7 30.0

Mibenc2 18.3 26.6 17.8 25.9

Motion Vector 26.3 36.3 27.8 37.2

Poly1 18.4 25.8 18.8 25.8

Poly2 75.7 94.4 79.1 95.3

Poly3 308.3 339.4 363.2 377.5

Poly4 231.7 274.2 244.9 276.9

Poly5 108.3 144.2 124.6 156.3

Poly6 251.9 326.8 266.7 328.3

Poly7 358.1 505.7 378.3 509.7

Poly8 126.0 213.9 124.9 217.9

Quad Spline 34.4 68.1 32.8 68.8

SG Filter 45.5 92.7 43.8 94.1

Smooth Triangle 600.1 884.1 606.0 854.4

Geometric Mean 67.3 96.3 69.6 97.6

Table 5.1: Run time (in ms) for Inst without and with error minimisation.

algorithms, the tool can generate RTL in under 70 ms without error minimisa-

tion and this increases to under 100 ms with error minimisation, which remains

acceptable.

Runtime primarily depends on the number of nodes in the dataflow graph of

the input design. The time taken for the process of minimising truncation error

using Gappa is also directly related to the number of nodes, as the number of

re-segmentation iterations scales with that. Even with the larger inputs range,

the upper limit of re-segmentation depends on the number of nodes.
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We measured the runtime for a synthetically generated dataflow graph of 36 inputs,

9 outputs, and 225 nodes. The tool took 3.85 seconds (Greedy Segmentation) and

4 seconds (Improved Segmentation) to generate RTL from a high-level description

in this case. This would represent a significant proportion of the DSP blocks on a

moderate sized FPGA.

I/O wordlength does not affect the runtime if error minimisation is not applied,

as intermediate outputs are simply truncated. Error minimisation means the seg-

mentation process is repeated to minimise error and runtime does increase with

I/O wordlength, although runtime does not increase significantly. The maximum

runtime for a benchmark with an input range [0, 15] and 31-bit precision is ap-

proximately 1.2 seconds.

5.5.2 Error Minimisation

As discussed in Section 5.3, we have used Gappa to iterate and re-segment the

graph to minimise error. To analyse the impact on error due to incorporating

Gappa, we have compared the error results with and without the Gappa analysis,

over 1000 randomly generated test inputs, distributed uniformly between the range

of inputs.

Error is calculated as follows:

error =

1000∑
i=1

|outi−idealouti|
idealouti

1000
(5.1)

All 18 benchmarks together produce 42 outputs (Table 4.1). We can explore the

effect of the Gappa optimisation across all the benchmark outputs using the root

mean square (RMS):

rmsError =

√√√√√ 42∑
i=1

(errori)
2

42
(5.2)
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rmsErrorwoGappa rmsErrorwGappa Error Error

Improvement (×) Improvement (%age)

range: [0, 1] 0.0020 0.0013 1.54 35

precision: 15

range: [0, 15] 0.0922 0.0013 70.92 98.6

precision: 15

range: [0, 1] 0.0021 0.0009 2.33 57.1

precision: 31

range: [0, 15] 0.0919 0.0008 114.88 99.13

precision: 31

Table 5.2: Error reduction using Gappa based error minimisation.

To analyse how error varies with the increase in wordlengths, we run these error

experiments on a set of four inputs ranges and precisions. With a precision of

15 bits, we calculate error for inputs ranges of [0, 1] and [0, 15]; and we repeat

this with a precision of 31 bits. The results are shown in Table 5.2 for improved

segmentation. We can see that for smaller inputs ranges, error is not very sig-

nificant even without using the Gappa optimisation. This is because the integer

parts of intermediate outputs do not exceed DSP block input port ranges for most

intermediate outputs, and for those where the range is exceeded, only fractional

bits are trimmed, adding a small amount of error.

However, with the larger input range of [0, 15], we see a significant increase in er-

ror, from approximately 0.2% to more than 9%. Without the Gappa optimisation,

intermediate wordlengths are calculated by considering the maximum possible out-

put ranges, resulting in wider intermediate outputs and more truncation in the

fractional part, and in some cases, truncation in lower significant bits of integer

part. This results in significant error. We also find that the preference of the ALU

over the pre-adder for 2-node templates had negligible impact on overall error.

The Gappa optimisation, allows our tool to determine tighter bounds for interme-

diate outputs, resulting in the ability to trim unnecessary integer MSBs without

introducing error. Overall, adding this Gappa optimisation allows much larger in-

put ranges to be mapped with comparable error. As we can see in Table 5.2, with
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Figure 5.3: Area and Frequency trade-off for error minimisation, nor-
malised against implementation without error minimisation. (R: inputs
range; P: inputs precision)

error minimisation, we are being able to reduce the error of up to 9.2% down to

a maximum error of 0.1% across all wordlengths. With short input range ([0, 1]),

we are being able to reduce the error by 1.54× and 2.33× for precision of 15 bits

and 31 bits respectively, however, with wide range of inputs ([0, 15]), error im-

provement is significantly higher (71× and 115× for precision of 15 and 31 bits

respectively), reducing from up to 9% to less than 0.1%.

Error minimisation significantly improves the error tolerance, however, as some op-

erations are moved from DSP blocks to LUTs, there is an increase in LUT usage.

Figure 5.3 shows the area (LUTeqv) and frequency trade-off for error minimisation,

across all the four wordlengths for all the benchmarks, normalised against corre-

sponding wordlength implementations without error minimisation. As shown in

Figure 5.3, LUTeqv overhead for both the inputs ranges with 15-bit precision is not

significant. The maximum LUTeqv overhead is 4% and 5% for inputs range of [0, 1]

and [0, 15] respectively. However, for higher precision inputs range, LUTeqv goes

up to 20% and 29% with inputs range of [0, 1] and [0, 15] respectively. Although,

compared to the improvement in error (71× and 115×), this is reasonable. The

impact of error minimisation on frequency is minimal for most cases.
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5.6 Summary

Due to the different wordlengths of DSP block inputs and outputs, mapping opera-

tions onto the DSP blocks requires either truncation or using multiple DSP blocks

to implement wide operations. In our work, we choose to truncate the interme-

diate outputs to fit them on to DSP blocks. Considering the worst-case scenario

while determining output wordlength of an operation can lead to over-pessimistic

implementations. In this chapter, we discussed an error minimisation technique

using Gappa, which determines a tight bound on output wordlengths, allowing

the truncation to be applied intelligently thereby minimising error in the final

output. We updated the tool flow proposed in Chapter 4 to integrate the Gappa

error minimisation. This resulted in significantly minimising the error in the final

output. For four different inputs range and precision, reduction in error can be

up to 115× compared to implementations without error minimisation. However,

as some operations are moved from DSP blocks to LUTs, there is an increase in

LUT usage, although DSP block utilisation remains same. LUTeqv area increases

by 4% for short wordlengths, up to 29% for the long wordlengths.



6
Improved Resource Sharing for DSP

Blocks

6.1 Introduction

Designing complex systems at the RTL level is challenging, and so significant ef-

fort has been made in the area of high-level design, as we have seen. High-level

synthesis (HLS) raises the level of design abstraction, allowing the designer to de-

scribe a system in a high-level language like C/C++ which is then translated to

synthesisable RTL. However, we have shown that this generic RTL can sometimes

fail to take advantage of the features of hard blocks like the DSP blocks in mod-

ern Xilinx FPGAs. One key advantage of HLS is the ability to explore different

designs that trade off area and performance, allowing implementations tailored

123
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to specific constraints. In the context of hard blocks, these are often limited in

number and can be quickly consumed by large designs. In Chapter 4 we focused

on exploiting DSP block capabilities to create high throughput implementations,

ignoring any constraint on resource availability. However, in many designs the

throughput requirements are restricted by external interfaces, or by the remainder

of the system, thereby not offering the opportunity to take advantage of this high

throughput.

DSP block features can enable resource sharing to free up these resources for other

uses. Sharing LUT-based add/sub blocks on FPGAs is not recommended, as the

savings are nullified with the increase in resources required for multiplexers and

de-multiplexers [119]. However, complex blocks like the DSP block are limited in

number and perform much more complex computation.

Traditionally, operations scheduled in non-overlapping time schedules can be map-

ped to the same hardware resource in the binding stage. The same hardware is

re-used by adding multiplexers at the inputs and de-multiplexers at the outputs.

The major disadvantages of the traditional resource sharing are:

• High initiation interval (II)

• Increase in schedule length

DSP blocks achieve high performance when internal pipeline stages are enabled.

Also, as pipeline stages are internal to DSP blocks, enabling them does not increase

LUT usage even thought performance increases significantly. The multi-cycle na-

ture of DSP blocks offers high performance but also significantly impact the II

when shared between different operations.

In this chapter, we discuss a scheduling and implementation technique for resource

sharing, that is II-driven offering significant improvements compared to traditional

resource sharing. Instead of reconfiguring a set of DSP blocks to implement all

operations, we use multiple sets of DSP blocks controlled using different state ma-

chines such that each set achieves the target II. Using traditional resource sharing,
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the structure of the dataflow graph limits the achievable II due to the long latency

of the DSP blocks. To reduce the II beyond that threshold, the design must be

re-implemented without resource sharing (an II of 1), demanding as many DSP

blocks as there are DSP nodes in the graph. The II-aware resource sharing dis-

cussed in this chapter is able to generate implementations for intermediate IIs,

offering significant resource savings compared to resource unconstrained imple-

mentations.

The main contributions of this chapter are:

• A traditional resource sharing implementation technique, exploiting dynamic

reconfigurability of the DSP blocks using system of difference constraints

(SDC) scheduling.

• A scheduling technique based on SDC for generating schedules constrained

by II that exploit DSP block dynamic reconfigurability.

• Integration of these resource sharing techniques into the automated tool flow

presented in Chapter 4, generating synthesisable RTL implementations from

a C description.

• Evaluation of these techniques across DSP block utilisation, II, LUTs and

registers.

The work presented in this chapter has also been discussed in:

• Bajaj Ronak and Suhaib A. Fahmy, Initiation Interval Aware Resource Shar-

ing for FPGA DSP Blocks, in Proceedings of IEEE Symposium on Field pro-

grammable Custom Computing Machines (FCCM), Washington, DC, May

2016. [20]

• Bajaj Ronak and Suhaib A. Fahmy, Improved Resource Sharing for FPGA

DSP Blocks, in Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), Lausanne, Switzerland, Septem-

ber 2016. [21]
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6.2 Related Work

A significant amount of research has been done on resource sharing at the RTL

level as well as in high-level synthesis [167, 168, 135, 112]. A typical HLS tool

flow consists of three major steps: allocation, scheduling, and binding. [168] pro-

posed an algorithm combining temporal partitioning, resource sharing, scheduling,

allocation, and binding to obtain resource efficient implementations. Instead of

a partitioning the design first and then applying resource sharing for each parti-

tion, resource sharing is explored in each temporal partition to minimise resource

requirements, resulting in a reduced number of partitions and more logic imple-

mented in each partition. Five heuristics for global resource sharing were proposed

in [135] which focuses on inter-basic-block sharing in addition to resource sharing

for each basic block. Computational modules across basic blocks are analysed to

minimise connections and functional resources. Patterns for combining resources

are extracted and prioritised, resulting in more effective sharing than when con-

sidered individually. This is similar to the mapping of multiple compute nodes to

compound resources like DSP blocks.

[112] combined module selection and resource sharing to minimise area while

achieving throughput requirements. For a given throughput constraint, the pro-

posed technique explores implementations with different frequencies and IIs to

achieve the required throughput. A pipeline scheduling technique based on an

MILP formulation of modulo scheduling, optimizing mapping of operations to

LUTs and registers is proposed in [169]. The algorithm accepts multiple con-

straints like clock period, II, resource constraints, and generates a schedule sat-

isfying all the constraints while considering LUT mapping while generating the

schedule. Generally, HLS tools use static scheduling to determine the extent of

resource sharing possible. Work proposed in [170] proposed a source-to-source

transformation which improves the efficiency and II using dynamic scheduling

techniques. Dynamic scheduling can exploit the extent of resource sharing on-the-

fly, however, extra logic required for complex decision making during execution

results in a resource overhead. A recent algorithm proposed in [171] attempts to
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optimise resource usage and II for different loops in a design to achieve maximum

throughput. Instead of optimising different loops individually and selecting the

minimum II, authors propose a global resource sharing approach enabling resource

sharing across different loops. A method to reduce resource usage by determin-

ing a pattern of operations, which is then used for efficient binding was proposed

in [137]. Studies in [119, 120] have analysed the impact of resource sharing on the

performance of FPGA designs. They show the cases for which resource sharing is

advantageous and where it can adversely affect performance.

Scheduling is a critical step as it determines the degree of possible resource shar-

ing. Various heuristics have been proposed including list scheduling, force-directed

scheduling [172], and a recent scheduler based on system of difference constraints

(SDC) was proposed in [134]. We are not aware of any work that focuses on

multi-cycle flexible hard blocks like the DSP48E1. These present unique chal-

lenges in their ability to share different computations on the same hardware, and

the complex latency constraints enforced by their pipeline configuration.

6.3 Traditional Resource Sharing (TRS)

Traditional resource sharing (TRS) involves utilising the same hardware resource

(like DSP blocks) for implementing multiple operations, thus reducing overall re-

source usage. Fully pipelined designs without constraints on resources can gener-

ally achieve an II of 1, i.e., accept inputs at every clock cycle. However, as multiple

operations are mapped onto the same hardware block for resource-constrained de-

signs, resource sharing can result in a high II. In this section, we discuss a technique

based on the system of difference constraints (SDC) scheduling approach [134] for

generating implementations with TRS, with a constraint on the number of DSP

blocks and discuss the architecture for designs implemented with TRS.
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6.3.1 Scheduling

We use SDC scheduling for generating optimised schedules for resource sharing, for

a given constraint on the number of DSP blocks. SDC formulates the scheduling

problem mathematically as a set of linear constraints that can be solved using a

linear programming (LP) solver. One of the main strengths of SDC scheduling

over other techniques is the ability to handle various optimisations using a unified

mathematical programming framework.

We discuss the SDC scheduling framework and how it is utilised to generate

resource-constrained schedules, and use lpsolve, an open-source linear (integer)

programming solver based on the simplex method and branch-and-bound method

for the integers [173]. For TRS, inputs to the scheduling algorithm are a dataflow

graph (DFG) to be scheduled and a constraint on the number of DSP blocks.

Generating the final schedule using SDC can be divided into four steps:

1. Initialise LP problem

2. Modelling scheduling constraints

3. Formulate objective function

4. Solve LP and determine schedule time

6.3.1.1 Initialise LP problem

This step includes initialising the LP problem and determining scheduling variables

for each node in the DFG. Each node in the DFG is associated with one or more

scheduling variables, equal to the latency of the operation implemented by the

node. For a DFG G(V,E), where V is the set of all the nodes (vertices) and E

is the set of all edges of the DFG, for a vertex v with latency L, there is a set

of scheduling variables {svi(v)|iε[0, L]}. For each node v in G, these should be

satisfied:
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∀vεV, ∀iε[0, L] : sviεN ∪ {0} (6.1)

ifL ≥ 1,∀vεV, ∀iε[1, L] : svi(v) = svi−1(v) + 1 (6.2)

For each vertex v, we denote svstart(v) = sv0(v) and svend(v) = svL(v).

6.3.1.2 Modelling scheduling constraints

To generate a valid schedule, which satisfies the dependencies of the input DFG,

where the number of DSP blocks scheduled in a schedule time is always less than or

equal to the input constraint, we add the following constraints to the LP problem

generated in the previous step.

Multicycle Constraints:

For each multi-cycle operation, each vertex has multiple scheduling variables (equal

to the latency of the block). Constraints are added such that the difference between

the scheduling variables of a node is 1.

∀iε[1, L] : svi(v)− svi+1(v) = 1 (6.3)

Dependency Constraints:

All vertices of the DFG should be scheduled such that the flow of operations is

correct, i.e., no operation should be scheduled before vertices of its input edges

complete their execution. To ensure the correct flow of operations, constraints are

added for each dependent pair of nodes such that the start time of the destination

node is always greater than end time of the source node.

∀e(vi, vj)εE : svend(vi)− svstart(vj) ≥ 0 (6.4)

Resource Constraints:
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For a resource constraint of RC, constraints are added to ensure that the difference

between the schedule time between the ith and (i + RC)th DSP block is always

greater than or equal to the latency of a DSP blocks. This ensures that the

maximum number of DSP blocks scheduled in any schedule time is not more than

RC.

For all DSP block vertices in graph G, before adding resource constraints, a topo-

logical linear order is generated. It can be generated in two ways: either using

the ALAP schedule time as primary key and ASAP schedule time as a tie breaker

or the reverse. After determining the linear order, constraints for resources are

added such that for DSP block vertex vi,

∀viεV, ∀iε(1, Vtotal −RC) : svstart(vi+RC)− svstart(vi) ≥ DSPlatency (6.5)

where, Vtotal is the total number of DSP block vertices. The start time difference

of DSPlatency between every ith and (i + RC)th DSP block ensures that previous

computations are completed before new configurations are loaded to DSP blocks.

6.3.1.3 Formulate objective function

After adding all the required constraints to the LP problem, we formulate the

objective function for which the LP is solved to determine the schedule. We

implement ASAP and ALAP scheduling objectives, which can be selected by the

user. For ASAP, vertices are scheduled at the earliest possible schedule time,

while satisfying all the constraints added to the LP problem in the above step.

The objective function for ASAP is to minimise the sum of start times for all

nodes, which is formulated as:

min
∑
vεV

svstart(v) (6.6)

Similarly, for ALAP, each vertex is deferred until all its successors are scheduled.

The objective function for ALAP maximises start times and is formulated as:
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max
∑
vεV

svstart(v) (6.7)

As ALAP maximises the objective function, constraints for the maximum schedule

time are added for each output node, such that the end time of each node is less

than or equal to maximum schedule time. If λ is the maximum schedule time and

vOut is the set of output vertices, the constraint for ALAP is formulated as:

∀viεvOut : svend(vi) ≤ λ (6.8)

6.3.1.4 Solve LP and determine schedule time

The LP, with the objective function defined in the previous step, can then be

solved subject to the defined constraints using an LP solver. We use the open-

source “lpsolve” [173]. lpsolve outputs an array of size equal to the number of

scheduling variables, with each value indicating the schedule time of the variable.

We extract start times for all the vertices in the DFG and assign schedule times,

which are then used in generating RTL.

The algorithm is detailed in Algorithm 3. Inputs to the algorithm are the DSP

dataflow graph (DDFG); a constraint on the number of DSP blocks (RC); topo-

logical order priority for resource sharing constraints (rsPriority); the scheduling

objective (ASAP or ALAP) (schObjective), and the maximum schedule time if

the scheduling objective is ALAP (λ). The output is the scheduled DDFG with

schedule time assigned to each node, such that in each schedule time, the number

of DSP blocks used is always less than the input constraint RC.

6.3.2 Implementation

For implementing resource-constrained designs, multiple operations are mapped to

a hardware block, and multiplexers and demultiplexers are used at the inputs and
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Algorithm 3: Traditional resource sharing scheduling

def rsSchedule(ddfg, RC, rsPriority, schObjective, λ):
Data: DSP Dataflow Graph (ddfg), RC, rsPriority, schObjective, λ
Result: Scheduled ddfg (schDDFG)

begin
asap(ddfg)
alap(ddfg)

lp = initialiseLP(ddfg) #initialise LP problem
lp = addMulticycleConstraints(lp, ddfg)
lp = addDependencyConstraints(lp, ddfg)

#select DDFG priority order
if rsPriority == ‘ASAP’ :

sortedDDFG = sort(ddfg, ‘ASAP’, ‘ALAP’)
else:

sortedDDFG = sort(ddfg, ‘ALAP’, ‘ASAP’)

lp = addResourceConstraints(lp, sortedDDFG, RC)
lp = addObjFunc(lp, schObjective, λ) #add objective function to LP

#solve formulated LP
schDDFG = solveLP(lp)
return schDDFG

outputs respectively. Depending on the current state of the system, i.e. clock cycle

number in the context of resource-constrained implementations, these multiplexers

and demultiplexers select the correct inputs and route outputs accordingly. As

discussed in Chapter 4, after graph partitioning, we have a DSP dataflow graph

(DDFG), where each node is either a DSP block or a LUT-based add/sub block.

Resource sharing of add/sub blocks on FPGAs is not recommended, as the resource

savings are minimal with a negative impact on design performance.

For a given constraint on the number of DSP blocks (RC), the first step is to

schedule the DDFG such that a maximum of RC DSP blocks are used in each

schedule time, as discussed above. Implementation can be divided into the data

path and control path portions. The data path includes the DSP blocks, with

multiplexers at their inputs, add/sub blocks, and an extra register for each DSP

block operation in the DDFG to store results. DSP blocks are fully pipelined at

four stages to achieve maximum throughput. At each clock cycle, depending on

the current state, each of these extra registers either retains its value or is updated

with the DSP block output when the corresponding operation is executed in the
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Figure 6.1: Dataflow graph of case study example.

DSP block. The control path includes a microcoded read-only memory (ROM)

initialised with control signals depending on the schedule generated and latency of

each stage. The output of the ROM is used to set the control signals for the input

multiplexers of the DSP blocks, selecting the correct input and configuration for

each clock cycle. Inputs to the DSP blocks are either primary inputs or outputs of

previously computed operations for the current set of inputs. Each configuration

of the DSP block takes five cycles to generate an output. Four for the DSP

computation and one to write the output to the register. Reading control signals

from the ROM is done in parallel with register assignment and does not require

an extra clock cycle.

6.3.3 An Illustrative Example

We illustrate our approach for TRS using a simple example as a case study. In

the DFG shown in Figure 6.1, each node (OP1 – OP12) represents a configuration

of the DSP48E1 primitive.



6 Improved Resource Sharing for DSP Blocks 134

ROM DSP1

.   .   .   .

A D

CONFIG

DSP2

.   .   .   .

A D

CONFIG

DSP3

.   .   .   .

A D

CONFIG

OP1

OP2

OP12

.   .   . 

Reg

Generate DSP 
Inputs

sel

DSP schedule 
time

Inputs

ROM 
output

Figure 6.2: Resource sharing design architecture.

#DSP=1 #DSP=2 #DSP = 3

Schedule length 62 32 22

II 56 26 16

Table 6.1: Schedule length and II achieved for different TRS constraints.

For the above DFG, the maximum number of DSP blocks in a schedule time

is three due to data dependencies. For DSP block constraints of 1, 2, and 3,

different implementations can be generated, with different II achieved. Increasing

the number of DSP blocks results in same schedule as with a constraint of 3 DSPs

since dependencies prevent further sharing, until we have 12 DSP blocks to support

a fully pipelined implementation.

Here, we define control step, which equals the clock cycles required to complete

the computation for one set of configurations of the DSP blocks. In our case, each

control step is five clock cycles, as the latency of the DSP blocks is five (including

the external register). With a constraint of 1 DSP block, the resulting schedule

will have 12 control steps, one for each DSP block operation. Similarly, with
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Clock

Inputs I1 I2

DSP1 OP1(I1) OP4(I1) OP7(I1) OP10(I1) OP1(I2)

DSP2 OP2(I1) OP5(I1) OP8(I1) OP11(I1) OP2(I2)

DSP3 OP3(I1) OP6(I1) OP9(I1) OP12(I1) OP3(I2)

Outputs O1

Figure 6.3: Timing diagram for TRS with #DSP = 3 (I: Inputs set; O:
Outputs set).

constraints of 2 DSPs and 3 DSPs, schedules with 6 and 4 control steps will be

generated. Schedule length and II for all three constraints is shown in Table 6.1.

The schedule length is calculated as (#ControlSteps×5)+2. The extra two clock

cycles are for input and output register stages. Figure 6.2 shows the architecture

for a DSP constraint of 3 DSPs.

The II is the number of clock cycles after which the circuit can take a new set

of inputs. Ideally, the DSP blocks can be reconfigured in each clock cycle and a

new set of inputs can be applied. However, for all control steps except the last,

the inputs of the current control step can depend on previous steps, and hence it

cannot start execution before the previous control step is completed. Thus, the

DSP blocks cannot be reconfigured for five clock cycles. For the final control step,

the DSP block can be reconfigured immediately, as the new iteration does not

depend on previous outputs, and so, a new set of inputs can be accepted in the

next clock cycle. The II achieved for a TRS implementation can be calculated as

(#ControlStep − 1) × 5 + 1. As shown in Table 6.1, the best II achievable with

TRS is 16 clock cycles. Figure 6.3 shows the timing diagram for a DSP block

constraint of 3. Operations OP1, OP4, OP7, and OP10 are mapped on to DSP1,

and so on. For the first three control steps, the DSP blocks are reconfigured after

five clock cycles and for last control step, the DSP blocks are reconfigured after

one cycle with a new set of inputs. However, it still takes a further five clock cycles

to complete the computations, thus, the final outputs are received in clock cycle

22.
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6.4 Improved Resource Sharing (IRS)

Generally, for TRS, an input constraint on the number of resource to be used is

given and the design is scheduled and implemented to abide by this constraint.

Traditional resource sharing can be used to implement large designs with fewer

resources, however, a major disadvantage is a significant increase in II and hence

a decrease in throughput. For applications with high throughput requirements,

TRS becomes infeasible as a result. In this section, we discuss an approach for

resource reduction, constrained by II rather than DSP block usage. The proposed

improved resource sharing (IRS) approach minimises the number of DSP blocks

used as primary objective and reduces schedule length as a secondary objective,

while achieving the target II.

6.4.1 Scheduling

For TRS, the number of DSP blocks is constrained, and depending on data depen-

dencies, II is determined. This means TRS generally results in high II. For IRS,

we generate a schedule that achieves an II constraint while minimising the number

of DSP blocks as a primary goal and reducing schedule length as a secondary goal.

Implementations with TRS use a set of DSP blocks to implement different op-

erations by reconfiguring the DSP blocks. Configurations are controlled using a

state machine, selecting the correct configuration depending on the current sched-

ule time for a particular input. The II is determined by the maximum number

of configurations required per DSP block, i.e. the level of re-use, as we saw in

Section6.3. For IRS, we restrict the number of configurations for a DSP block,

such that the input II constraint is achieved. Multiple sets of DSP blocks are used,

each implementing a number of DSP block operations, instead of mapping all op-

erations to a single set resulting in high II. To determine the optimum schedule

satisfying the II constraint with minimum DSP block usage and schedule length,

we generate multiple schedules with different DSP block constraints and choose
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the one with optimum trade-off between the number of DSP blocks and schedule

length.

For an input dataflow graph with DSPtotal DSP block operations, the DSP block

constraint can vary between 1 and DSPtotal. However, this is over-optimistic. A

DSP constraint greater than the maximum number of DSP blocks which can be

scheduled in a cycle will result in same schedule. To generate an II-aware sched-

ule, firstly, we generate ASAP and ALAP schedules and determine the maximum

number of DSP blocks in a schedule time. These are used as an upper limit for the

constraint on number of DSPs (DSPmax). We then generate multiple schedules

with DSP constraints varying from 1 to DSPmax, using the scheduling technique

for TRS (Section 6.3.1). Note that most of these schedules do not satisfy the input

II constraint (IImax). For each of the schedules, we identify the set of stages which

should be merged to achieve the IImax. The II achieved depends on the number

of times a DSP block is shared for different computations. From IImax, the maxi-

mum number of DSP block stages which can be merged is (IImax− 1)/5 + 1. This

results in an increase in DSP block usage but achieves the II constraint.

Now, all the schedules meet the II requirement, though they require different

numbers of DSPs and have different schedule lengths. To select the final schedule

out of these, we follow a three stage process:

1. If there are multiple possible schedules with the same DSP block require-

ments, we select the schedule with minimum schedule length.

2. For schedules with same schedule length, we select the schedule with mini-

mum DSP block requirement and discard others.

3. If there are still multiple possible schedules, the product of DSP requirement

and schedule length (area-delay product) is used as a tie breaker.

The algorithm is detailed in Algorithm 4. Inputs to the algorithm are the DSP

dataflow graph (DDFG); topological priority for order for resource sharing con-

straints (rsPriority); scheduling objective, which can be either ASAP or ALAP
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Algorithm 4: Improved resource sharing scheduling

def iiSchedule(ddfg, IImax, rsPriority, schObjective, λ):
Data: DSP Dataflow Graph (ddfg), IImax, rsPriority, schObjective, λ
Result: Scheduled ddfg (schDDFG)

begin
#determine maximum number of stages which can be merged, achieving IImax
numMergeStages = (IImax+DSPdepth-1)/(DSPdepth)

asap(ddfg)
alap(ddfg)
maxDSP = determineMaxDSP(ddfg)

#generate resource constrained schedules
allSchedules = [ ]
for i in range(1,maxDSP+1):

sch = rsSchedule(ddfg, i, rsPriority, schObjective, λ)
allSchedules.append(sch)

#for each schedule, identify stages to merge and determine number of DSPs
required
for sch in allSchedules:

sch[‘mergeStages’] = getMergeStages(sch, IImax)
sch[‘numDSPs’] = getDSPreq(sch, mergeStages)

schDDFG = getMinAreaDelaySch(allSchedules) #select optimum schedule
return schDDFG

(schObjective); and maximum schedule time if the scheduling objective is ALAP

(λ). DSPdepth is the latency of a DSP block in cycles. Output is the scheduled

DDFG with schedule time assigned to each node, such that using multiple sets of

DSP blocks, IImax is achieved.

6.4.2 Implementation

For IRS, instead of constraining the number of DSP blocks, the user provides

an II constraint. For TRS, we use a set of DSP blocks to implement all the

operations and exploit dynamic programmability. However, for IRS, as discussed

above, multiple sets of DSP blocks are used, each set implementing some stages

of the DFG, thus, achieving the target II.

For a given constraint on II (IImax), the first step is to schedule the DDFG such

that the II achieved is less than or equal to IImax, as discussed in the previous
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Clock

Inputs I1 I2 I3 I4

DSP1 OP1(I1) OP4(I1) OP1(I2) OP4(I2) OP1(I3) OP4(I3) OP1(I4)

DSP2 OP2(I1) OP5(I1) OP2(I2) OP5(I2) OP2(I3) OP5(I3) OP2(I4)

DSP3 OP3(I1) OP6(I1) OP3(I2) OP6(I2) OP3(I3) OP6(I3) OP3(I4)

DSP4 OP7(I1) OP10(I1) OP7(I2)

DSP5 OP8(I1) OP11(I1) OP8(I2)

DSP6 OP9(I1) OP12(I1) OP9(I2)

Outputs O1

Figure 6.4: Timing diagram for IRS with II = 6 (I: Inputs set; O: Outputs
set).

II=1 II=6 II=11 II=16

Schedule length 22 22 32 22

#DSPs 12 6 4 3

Table 6.2: Schedule length and number of DSP used for different IRS
constraints.

section. IRS can also be divided into the control path and data paths. Similar to

TRS, the data path includes DSP blocks, with multiplexers at the inputs, add/sub

blocks, and an extra register for each DSP block to store the output. DSP blocks

are fully pipelined to four stages to achieve maximum throughput. However, the

control path for IRS varies from TRS. The control path consists of multiple state

machines, one for each set of DSP blocks. For each state machine, a microcoded

ROM is initialised with the correct control signals, depending on the schedule time

of the nodes which are controlled using that state machine. Due to the pipeline

depth of five for the DSP blocks and their output register, the II constraint can

be given in increments of five, starting from 1. Thus, possible constraints include

1, 6, 11, and so on. An II of 1 implies a fully pipelined resource-unconstrained

implementation, where each DSP block is used for only one operation.
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6.4.3 An Illustrative Example

Here, we consider the same example discussed in Section 6.3. As discussed above,

to achieve a target II for IRS implementation, multiple schedules with different

constraints on number of DSP blocks are generated. For a given constraint of

IImax, with each control step of five cycles, the number of stages which can be

implemented using a set of DSP blocks is determined as (IImax + 4)/5. Table 6.2

shows the schedule length and number of DSP blocks used for II constraints of 1,

6, 11, and 16. For II constraints of 1, 6, and 16, the optimum schedule is found to

be with a DSP constraint of 3 (the total number of DSPs used is a multiple of 3),

thus the schedule length is 22 clock cycles. For an II constraint of 11, schedules

with a constraint of 3 and 2 DSPs result in a total of 6 and 4 DSPs with schedules

lengths of 22 and 32 respectively. The schedule length product determines selection

of the 4 DSP block implementation. Figure 6.4 shows the timing diagram for an

II constraint of 6. The first two stages of the DFG are mapped to a set of 3 DSPs:

DSP1, DSP2, and DSP3; and the last two stages are mapped another set: DSP4,

DSP5, and DSP6 to achieve an II of 6, thus, requiring two state machines, one for

each set of DSP blocks. The first set process OP1–6 while the second set process

OP 7–12. Since OP4–6 outputs are used by the second set, the first set can start

processing the next set of inputs (I2) after a single cycle. After the results for

OP4–6 emerge, the second set starts, and that way the II of 6 is achieved.

6.5 Automated Tool Flow

We extend the tool flow discussed in Chapter 5, integrating the scheduling and

implementation techniques discussed in this chapter, to automatically generate

synthesisable RTL using resource shared implementations from an input C de-

scription. We integrate the TRS and IRS scheduling techniques into the tool.

In addition to TRS and IRS, we also generate Vivado HLS implementations to

understand how Xilinx’s HLS tool performs with different constraints on II. We

use Vivado HLS because it is likely to be the most architecture aware of any of
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Figure 6.5: Tool flow for resource sharing implementations.

the HLS tools available for Xilinx devices. Vivado HLS uses directives to guide
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the RTL implementations. A flow diagram of the automated tool for resource

minimisation techniques is shown in Figure 6.5.

The first three stages of the tool flow: DFG Generation & Ideal Wordlength Calcu-

lation, Graph Partitioning, and Error Minimisation remain as discussed in Chap-

ters 4 and 5. Error Minimisation outputs a dataflow graph (DFG) of the input

C description and DSP dataflow graph (DDFG) which is determined after par-

titioning of the DFG such that each sub-graph can be mapped to a DSP block

configuration. The DDFG comprises nodes that are either DSP48E1 primitive

configurations or adders/subtractors that cannot be merged with multipliers in

the DFG to map to DSP block configurations.

6.5.1 Pre-processing

For TRS and IRS, the DDFG generated in the previous stage is scheduled accord-

ing to techniques discussed in Sections 6.3.1 and 6.4.1 respectively. The relevant

constraints on DSP blocks or II are provided to the respective scheduling algo-

rithms. Pipeline balancing is then applied to ensure that dataflows through the

DDFG are correctly aligned. If an output generated by a node is not utilised in the

next cycle, a set of registers is inserted between source and destination registers

to ensure that data at the destination node arrives at correct clock cycle.

For HLS, each node in the DFG is implemented as an instruction in C++ for

Vivado HLS. We use fixed wordlengths equal to wordlengths in the DDFG for fair

comparison. The Vivado HLS directive for pipelining is used with the input II

constraint. Other files required for Vivado HLS project are also generated.

6.5.2 RTL Generation

In the RTL generation stage, the tool generates synthesisable Verilog implemen-

tation for TRS and IRS. For both the TRS and IRS, we exploit dynamic pro-

grammability to implement different operations onto DSP blocks, as discussed in
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previous sections. Configurations for all the DSP block operations are passed as

parameters, which are selected depending on current state of the system. For TRS,

as all the operations are mapped onto a set of DSP blocks, with a state machine

stored in a microcoded read-only memory (ROM). IRS uses multiple sets of DSP

blocks to achieve the target II, requiring multiple state machines, each machine

controlling one set of DSP blocks.

For HLS, we run the Vivado HLS project generated in the previous stage, which

translates the high-level C++ implementation into synthesisable RTL.

Pipeline balancing registers discussed in the previous stage are also instantiated

and assigned, so that dataflows are correctly aligned.

The RTL files generated are then automatically synthesised through the vendor

tools to determine final resource usage and maximum frequency achieved post

place and route.

6.6 Experiments and Analysis

To explore the effectiveness of our proposed methods for resource-constrained

implementations (TRS and IRS), we implemented all benchmark multiply-add

flow graphs discussed in Chapter 4. All the implementations target the Virtex 6

XC6VLX240T-1 FPGA found on the ML605 development board, and use Xilinx

ISE 14.6 and Xilinx Vivado HLS 2013.4. We run the updated tool flow to generate

TRS and IRS RTL implementations on an Intel Xeon E5-2695 running at 2.4 GHz

with 16 GB RAM. Table 4.1 (reproduced here in Table 6.3) shows the number of

inputs, outputs, and number of each type of operation for each of the benchmarks.

6.6.1 Resource Usage and Frequency

In this section, we discuss the resource usage and maximum frequency achieved

using different resource minimisation techniques discussed above. For traditional
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Graph Inputs Outputs Adders/Subs Muls

Chebyshev 1 1 2 3

Mibench2 3 1 8 6

FIR2 17 1 15 8

SG Filter 2 1 6 6

Horner Bezier 12 4 6 8

Poly1 2 1 5 4

Poly2 2 1 3 5

Poly3 6 1 4 6

Poly4 5 1 3 3

Poly5 3 1 14 11

Poly6 3 1 19 23

Poly7 3 1 18 17

Poly8 3 1 16 15

Quad Spline 7 1 4 13

ARF 26 2 12 16

EWF 21 5 26 8

Motion Vector 25 4 12 12

Smooth Triangle 29 14 20 17

Table 6.3: Graph nodes I/O and operations.

resource sharing, DFGs are scheduled such that in each schedule time-step (ST),

the number of DSPs used is not more than indicated by the constraint. IRS

achieves the input II constraint, minimising the number of DSP blocks utilised.

Resource reduction results in a trade-off between DSP blocks and LUT usage. As

DSP blocks and LUTs cannot be compared directly, and to understand overall

resource usage, in addition to comparing the trade-off between DSP reduction

and LUT increment, we also compare the area in terms of equivalent LUTs, where

LUT eqv = nLUT +nDSP×(196). 196 is the ratio of the number of LUTs (150720)

to the number of DSP blocks (768) available on the target device used. This gives

a proxy for overall area consumption.
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Figure 6.6: DSP block and LUT usage tradeoff with varying extent of
resource sharing. 196 is ratio of available LUTs to DSP blocks available
on Virtex 6 XC6VLX240T.

Figure 6.6 shows the DSP block and LUT usage for all the benchmarks with

varying extents of DSP block reuse using dynamic programmability. The straight

line represents the ratio of LUTs to DSP blocks on the target device; a desirable

balanced usage of both types of resources. Figure 6.6 clearly shows that resource

sharing improves the DSP/LUT usage ratio, which is important as the design

scales. However, excessive resource sharing also adversely affects performance due

to extra circuitry and can over-use LUTs.

Figure 6.7 shows the effect of sharing on the achievable frequency for these bench-

marks. We can see that moderate sharing does not impact frequency too signif-

icantly, though throughput would of course be affected due to the increased II.

Beyond 4 computations mapped to a DSP block, frequency falls more significantly

due to the multiplexing and control circuitry.

Table 6.4 shows the best achievable resource shared configuration offering the

lowest II, and the resulting throughput. As previously discussed, adding more

DSP blocks using traditional resource sharing does not improve II or throughput.

For some benchmarks, the best achievable IIs are extremely high, hence making

resource sharing infeasible in these cases. When throughput requirements are
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Figure 6.7: Resource sharing and maximum frequency trade-off.

moderate, only fully pipelined designs with an II of 1 are possible, resulting in

over-use of DSP blocks. For our benchmark suite, the maximum number of DSP

blocks in a schedule time is 9 for Poly6, and hence beyond this number, no benefit

is gained. In fact, the best resource shared implementations only use at most 5

DSP blocks (Smooth Triangle, see Table 6.4).

We present the trade-off between post-place-and-route area (LUTs and registers)

and throughput in Figure 6.8. All values are normalized to the resources used

and maximum frequency achieved for implementation with 5 DSPs since TRS

does not utilise more than 5 for any of the benchmarks. We can see that with

fewer DSP blocks, as schedule length increase resulting in more balancing registers

being required, and as more operations are mapped onto the same DSP blocks,

the complexity of the state machines increases, contributing to increases in LUTs

and registers.

Using the proposed technique, we are able to generate implementations for all

possible II constraints (in increments of DSP block depth used), including those

infeasible with TRS resulting in reduced DSP block utilisation compared to fully-

parallel implementations.

Figure 6.9 shows how throughput improves as the II improves, and at a cost of

how many DSP blocks for ARF from the benchmark suite. Points to the right
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Benchmarks Max DSPs #DSP Throughput

Chebyshev 1 1 41.42

Mibench2 2 2 28.47

FIR2 1 1 10.33

SG Filter 4 4 41.51

Horner Bezier 4 3 37.99

Poly1 2 2 29.37

Poly2 3 2 39.63

Poly3 2 2 27.28

Poly4 1 1 42.11

Poly5 4 3 14.8

Poly6 9 4 10.31

Poly7 5 3 9.39

Poly8 5 3 10.69

Quad Spline 5 3 14.91

ARF 5 4 8.27

EWF 3 3 18.32

Motion Vector 4 4 39.58

Smooth Triangle 6 5 18.39

Table 6.4: Initiation interval (II) for different DSP block constraint.

of the dashed line are only feasible using our proposed method, offering up to a

5× throughput improvement over the other resource shared designs. A resource

unconstrained implementation of the ARF would require 16 DSP blocks.

Figure 6.10 shows the throughput gain as more DSP blocks are added for all

benchmarks in our set. Increase in number of DSPs is with reference to the

number of DSP blocks used for implementation achieving maximum throughput

using TRS. The traditional approach achieves a best II of 11 for more than half of

the designs but cannot achieve 6 for any. For an II of 11, the improved approach

offers an average throughput improvement of 1.8× (0.92×-4×) at the cost of 1.4×
DSP blocks. For an II of 6, throughput improvements are up to 8× (Poly6) at

the cost of a 3× increase in DSP blocks. Our proposed approach hence enables
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Figure 6.9: Throughput improvements with the increase in DSP block
usage for benchmark ARF. Vertical line presents the maximum throughput
implementation using TRS.

possible design points between resource unconstrained implementations and the

best throughput achievable using the traditional approach (design points shown

in Figure 6.10), allowing designers more flexibility in the area-throughput trade-

off. Within the context of a high-level synthesis tool, this means computational

sections of code can be optimised to minimise resource usage given the throughput

constraints imposed by the rest of the design, rather than over-using DSP blocks
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throughput achieved using TRS.

but clocking them at reduced rates.

Compared to resource unconstrained implementations (II=1), our approach achieves

up to a 50% reduction in DSP blocks for an II of 6, and up to 67% for II of 11.

Recall that these configurations are not achievable with TRS for many bench-

marks. For fairness, both TRS and IRS implementations explored use the DSP

block’s dynamic programmability, such that different operations can be mapped

to the DSP48E1 primitives in different cycles. These configurations are passed as

parameters, which are controlled by the state machines discussed in Section 6.5.

Figure 6.11 shows the total number of nodes in the DDFG for each benchmarks

(refer Section 6.5) and the number of different DSP block configurations. This

clearly shows that the possible resource sharing would be significantly impacted

without exploiting the dynamic programmability of the DSP blocks, as resource

sharing could then only be performed between DDFG nodes with the same DSP

block configuration.
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In addition to benchmark suite discussed above, we also implemented a large

synthetically generated dataflow graph with 36 inputs, 9 outputs, and 225 nodes.

This dataflow graph consists of 144 multiply operations and 81 add/sub operations.

A resource unconstrained implementation of the design utilises 2959 LUTs and 144

DSP blocks operating at 334 MHz. At the other extreme, using traditional resource

sharing with 1 DSP block utilises 27,364 LUTs running at 83 MHz with a very large

II of 716 cycles. The best II achievable using TRS is 36, utilising 18 DSP block

and 6499 LUTs running at 228 MHz. Using the proposed technique, we are able to

achieve intermediate IIs between 6 and 16 to explore the trade-off between design

throughput and resource utilisation. This result in throughput improvements of

1.45–3.21× at a cost of 2.5–4× DSP blocks over the traditional approach, with a

best achievable throughput of half the unconstrained approach. This demonstrates

that our approach is scalable to very large computational graphs.

For all the experiments discussed above, we fully pipeline the DSP block to max-

imum throughput at 4 cycles. This resulted in frequency ranges of 370–450 MHz.

We also explored performance with 3-cycle DSP blocks, however, despite reducing

the II and allowing smaller increments between steps, the reduced frequencies of

280–290 MHz resulting from not fully pipelining the DSP blocks resulted in lower
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Benchmarks Resource Traditional II-aware

unconstrained resource sharing resource sharing

Chebyshev 3.1 4.0 4.4

Mibench2 7.4 8.5 9.9

FIR2 12.1 13.1 14.7

SG Filter 6.2 7.1 9.2

Horner Bezier 8.4 9.4 11.9

Poly1 5.0 6.0 7.0

Poly2 4.5 5.3 6.5

Poly3 6.0 6.9 7.9

Poly4 3.6 4.4 4.7

Poly5 11.7 13.1 16.6

Poly6 19.2 20.8 33.1

Poly7 15.1 16.6 19.4

Poly8 12.2 13.9 15.1

Quad Spline 8.0 9.2 10.2

ARF 13.8 15.6 17.0

EWF 14.9 16.7 16.7

Motion Vector 10.3 11.4 11.6

Smooth Triangle 15.4 17.7 20.3

Geometric Mean 9.7 9.9 11.5

Table 6.5: Run time (in ms). DSP constraint for TRS = 3. II constraint
for IRS = 6.

throughput overall. We used Vivado HLS with II constraints of 1, 6, and 11, and

compared with IRS implementations. The Vivado HLS implementations do not

exploit DSP block dynamic programmability, which is crucial in our work. For an

II of 1, equivalent to an unconstrained implementation, DSP block utilisation for

HLS is similar to that of IRS. However, for higher II constraints, the tool does

not optimise area for the relaxed II constraints, resulting in designs without a

reduction in DSP block utilisation.
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6.6.2 Tool Runtime

The times taken to generate synthesisable RTL from the high-level description,

including scheduling of DDFG, for resource unconstrained, TRS, and IRS tech-

niques, averaged over 100 executions are shown in the Table 6.5. For TRS and

IRS, the times shown are for constraints of 3 DSPs and II 6 respectively. The

time taken to generate TRS implementations is comparable with resource un-

constrained implementations. However, runtimes for IRS are slightly longer as

multiple resource-constrained schedules are generated to obtain the optimal IRS

schedule. We also computed the runtime for TRS with DSP constraints varying

from 1 to 9 and for IRS with II constraint varying from 6 to 41 and observed

that change in runtime is negligible (in the order of less than 1 ms). On aver-

age across all the benchmarks, varying in size from 5 nodes to 35 nodes, the tool

takes approximately 9.7 ms, 9.9 ms, and 11.5 ms to generate the RTL for resource

unconstrained, TRS, and IRS respectively, which is tolerable.

6.7 Summary

We have demonstrated various techniques for reducing DSP block usage for com-

putationally intensive kernels. Traditional resource sharing with constraints on

number of DSP blocks can result in resource savings. And by using the dynamic

programmability of the DSP block, it is possible to have a greater degree of shar-

ing. However, this is at the cost of a significant increase in II. As a result, any sort

of sharing, results in very low throughputs that are insufficient for many appli-

cations. Meanwhile, resource unconstrained implementations often achieve higher

frequencies and throughputs than needed, at a cost of excessive DSP block usage.

In this chapter, we have presented an SDC based scheduling technique that allows

for lower IIs than are achievable using the traditional approach. Out of the 18

benchmarks, only 6 benchmarks can achieve an II of 11 and none achieves an II

of 6 using traditional resource sharing. II-aware resource sharing, on average, im-

proves throughput by 1.8× and 3.3× at the cost of an increase in DSP blocks by
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1.3× and 2× for II constraints of 11 and 6 respectively. Note that if for II require-

ments below the threshold achieved by traditional resource sharing, a design would

have to be implemented with sharing, resulting in under utilisation of resources.

Compared to a resource-unconstrained implementation, II-aware resource sharing

can result in up to 50% and 33% reduction in DSP block usage for IIs of 6 and

11 respectively. We also showed that the proposed approach is scalable to large

computational graphs, and that Vivado HLS does not offer the same DSP block

savings when opting for lower IIs.



7
Multi-pumping Flexible DSP Blocks

7.1 Introduction

As discussed in Chapter 6, hard blocks are typically a limited resource, and hence

resource sharing should be applied where possible to free up more for other uses,

however, traditional resource sharing generally result in an increase II and schedule

length. In the previous chapter, we presented an II aware resource sharing tech-

nique, which can generate implementations with lower IIs than traditional resource

sharing. While II can indeed be improved using that approach, this still results

in an increased scheduled length, and hence latency. Multi-pumping is another

technique that has been demonstrated for reducing hard block utilisation, without

an increase in schedule length. It involves running a resource at a frequency that

154
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Figure 7.1: Plot of reported frequencies on Xilinx Virtex devices for over
350 designs published in FPGA conferences. Also shown are the DSP
block maximum frequency and half that value as would be required for
multi-pumping.

is a multiple of the surrounding circuit, hence offering multiple computational cy-

cles per global cycle. This is possible with DSP blocks since they can typically

be run at a much higher frequency than the rest of the datapath, and therefore,

if clocked at a multiple frequency of the surrounding circuit, multiple operations

can be scheduled in the same clock cycle. In [174], the authors demonstrated the

technique by mapping two multiply operations on to a single multi-pumped DSP

block per global clock. Here, a single function, the multiplier in the DSP block,

becomes a shared resource that can be mapped to by finding multiple multiplica-

tions that can be scheduled in the same cycle. Multi-pumping was also used in

[175] to enable multiported memories with fewer resources.

The DSP blocks in modern Xilinx FPGAs can run at high frequencies of nearly

500 MHz on a Virtex 6 [146], while complete systems will typically have a fre-

quency of around 150–250 MHz. Multi-pumping relies on there being a significant

difference between overall circuit frequency and the supported frequency of the

hard block to be multi-pumped. In our case, a factor of two makes multi-pumping

feasible.
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To explore the feasibility of multi-pumping further, we have analysed FPGA de-

signs presented from 2010 onwards at four key FPGA conferences: the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays (FPGA), the IEEE

International Symposium on Field-Programmable Custom Computing Machines

(FCCM), the International Conference on Field Programmable Logic and Applica-

tions (FPL), and the International Conference on Field Programmable Technology

(FPT). Figure 7.1 shows a box plot of the reported operating frequencies for de-

signs in all the papers analysed, split across Virtex device families. In total, we

analysed 1530 papers, out of which 360 papers presented designs implemented on

Xilinx Virtex family devices. We have also indicated the maximum operating fre-

quency of the DSP blocks for each family and marked the half frequency point.

We can see that the median design frequency has not increased at the same rate

as supported DSP block frequencies in recent device generations, and that over

half of designs (the inter-quartile range) are comfortably below half the supported

DSP block frequency. In summary, the majority of FPGA designs do not operate

at frequencies close to the maximum supported by the DSP blocks. The included

outliers are typically small designs, or those manually optimised around these hard

blocks for maximum performance. A recent study presented in [176] also analysed

papers presented at FCCM between 1995 and 2014 and concluded that embedded

blocks have significantly improved design performance across different vendors and

devices, but that the rate of improvement in design frequency is lagging behind

improvements in FPGA architecture.

The results in Figure 7.1 suggest that multi-pumping (or specifically dual-pumping)

of DSP blocks remains a feasible method for resource sharing. DSP blocks have

also increased in complexity, supporting more operations. The multi-pumping

method in [174] considered only the multiplier within the DSP block. In this

chapter, we first show how the multiple sub-blocks can be multi-pumped through

a brute-force schedule analysis. Then, we explore how functional flexibility offers

improved opportunities for multi-pumping over fixed-function DSP blocks. In-

stead of finding opportunities in the schedule for identical operations mapped to

DSP blocks to share, this flexibility allows different configurations of supported
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datapaths to share the same DSP block. To the best of our knowledge, this is the

first work in which multi-pumping has been applied to dynamically configurable

DSP blocks, mapping logic utilising different sub-blocks onto a single DSP.

In this chapter, we first explore the capabilities of vendor tools in regard to re-

source sharing of DSP blocks in light of their flexibility. For this, we consider

Xilinx ISE and Xilinx’s HLS tool Vivado HLS. We demonstrate the limitations

of vendor tools for re-using DSP blocks for fairly simple use cases and argue the

incapability of vendor tools to maximise DSP block utilisation when throughput

requirements for the design to be implemented are not high. We then discuss

the architecture of a reconfigurable multi-pumped DSP Block (mpDSP), allowing

multi-pumping of DSP blocks with identical or different configurations. We present

a brute-force method for exhaustively searching all possible schedules to determine

an optimum schedule for multi-pumping and show the benefits of multi-pumping

DSP blocks with their sub-blocks, instead of using them for multiplication only.

The exhaustive search limits the size of the DFGs that can be processed. So we

then introduce two improved scheduling techniques for multi-pumping that are

able to determine a schedule in deterministic time, while exploiting dynamic pro-

grammability of DSP blocks for further sharing. One is based on SDC scheduling

discussed for traditional resource sharing in the previous chapter and the other is

based on force-directed scheduling (FDS).

Ideally, multi-pumping can reduce DSP block usage by half, however, that is not

always achievable due to the data dependencies among nodes in the DFGs. We

also introduce an implementation technique which can overcome this limitation by

combining the concepts of resource sharing and multi-pumping, ensuring reduction

of DSP blocks by half, irrespective of data dependencies.

The main contributions of this chapter are:

• A Xilinx DSP48E1 primitive based multi-pumped DSP block architecture

and brute-force scheduling technique for minimising DSP block utilisation

of fully pipelined datapaths.
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• Improved scheduling using SDC and FDS techniques while exploiting dy-

namic programmability of DSP blocks.

• An approach combining the concepts of traditional resource sharing and

multi-pumping, that results in a reduction in DSP blocks usage by half.

• Integration of these techniques into the automated tool flow presented in

previous chapters.

• Evaluation of multi-pumping techniques across the benchmark suite.

The work presented in this chapter has also been discussed in:

• Bajaj Ronak and Suhaib A. Fahmy, Minimising DSP Block Usage Through

Multi-Pumping, in Proceedings of the International Conference on Field Pro-

grammable Technology (FPT), Queenstown, New Zealand, December 2015,

pp. 184-187. [18]

• Bajaj Ronak and Suhaib A. Fahmy, Multi-pumping Flexible DSP Blocks for

Resource Reduction on Xilinx FPGAs, IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD) [under review].

7.2 Related Work

In Section 6.2, we presented an overview of research done in the area of resource

sharing and scheduling techniques to minimise resource utilisation. Here, we re-

view previous work on multi-pumping.

The concept of multi-pumping has been applied previously in other areas. A com-

mon example is Double-Data-Rate (DDR) memories, that allow read/write data

at double the system clock frequency. It has been extensively used in designing

register files [177], and multi-ported memories [178, 179]. A whitepaper by Xil-

inx [180] used multi-pumped DSP blocks with lower input data rates than the

DSP block throughput. However, this capability has not been incorporated in the
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Xilinx Vivado HLS tool. Canis et al. applied multi-pumping to reduce DSP block

utilisation [174] in the open-source LegUp high-level synthesis tool [4]. Our work

differs from that in [174] primarily in that we consider the DSP blocks as fully

featured blocks supporting different configurations that can be dynamically recon-

figured rather than just multipliers. In this chapter, we show that multi-pumping

only multipliers can have a detrimental effect on area usage as other sub-block

operations mapped to DSP blocks must then be implemented in logic and that

it is possible to multipump the DSP block including its other sub-blocks with a

brute force schedule analysis. We then extend it to take advantage of the dynamic

flexibility of the DSP block, showing that this offers more opportunities to take

advantage of multi-pumping, further reducing area.

7.3 Vendor Tools Case Study

In this section, we present a case study that explores how vendor tools (Xilinx

ISE and Xilinx Vivado HLS) utilise the flexibility of DSP blocks when mapping

designs to FPGAs.

The two main purposes of this study are to determine whether the vendor tools

can:

1. use the same DSP block for different operations that are temporally inde-

pendent,

2. exploit the dynamic reconfigurability of the DSP48E1 primitive to minimise

resource utilisation.

All implementations use Xilinx ISE 14.6 and Xilinx Vivado HLS 2013.4.

We implement three different scenarios in Verilog RTL for Xilinx ISE and C++

for Vivado HLS, and analyse the post-place-and-route results. The logical code

for these is shown in Figure 7.2.
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If (mode==1)
    out = A1 * B1    
else
    out = A2 * B2

(a) Case 1

If (mode==1)
    out = A * B
else
    out_temp = A * B
    out = out_temp + C

(b) Case 2

If (mode==1)
    out = A * B
else
    out_temp = A + C
    out = out_temp * B

(c) Case 3

Figure 7.2: Logical code for three case study scenarios (ignoring timing).

Ideally, all three scenarios can be implemented using a single DSP block, as only

one of the multiplication operation will be performed at a time. To analyse if

the vendor tools are intelligent enough to extract this information from the code

segment and implement the logic using a single DSP, we coded the logic in Verilog

RTL and implemented the design using Xilinx ISE. We also used Vivado HLS to

generate RTL from C code to explore if the HLS tool can generate more efficient

RTL utilising only one DSP block.

For Case 1, as only one of the two multipliers is required at a time, we expect an

implementation using a single DSP block, with multiplexers selecting its inputs.

For Case 2 and Case 3, the logic can be implemented using a single DSP block

without extra LUTs since the addition can be absorbed into the pre-adder or post-

adder. The “mode” input can either change the DSP block configuration through

the configuration inputs, or the extra input could be multiplexed to select a zero

when “mode” is 0.

7.3.1 Xilinx ISE

Post-place-and-route implementation analysis shows that two DSP blocks are used

for Case 1 and Case 3, while only one is used for Case 2. This is because Case 3 is

seen as two different sets of multiplier inputs. Case 2 and Case 3 have a different

number of operations in the different branches and hence different latency. We

implement a variation for these cases modifying the RTL to balance the number of

pipeline stages for both branches, by adding an extra register after multiplication
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and before multiplication for Case 2 and Case 3 respectively. This resulted in a

reduction of one DSP primitive for Case 3, however the adder was implemented

in LUTs for both cases, and not absorbed into the DSP block.

7.3.2 Vivado HLS

Vivado HLS translates high-level C++ code to synthesisable RTL and uses di-

rectives to guide the RTL implementations. One of the directive which can be

applied to these scenarios is config bind, which allows the designer to set micro-

architecture binding options. The min op option of the config bind directive tells

the HLS tool to minimise the number of instances of a particular operation. We

implement all three scenarios in C++ and generate RTL with and without the

config bind directive set to minimise the number of multipliers.

Post-place-and-route analysis for the RTL generated by Vivado HLS shows that

for Case 1, without the directive, the generated RTL uses two DSP blocks. With

the directive enabled, only a single DSP block is used for both branches, with

multiplexers at the inputs. Though it is a straightforward optimisation, Vivado

HLS must be directed to do this. For Case 2 and Case 3, the DSP block is used

only for multiplication and the adder is implemented using LUTs.

We can see that the HLS tools can optimally utilise embedded block resources in

simple cases. However, this is limited to specific combinations only, and in general,

it fails to fully exploit the different sub-blocks in the primitive. RTL-level design

in Xilinx ISE does not show as much optimisation and may or may not share

resources depending on the specific coding style used.

7.4 Resource Sharing and Multi-Pumping

Traditional resource sharing allows the same resource to be shared in a time-

multiplexed manner by multiplexing its inputs, and demultiplexing the output.

Complex embedded blocks in FPGAs are an ideal target for resource sharing
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Figure 7.3: (a) Input dataflow graph (b) Traditional resource sharing
(Number of multipliers available = 2) (c) Multi-pumping multipliers only
(d) Multi-pumping same configuration DSP blocks (e) Multi-pumping
DSP blocks with dynamic programmability.

since they are scarce compared to other resources. Multipliers consume significant

resources and offer poor performance when implemented using LUTs and registers,

though adders and subtractors can be efficient in general logic. Resource sharing

is not advisable for simple adders since the multiplexing overheads negate the

benefits of sharing [119]. In traditional resource sharing, we search for independent

uses of the same resource that are not scheduled at the same time, and add the

resource sharing circuitry around the resource. If there are M multipliers available,

for example, we can schedule the dataflow graph such that, in each schedule time,

there are no more than M multiplication operations, but this can result in a longer

schedule.

Multi-pumping achieves resource reduction by mapping two operations onto the

same resource by over-clocking it, thereby giving it two execution cycles in the

time of one global cycle. We illustrate this using a simple dataflow graph, which

is part of larger design, shown in Figure 7.3a. Without any resource sharing, the

dataflow graph can be scheduled in 3 cycles, using 4 multipliers and 3 adders. Using

traditional resource sharing, the graph can be implemented using 2 multipliers
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and 3 adders, re-using multipliers, but at the expense of increased latency and

initiation interval, as shown in Figure 7.3b. With multi-pumped multipliers, all 4

multiplication operations can be mapped to 2 multipliers (Figure 7.3c), saving two

multipliers without an increase in schedule time. When we use embedded DSP

blocks to implement multiple operations, blocks implementing the same operations

can be multi-pumped, reducing the number of DSP blocks as well as generic FPGA

resources required to implement other add/sub operation which are merged with

multiplication (Figure 7.3d). By exploiting dynamic programmability of DSP

blocks, resource usage can be further minimised, as different configurations of the

DSP block can also be multi-pumped together, as shown in Figure 7.3e.

The primary condition for multi-pumping to achieve significant resource reduction

is that the embedded block should support a frequency that is double the frequency

requirement of the overall design. To maximise multi-pumping, the dataflow graph

should be scheduled such that an even number of DSP block operations can be

scheduled in each schedule time, so that these can then be shared across multi-

pumped DSP blocks.

7.5 Multi-pumped DSP Block Architecture

We have designed a multi-pumped DSP block (mpDSP), based on the Xilinx

DSP48E1 primitive, exploiting the full set of sub-blocks and dynamic programma-

bility. We assume the mpDSP runs at double the speed of surrounding logic,

requiring two clock domains. Theoretically, an application with lower frequency

requirements could offer 4× multi-pumping, however, overheads incurred by the

data and control multiplexers and the increased complexity of identifying sharing

possibilities in the schedule would mean diminished benefits.

A block diagram of the mpDSP is shown in Figure 7.5. Clk2 is aligned with and

exactly twice Clk1 . Clk1 Follower follows the system clock (Clk1 ), and is fed to

the multiplexer select signal to choose between inputs to the DSP48E1 primitive.
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Figure 7.4: Clock follower circuit diagram.

We do not use Clk1 directly to avoid possible hold-time violations [180]. Figure 7.4

shows the clock follower circuit diagram [180].

The three sub-blocks: pre-adder, multiplier, and ALU can be enabled/disabled/re-

configured in each clock cycle, depending on the logic to be mapped to the mpDSP.

In our mapping of operations to DSP blocks, the multiplier is always used, and is

always enabled. All four pipeline stages of the DSP48E1 primitive are enabled to

achieve maximum frequency for Clk2 . In configurations for which the ALU block

is used, two extra registers are added to align the C input of the DSP48E1 primi-

tive. The configuration word for the DSP48E1 primitive is 17 bits long, consisting

of 5-bit INMODE, 7-bit OPMODE, 4-bit ALUMODE, and 1-bit CARRYIN sig-

nals (Figure 3.6). The CARRYIN input is the carry input to the ALU sub-block,

which must be set to 1 when the output of the multiplier is subtracted from input

C.

The mpDSP has a maximum of 8 inputs and 2 outputs, when both temporal

configurations utilise all three sub-blocks. Configurations of the DSP48E1 primi-

tive are passed through parameters. If a configuration does not utilise either the

pre-adder or ALU sub-blocks, the corresponding inputs are held at zero in the in-

stantiation of the mpDSP, and these are then optimised away by the vendor tools.

At each positive edge of the system clock (Clk1 ), inputs I1 (A1, B1, C1, D1) and

I2 (A2, B2, C2, D2) arrive at the multiplexers. For the first half of the system

clock, Clk1Follower causes the multiplexer to pass the I1 inputs to the DSP48E1

primitive and the corresponding configuration bits are applied. The I2 inputs are

selected in the second half of the system clock. The latency of the mpDSP is
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Figure 7.5: Multi-pumped DSP block (mpDSP) architecture.

equivalent to 3 system clock cycles, after which the outputs corresponding to both

sets of inputs arrive at O1 and O2.

The maximum frequency for a design using mpDSP blocks is calculated asmin(fClk1, fClk2/2).

On more modern devices where the DSP block can reach 700 MHz, this translates

to a 350 MHz system clock which is above the maximum achievable frequency for

most larger designs as shown in Figure 7.1.

7.6 Multi-Pumping Scheduling

To utilise the full potential of the multi-pumped DSP blocks discussed above,

the DDFG should be scheduled in such a way that in each schedule time (ST)

i, an even number, 2Mi, of DSP nodes are scheduled. 2Mi DSP48E1 primitive

templates then can be mapped to Mi multi-pumped DSP blocks.

We first discuss a brute-force search based technique to determine an optimal

schedule for multi-pumping. However, this search becomes complex for large

graphs or when we consider the full flexibility of the DSP block. We then dis-

cuss two scheduling techniques which can determine schedule for multi-pumping
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in deterministic time. First, we extend SDC scheduling, then we adapt Force-

directed scheduling (FDS).

7.6.1 Brute-Force Scheduling

The schedule for multi-pumping is determined in two stages. We first determine a

schedule which results in the minimum number of mpDSPs, which is the primary

optimisation goal. If there are multiple schedules with the same mpDSP usage, we

choose the one that consumes fewer extra registers to balancing pipeline stages.

Firstly, the ASAP and ALAP schedules of the DDFG are determined to compute

the mobility of each node. This is the measure of flexibility with which the node

can be scheduled in different STs; the difference between the ALAP and ASAP

STs. Nodes with zero mobility are those which must be scheduled in a particular

ST to maintain data dependencies. Nodes with non-zero mobility can be exploited

to arrive at a schedule which maximises opportunities for multi-pumping.

A list of nodes with non-zero mobility is produced and all possible schedules are

generated for these mobilities. This exhaustive list of schedules ignores dependen-

cies. In the next step schedules that do not satisfy dependencies are discarded. For

the remaining valid schedules, we calculate the mpDSP block requirement for each

schedule. We also keep track of the minimum number of mpDSPs required (min-

MpDSPs) among all the schedules. Since the primary goal is to minimise usage of

DSP blocks, we select all schedules that require minMpDSPs blocks and discard

others. This can result in multiple schedules with the same mpDSP consumption.

To resolve this tie, we estimate the number of pipeline balancing registers required

for each schedule. These are required to ensure that dataflows through the graph

are correctly aligned. The schedule requiring the minimum number of balancing

registers is then selected as the final schedule. If multiple schedules are equivalent

at this point, the first is chosen. The algorithm is detailed in Algorithm 5.

Although this approach results in an optimised schedule, the exhaustive search

does not scale well to large dataflow graphs.
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Algorithm 5: Brute-force based multi-pumping

def bfMpSchedule(ddfg):
Data: DSP Dataflow Graph (ddfg)
Result: Scheduled ddfg (schDDFG)

begin
asap(ddfg)
alap(ddfg)

flexiNodes = [ ] #list of nodes with mobility>0
fixedNodes = [ ] #list of nodes with mobility=0
#for each dsp node n in ddfg
for n in ddfg:

nmobility = talap − tasap
if nmobility>0:

flexiNodes.append(n)
else:

fixedNodes.append(n)

allSchedules = generateAllSchedules(flexiNodes)
minMpDSPs = len(ddfg) #minimum multi-pumped DSPs required

#discard invalid schedules and calcualte multi-pumped DSPs required for each
valid schedule
for schedule in allSchedules:

if isValid(schedule):
schedule[numMpDSPs] = calcNumMpDSPs(schedule)
if minMpDSPs>schedule[numMpDSPs] :

minMpDSPs = schedule[numMpDSPs]
else:

continue

else:
allSchedules.remove(schedule)

if len(allSchedules)>1 :
numBR = [ ] #list of number of balancing registers required for each
schedule
for schedule in allSchedules:

numBR.append(estimateBR(schedule))

schDDFG = allSchedules.index(min(numBR))
else:

schDDFG = allSchedules[0]

schDDFG += fixedNodes
return schDDFG

7.6.2 SDC-Based Scheduling

As discussed in Section 6.3.1, SDC scheduling is based on linear programming

and is very flexible. It can be extended to generate schedules with different opti-

misation goals. Here, for multi-pumping optimised scheduling, compared earlier
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scheduling for traditional resource sharing, we do not require constraints on the

number of resources. To arrive at a schedule for multi-pumping, we identify pairs

of DSP blocks that can be multi-pumped, and add constraints such that those

DSP blocks are scheduled at the same ST.

Maximising the number of pairs of DSP blocks to be multi-pumped can be solved

by finding the maximum matching for a graph where each vertex is a DSP block

and those sharing a schedule time are connected via edges. We use the Edmond

Matching (EM) algorithm [181] to determine maximum matchings. Vertices of

the input DDFG are either a DSP block performing a combination of operations

or add/sub blocks implemented using FPGA logic, and edges representing data

dependencies between nodes.

From the input DDFG, we generate the EMDDFG which is used to determine

multi-pumping matchings. In the EMDDFG, each edge connecting vertices vi and

vj shows that the DSP blocks can be multi-pumped. An edge is added between vi

and vj if:

• vi and vj do not depend on each other, i.e., there should not be any path

connecting the output of vi to vj and vice versa.

• The schedule time of vi and vj overlap, to allow multi-pumping. The ST of

a node in the ASAP schedule is the earliest a node can be scheduled and

ALAP ST is latest ST for a node. Nodes are considered as overlapping if

the ASAP ST of vi is less than ALAP ST of vj and ASAP ST of vj is less

than ALAP ST of vi.

Firstly, the DDFG is scheduled according to ASAP and ALAP scheduling methods.

From the input DDFG, we extract the DSP nodes, determine overlapping nodes

and dependencies using the ASAP and ALAP STs, and generate EMDDFG as

mentioned above. The output of the EM algorithm is a set of edges from the

DDFG that results in maximum matching. DSP blocks connected by an edge can

be multi-pumped together.
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Algorithm 6: SDC based multi-pumping

def sdcMpSchedule(ddfg, schObjective, λ):
Data: DSP Dataflow Graph (ddfg), schObjective, λ
Result: Scheduled ddfg (schDDFG)

begin
asap(ddfg)
alap(ddfg)

#generate edmond matching dataflow graph and determine multi-pumping
matchings
EMDDFG = generateEMDDFG(ddfg)
matchings = getMatchings(EMDDFG)

lp = initialiseLP(ddfg) #initialise LP problem
lp = addMulticycleConstraints(lp, ddfg)
lp = addMultipumpConstraints(lp, ddfg, matchings)
lp = addObjFunc(lp, schObjective, λ) #add objective function to LP

schDDFG = solveLP(lp) #solve formulated LP

#remove infeasibility if formulated LP is infeasible
if (schDDFG == -1):

lp = removeInfeasibility(lp, matchings, EMDDFG, ddfg)
schDDFG = solveLP(lp)
return schDDFG

else:
return schDDFG

As discussed in Section 6.3.1, the LP problem is initialised and multicycle and

dependency constraints are added to the LP problem. We then add constraints

for multi-pumping. For each set of vertices (vi, vj) which can be multi-pumped, a

constraint is added such that start times for both nodes is the same.

svstart(vi)− svstart(vj) = 0 (7.1)

After adding all the required constraints to the LP problem, we formulate the

objective function according to the user inputs (ASAP or ALAP) and solve the

LP using the open-source “lpsolve” solver [173].

In the EMDDFG, independent overlapping nodes are connected by edges, but,

information on data dependencies between nodes is not captured. Due to this,

some matchings generated by the EM algorithm can result in infeasible LP for-

mulations, for which no solution exists that satisfies all the constraints. In order



7 Multi-pumping Flexible DSP Blocks 170

to resolve this, we iteratively follow the following four steps until the formulated

LP results in a solution:

1. Identify incorrect matching, i.e., a multi-pumping constraint due to which

the LP is infeasible.

2. Remove the edge corresponding to the identified matching from the EMDDFG.

3. Rerun the EM algorithm to the updated EMDDFG, resulting in a new set

of matchings.

4. Solve the LP with the multi-pumping constraints for the new matchings.

In order to identify the source of infeasibility, i.e., incorrect matching (step 1), we

add a variable (α) to the LP formulation which is currently infeasible, whose multi-

pumping constraints are of the form shown in Equation 7.1. Incorrect matching

implies that start times of both the vertices of a multi-pumping pair cannot be

equal. For each multi-pumping constraint, we iteratively modify the constraint

by replacing 0 with α, relaxing the constraint, and then attempt to solve the LP.

The relaxed constraint for which the LP results in a feasible solution after the

above replacement is the incorrect matching, and the corresponding edge must be

removed from the EMDDFG.

The algorithm is detailed in Algorithm 6.

7.6.3 FDS-Based Scheduling

Force-directed scheduling (FDS) [172] is a heuristic method for generating a sched-

ule using a deterministically greedy approach without backtracking. Although

FDS follows a greedy approach, all possible schedule times of the node being

scheduled are explored with consideration for the effect on other nodes before a

schedule time is assigned, resulting in a satisfactory schedule.

We use FDS with a modification to generate a multi-pumping optimised schedule.

Instead of directly selecting the ST of minimum force for a node, we explore the
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Algorithm 7: Modified FDS for multi-pumping

def fdsMpSchedule(ddfg):
Data: DSP Dataflow Graph (ddfg)
Result: Scheduled ddfg

begin
asap(ddfg)
alap(ddfg)

#for each dsp node n in ddfg
for n in ddfg:

n[mobility] = n[talap]− n[tasap]

#assign schedule time to nodes with zero mobility; -1 for other nodes
initialiseSchedule(ddfg)
#initialise an empty list of nodes which are paired for multi-pumping
matchedNodes = [ ]
for n in ddfg:

if n[schTime] != -1 :
continue

else:
currDG = getDistributionGraph(n[type], n)
nodeForces = [0]*(n[mobility] + 1)
#for each schedule time of node n
for i in (n[tasap], n[talap] + 1):

nodeForces[i] += calcSelfForce(currDG,i,ddfg)
nodeForces[i] += calcPredForce(currDG,i,ddfg)
nodeForces[i] += calcSuccForce(currDG,i,ddfg)

minForceIndex = nodeForces.index(min(nodeForces))
if n[type] is addsub:

n[schTime] = n[tasap] + minForceIndex
else:

[matchedNode,forceIndex] = findMpNode(nodeForces, ddfg)
if matchedNode:

n[schTime] = n[tasap] + forceIndex
matchedNodes.append(n)
matchedNodes.append(matchedNode)

else:
n[schTime] = n[tasap] + minForceIndex

return ddfg

possibilities of multi-pumping the node with previously scheduled nodes. If a

match is found, that ST is selected for the node, otherwise the minimum force ST

is selected. The algorithm is detailed in Algorithm 7.

Firstly, the DDFG is scheduled according to ASAP and ALAP scheduling methods.

ALAP and ASAP schedule times are used to compute the mobility of each node.
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We then create a priority list of nodes in the DDFG, which orders the traversal for

scheduling. We sort the nodes in DDFG according to their ASAP ST, and ALAP

STs are used as a tie-breaker. We initialise the DDFG schedule by assigning nodes

with zero mobility an ST equal to their ASAP schedule time, and −1 for other

nodes for further processing. A schedule time of −1 indicates that the node is yet

to be scheduled.

We traverse the nodes in the DDFG according to the priority determined above

and schedule one unscheduled node in each iteration through three stages. In the

first stage, we create a distribution graph of the operation of the current node.

Each node can be of two types. It can either be a DSP node, implementing a

set of operations using a DSP48E1 primitive, or can be an add/sub node, to be

implemented using a LUT based adder/subtractor. The Distribution graph (DG)

is a set of sums of probabilities of scheduling an operation, in a particular ST.

For each operation Op, DG(i) =
∑N

n=1 Prob(n, i), where N is the total number of

nodes in the DDFG, and Prob(n, i) is 1/(n[mobility] + 1) if n[tasap] ≤ i ≤ n[talap],

0 otherwise.

The second stage is to calculate the force for the node, for each possible ST. The

force for a node is a measure of the cost of scheduling the node in a particular

schedule time, and is the product of the value of the DG of the schedule time

and the change in the operation’s probability if it is scheduled in that ST. Force

for an operation assigned schedule time i is calculated as, Force(i) = DG(i) ×
∆Prob(Op, i), where ∆Prob(Op, i) is the change in probability. Three type of

force are associated with each node. First is the self force, which is the sum of

forces for each possible ST, calculated using the change in probabilities of the

current node, which is being scheduled. While calculating the self force for ST

i, the probabilities of the node changes to 1 for ST i, 0 otherwise; these are the

probability changes used. Assigning the node in a schedule time can affect the

mobility of its predecessor and successor nodes. Similar to self force, predecessor

force and successor force are calculated for nodes whose mobility is affected due

to the current node ST. The total force for the current ST is the sum of all three

forces.
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In the third stage, traditional FDS selects the ST with minimum force. For the

multi-pumping optimised FDS, we modify this stage. Starting from the ST with

minimum force, we check if there are nodes scheduled in the same ST that are not

yet paired with any other node for multi-pumping. If a match is found, we assign

the ST of the matched node. We continue to check STs with ascending force to

find a match. Both the current node and the matched node are flagged as matched

and are not considered for matching for all further iterations. If no match if found,

the node is assigned to the ST with minimum force.

Brute-force based scheduling works for multi-pumping fixed DSP block configura-

tions, with their sub-blocks. However, the approach is limited by the size of the

dataflow graph and the addition of DSP block flexibility compounds this. SDC and

FDS based scheduling can generate schedules in deterministic time while also ex-

ploiting the dynamic programmability of DSP blocks to maximise multi-pumping.

The overheads of using mpDSP blocks include the multiplexers required to select

two different sets of inputs, the control to switch DSP block configuration, and

two extra 48-bit registers required to balance the input C. One advantages of the

FDS-based approach over the SDC-based approach is that it can prioritise multi-

pumping of identical DSP block configurations, whereas the EM algorithm used

for matching in the SDC approach treats all DSP blocks the same.

Multi-pumping with the same configuration results in savings in terms of LUTs as

there is no need for the configuration control circuitry. Consider a scenario where

four DSP blocks can be schedule in an ST, mapping to two mpDSPs. Among

the four DSP blocks, two are utilising only the multiply sub-block (mul) and the

other two utilise all three sub-blocks (add-mul-add). In SDC, the identified pairs

could each be mul and add-mul-add, requiring an extra input and control register

for both the mpDSPs. However, in FDS, both mul operations will constitute

one pair and add-mul-add operations another pair. Thus, only one mpDSP block

will require extra registers compared to both the blocks for SDC. And since both

configurations are the same, the configuration circuitry is optimised away, saving

LUTs.



7 Multi-pumping Flexible DSP Blocks 174

7.7 Combining Multi-Pumping and Resource

Sharing

We have shown that multi-pumping can be applied using the above scheduling

methods to pair DSP blocks in the same ST. Ideally, for a dataflow graph with n

DSP blocks, multi-pumping should result in a DSP block reduction from n to
⌈
n
2

⌉
.

However, this is not always feasible due to the data dependencies and structure of

the input dataflow graph that may result in STs with odd numbers of DSP blocks.

In such cases, the (2n + 1) DSP blocks are mapped to n mpDSPs and a single

DSP48E1 primitive. In large graphs with multiple STs with odd numbers of DSP

blocks, this can limit the benefits of multi-pumping.

We can overcome this by applying traditional resource sharing to these lone DSP

blocks using an mpDSP. In this case, we take two lone DSP blocks scheduled in

different times, and treat them as two separate phases of an mpDSP, effectively

virtualising the resource as two, since there are two possible input sets per global

clock. Firstly, we schedule the DDFG according to either the SDC-based or FDS-

based scheduled techniques as discussed in Section 7.6.2 and Section 7.6.3. We

multipump the pairs as previously described, then map remaining individual nodes

to DSP blocks. A second pass searches for these non multi-pumped DSP blocks

and pairs them into an mpDSP. Thus, without affecting the rest of the datapath

(including pipeline balancing registers) and II, and without requiring any extra

control logic, DSP blocks scheduled in different STs can also be multi-pumped

and mapped onto mpDSPs.

7.8 Automated Tool Flow

The tool flow discussed in Section 6.5 is adapted to generate multi-pumping im-

plementations. The first three stages remain as discussed in Chapters 4 and 5.
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The Pre-processing stage discussed in Section 6.5 is replaced with the three multi-

pumping scheduling techniques discussed in this chapter. Since the implementa-

tions for multi-pumped implementations differs significantly, we discuss the RTL

Generation stage in this section. The final RTL Project Execution stage remains

the same as discussed in Section 4.6.

7.8.1 RTL Generation

The schedule determined for the DDFG in the Pre-processing stage is used to

transform the DDFG into an mpDDFG (multi-pumped DSP Dataflow Graph),

each node representing one of these three type of blocks: a mpDSP block, a

DSP48E1 primitive, or a LUT based add/sub block. To achieve a DSP block

reduction of a half, ideally the number of DSP block nodes in each schedule time

should be a multiple of two, though this is not always possible due to dependency

constraints. For brute-force scheduling (Section 7.6.1), DSP nodes in the same

ST with the same configuration are mapped to mpDSPs. For SDC and FDS

based techniques (Sections 7.6.2 and 7.6.3), if the number of nodes scheduled in

the DDFG is even (2M), we utilise M mpDSP blocks. Ports corresponding to

the nodes in the DDFG (up to 4 × 2M) are mapped to the corresponding 8×M
ports of M mpDSPs. If an odd number of DSP blocks (2M +1) are scheduled in a

schedule time, we utilise M multi-pumped DSPs and similarly map the ports of the

DDFG nodes to mpDDFG, and the remaining DDFG node is mapped directly to

a DSP block with the correct configuration running at the system clock frequency.

Although the single DDFG node can also be mapped to a mpDSP with input set

I2 left unconnected, mapping the node directly to a DSP48E1 primitive saves on

the extra circuitry required in a mpDSP.

For the combined multi-pumping and resource sharing implementation, DSP blocks

scheduled in different schedule times are also mapped to mpDSP blocks. The

mpDDFG for this technique can still have a single DSP48E1 node if the total

number of DSP block nodes is odd.
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Graph Inputs Outputs Adders/Subs Muls

Chebyshev 1 1 2 3

Mibench2 3 1 8 6

FIR2 17 1 15 8

SG Filter 2 1 6 6

Horner Bezier 12 4 6 8

Poly1 2 1 5 4

Poly2 2 1 3 5

Poly3 6 1 4 6

Poly4 5 1 3 3

Poly5 3 1 14 11

Poly6 3 1 19 23

Poly7 3 1 18 17

Poly8 3 1 16 15

Quad Spline 7 1 4 13

ARF 26 2 12 16

EWF 21 5 26 8

Motion Vector 25 4 12 12

Smooth Triangle 29 14 20 17

Table 7.1: Graph nodes I/O and operations.

From the mpDDFG, Verilog RTL instantiations of the multi-pumped DSP blocks,

DSP48E1 primitives, and add/sub blocks are generated along with the pipeline

balancing registers. For mpDSP blocks, the two configurations are passed as pa-

rameters, which are either the same or alternate in each positive and negative

edge of the system clock, as discussed in Section 7.5. If the two multi-pumped

configurations are identical, the configuration is hard-wired.
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Sub-blocks DSPs LUTs LUTeqv Reg Freq

Mul 1 45 241 51 235

PA-Mul 1 70 266 51 230

Mul-ALU 1 69 265 147 227

PA-Mul-ALU 1 102 298 147 229

Table 7.2: Resource usage and maximum frequency for mpDSP block.
(PA: Pre-adder sub-block; Freq in MHz)

7.9 Experiments and Analysis

To explore the effectiveness of proposed methods for multi-pumping, we imple-

mented all benchmark multiply-add flow graphs discussed in Chapter 4. Table 4.1

(reproduced here in Table 7.1) shows the number of inputs, outputs, and number of

each type of operation for each of the benchmarks. All the implementations target

the Virtex 6 XC6VLX240T-1 FPGA found on the ML605 development board, and

use the Xilinx ISE 14.6 and Xilinx Vivado HLS 2013.4. We ran the updated tool

flow to generate multi-pumped RTL implementations on an Intel Xeon E5-2695

running at 2.4 GHz with 16 GB RAM.

7.9.1 Resource Usage and Frequency

Multi-pumping results in a trade-off between DSP block and LUT usage. As

DSP blocks and LUTs cannot be compared directly, and to understand overall

resource usage, we compare the area in terms of equivalent LUTs, where LUT eqv =

nLUT + nDSP × (196). 196 is the ratio of the number of LUTs (150720) to the

number of DSP blocks (768) available on the target device used. This gives a

proxy for overall area consumption.

Table 7.2 shows the resource usage and maximum frequency for a single mpDSP

block which does not utilise dynamic programmability. Each row represents a

combination of sub-blocks used. The number of LUTs required increases as we

use more sub-blocks, since more inputs need to be multiplexed. When DSP blocks
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with different configurations are mapped onto a mpDSP, a 17-bit multiplexer is

required for switching between configurations (as shown in Figure 7.5), consuming

a maximum of up to 17 extra LUTs. This multiplexer is optimised away if the

configurations of both the DSP operations are the same. Registers required to

hold intermediate outputs and the outputs of both the operations are the same

for all four combinations. However, configurations for which the ALU sub-block

is used, require 2 extra 48-bit registers to balance the C input of the DSP block

primitive.

As discussed above, a DSP48E1 primitive is equivalent to 196 LUTs in logic.

Even after considering the extra 17 LUTs required to select configurations, the

number of extra LUTs required by the mpDSP is always fewer than the LUTeqv

of a DSP block (up to 119(102+17)), and thus always results in an overall area

saving. Though there remains an overhead of extra register utilisation, required

to balance the internal stages and intermediate output storage. The maximum

frequency achieved by all the configurations remains largely the same.

We compare four different scenarios to understand the effect of multi-pumping on

resource utilisation and frequency. The first (Original) does not use multi-pumping

but maps efficiently to fully pipelined DSP blocks, as discussed in Chapter 4. The

second (MulOnlyMP) multipumps only multipliers (similar to [174]). This gives

us a baseline against which to compare our approach. Since only the multipli-

ers are multi-pumped, all adders and subtracters are forced into the logic fabric.

The third(MP) multipumps DSP blocks including all sub-blocks using either of

the three scheduling approaches described in this chapter. A pair of DSP blocks

scheduled in the same schedule time, with the same configuration, i.e., implement-

ing the same combination of operations, is implemented using a single mpDSP

block, with the same configurations. The fourth method (RTRMP), exploits all

the functionality of the DSP48E1 primitives, including run-time programmability.

Exploiting run-time programmability, DSP block nodes implementing different op-

erations including different sub-block usage are implemented using a single mpDSP
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block. RTRMP implementations are generated for SDC and FDS based schedul-

ing approaches only, as the brute-force scheduling only works for DSP blocks with

the same configurations.

7.9.1.1 Baseline Multiplier Multi-Pumping

Due to the exhaustive nature of the brute force approach discussed in Section 7.6.1,

we are not able to generate schedules for five benchmarks (FIR2, Poly6, Poly7,

Poly8, and Smooth Triangle). The high mobility of multiple nodes in these bench-

marks results in a very large number of possible schedules, resulting in full memory

utilisation on our test machine. For the remaining 13 benchmarks, compared to

Original, MulOnlyMP reduces DSP block usage by 33–50%, averaging 42%, at

a cost of increased LUT and register usage of 2.7× and 1.7× respectively. The

significant increase in LUTs and registers is due to DSP blocks being used for

multiplication only and all add/sub blocks being implemented in LUTs. Despite

this significant increase, multi-pumping results in an average reduction in LUTeqv

of 12%, and achieves almost half the maximum frequency of Original (242 MHz

on an average).

7.9.1.2 Fixed Function Multi-Pumping

Considering MulOnlyMP as a baseline, MP utilises 15% more DSP blocks due to

the limited possibilities for multi-pumping, since the configurations must agree.

However, as full DSP blocks are multi-pumped, add/sub blocks are included, sig-

nificantly reducing resource consumption. MP utilises 60% fewer LUTs and 43%

fewer registers compared to MulOnlyMP, with an improvement in average max-

imum frequency by 1%. Compared to Original, MP results in a 33% reduction

in DSP block usage with an increase of 8% LUTs while reducing register usage

by 2%, effectively saving 22% LUTeqv area. This represents DSP block savings

comparable to MulOnlyMP with significantly less impact on LUTs and registers.
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Scheduling DSPs LUTs LUTeqv Regs Freq

Original 6.9 202 1585 471 471

MulOnlyMP BF 4.0 573 1397 812 242

SDC 4.0 525 1378 795 245

FDS 4.0 518 1375 784 242

MP BF 4.6 219 1240 460 239

SDC 5.4 187 1332 397 245

FDS 4.9 205 1259 438 242

Table 7.3: Geometric mean of resource usage and maximum frequency
across all implementations, using brute-force, SDC-based, and FDS-based
scheduling techniques for 13 benchmarks. Freq in MHz.

Table 7.3 shows the geometric mean of resource usage and maximum frequency

for 13 benchmarks, for the first three scenarios. The five benchmarks which could

not be scheduled using brute-force scheduling have been excluded for SDC-based

and FDS-based scheduling as well. For MulOnlyMP, resource reduction using all

three scheduling techniques is comparable, however, for MP, as exhaustive search

explores all the possibilities, DSP reduction is higher compared to SDC and FDS

based techniques. FDS-based scheduling performs better compared to SDC as

multi-pumping of same configuration DSP blocks is prioritised. Multi-pumping

only multipliers does not result in significant savings, as mapping of add/sub

operations onto LUTs eliminates the savings in DSP block usage.

7.9.1.3 SDC-Based Flexible Multi-Pumping

Table 7.4 shows resource utilisation and maximum frequency for all four scenarios,

using SDC-based scheduling. Ideally, for a benchmark using n DSP blocks, multi-

pumping can result in savings up to
⌈
n
2

⌉
DSP blocks. However, this is not always

achievable due to node dependencies in the dataflow graph, and this is evident in

Table 7.4. Out of the 18 benchmarks, half of the benchmarks (Mibench2, Horner
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Original MulOnlyMP MP RTRMP

Benchmarks DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq

Chebyshev 3 47 132 473 3 60 124 473 3 13 34 292 3 13 34 292

Mibench2 6 200 400 473 3 606 874 227 3 324 596 228 3 324 596 228

FIR2 8 519 1030 473 4 884 1919 230 8 384 982 292 8 384 982 292

SG Filter 6 89 252 473 4 416 555 236 5 69 167 236 4 112 243 231

Horner Bezier 8 272 619 473 4 714 1073 232 7 247 560 236 4 460 934 228

Poly1 4 119 246 473 2 286 367 233 3 79 218 236 3 79 218 236

Poly2 5 95 204 473 3 279 414 236 4 73 176 236 3 102 226 236

Poly3 6 150 402 473 4 398 671 236 5 169 331 236 4 221 492 236

Poly4 3 102 272 473 2 282 441 236 3 86 199 292 3 86 199 292

Poly5 12 268 594 473 7 1066 1332 229 12 181 354 292 7 378 911 227

Poly6 23 455 918 455 12 1976 2417 217 22 375 775 236 12 1097 1767 228

Poly7 17 406 800 473 9 1550 1890 218 17 249 629 286 10 723 1275 228

Poly8 15 326 694 473 8 1484 1782 228 14 235 541 236 10 335 921 229

Quad Spline 13 195 565 469 7 590 982 228 9 307 611 231 7 461 789 229

ARF 16 745 1486 473 8 1520 2299 227 14 749 1607 236 8 1275 2471 227

EWF 8 1191 1955 458 4 1870 2694 223 6 1345 1876 233 4 1516 2240 227

Motion Vector 12 506 1290 473 6 1347 2165 232 6 1017 1976 218 6 1017 1976 218

Smooth Triangle 17 751 1861 464 9 2068 3115 184 16 922 1772 232 9 1364 2592 163

Geo Mean 8.5 256 580 470 4.8 707 1052 236 7.1 227 492 248 5.3 324 678 234

Impv (%) 1 1 1 1 -48 68 53 5.1 -10.4 54 36 -0.8

LUTeqv Impv (%) 1 1 14

Table 7.4: Resource usage and maximum frequency across all implemen-
tations, using SDC-based scheduling. Freq in MHz.

Bezier, Poly2, Poly6, Quad Spline, ARF, EWF, Motion Vector, and Smooth Tri-

angle) do offer maximum DSP block reduction, while the other benchmarks save

between 33–42% DSP blocks for the fully flexible RTRMP approach.

Row “Geo Mean” in Table 7.4 shows the geometric mean of resource utilisation

across benchmarks, for all four scenarios we have implemented. MulOnlyMP re-

sults in a 44% reduction in DSP utilisation compared to Original, however this is

at the cost of almost 2.8× and 1.8× increase in LUTs and Regs respectively. Note,

however, that these values are for a computation kernel in a larger system, which

can utilise many LUTs for the surrounding logic. Thus, the percentage increase in

LUT usage for the full system may not be significant, also demonstrated in [174].

Despite the significant increase in LUTs, LUTeqv is reduced by 13%. As expected,

the frequency achieved using MulOnlyMP is almost half of the Original.

As discussed earlier, the decrease in DSP block usage is at a cost of increased LUT
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Figure 7.6: DSP48E1-LUT usage trade-off for SDC-based scheduling.

usage. Figure 7.6 shows the trade-off between relative DSP block and LUT us-

age for all variations of multi-pumping, for SDC-based scheduling. We normalise

DSP48E1 and LUT count for each benchmark against the non-multi-pumped im-

plementation. MulOnlyMP implementations use a significantly increased number

of LUTs, compared to MP and and RTRMP. This is due to the mapping of add/-

sub operations in the FPGA fabric since only the multipliers are multi-pumped.

The LUT overheads for MP and RTRMP are significantly reduced, as full DSP

block functionality is multi-pumped. For MP, DSP block usage is higher than

RTRMP due to the limited opportunities of multi-pumping DSP blocks with same

configurations. We can also see that RTRMP tends to save more DSP blocks with

a comparable LUT count to MP.

Compared to MulOnlyMP, MP utilises 48% more DSP blocks, however, as the

sub-blocks of DSPs are also utilised, it uses 68% fewer LUTs and 53% fewer

Regs. RTRMP exploits both the sub-blocks and dynamic programmability of

DSP blocks, thus multi-pumping same number of DSP blocks as MulOnlyMP for

most of the cases, with a significant reduction in LUTs and Regs of 54% and 36%

respectively. Compared to Original, RTRMP results in a 38% reduction in DSP

block usage, and 27% and 17% increase in LUT and Register usage respectively,

effectively saving 25% LUTeqv.
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MulOnlyMP MP RTRMP

Benchmarks DSPs LUTs Regs Freq DSPs LUTs Regs Freq DSPs LUTs Regs Freq

Chebyshev 3 67 124 473 3 13 34 292 3 13 34 292

Mibench2 3 557 832 233 3 325 593 230 3 325 593 230

FIR2 4 1019 1919 229 8 384 982 292 8 384 982 292

SG Filter 4 417 569 228 5 99 199 236 4 119 267 236

Horner Bezier 4 689 1071 234 4 430 911 230 4 430 911 230

Poly1 2 265 367 229 3 96 218 236 3 96 218 236

Poly2 3 279 414 236 4 73 176 236 3 115 226 236

Poly3 4 365 642 228 5 152 331 236 4 198 473 234

Poly4 2 286 429 236 3 87 199 292 3 87 199 292

Poly5 8 975 1319 233 10 198 458 236 7 453 910 232

Poly6 14 1609 2227 218 19 367 886 209 13 616 1574 227

Poly7 10 1373 1799 205 14 390 810 236 11 545 1259 219

Poly8 10 1321 1765 221 13 261 645 231 11 229 814 229

Quad Spline 7 589 931 229 10 321 620 236 8 424 798 228

ARF 8 1546 2231 230 8 1103 2228 229 8 1103 2228 229

EWF 4 1904 2694 218 6 1337 1876 236 4 1460 2215 179

Motion Vector 6 1382 2165 210 6 702 1976 228 6 702 1976 228

Smooth Triangle 9 2159 3161 189 15 883 1674 229 10 1341 2373 218

Geo Mean 5 690 1033 233 6.5 249 542 241 5.5 298 669 236

Impv (%) 1 1 1 1 -30 64 48 3.4 -10 57 36 1.3

LUTeqv Impv (%) 1 7 16

Table 7.5: Resource usage and maximum frequency across all implemen-
tations, using FDS-based scheduling. Freq in MHz.

7.9.1.4 FDS-Based Flexible Multi-Pumping

Table 7.5 shows the resource usage and maximum frequency across all the bench-

marks using FDS-based scheduling. Table 7.6 shows the geometric mean across all

the benchmarks of resource usage and maximum frequency, for all the implemen-

tation scenarios. We see similar patterns to the results for SDC-based scheduling

with some slight improvements.

As shown in Table 7.6, both SDC-based and FDS-based scheduling are not able

to achieve DSP block reduction by half for RTRMP due to odd numbers of DSPs

being scheduled in some STs. The combined technique discussed in Section 7.7

overcomes this (MPRS ). MPRS is able to achieve a 47% DSP block reduction for
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Scheduling DSPs LUTs LUTeqv Regs Freq

Original 8.5 256 1973 580 470

MulOnlyMP SDC 4.8 707 1724 1052 236

FDS 5.0 690 1739 1033 233

MP SDC 7.1 227 1715 492 248

FDS 6.5 249 1611 542 241

RTRMP SDC 5.3 324 1478 678 234

FDS 5.5 298 1470 663 236

MPRS SDC 4.5 475 1409 874 225

FDS 4.5 446 1374 846 229

Table 7.6: Geometric mean of resource usage and maximum frequency
across all implementations, using SDC-based and FDS-based scheduling
techniques. Freq in MHz.

both the SDC-based and FDS-based scheduling techniques. These savings are at

the cost of 86% LUTs and 51% registers for SDC-based scheduling, effectively sav-

ing 29% LUTeqv area. For FDS-based scheduling, as multi-pumping of DSP blocks

with same configurations is prioritised, the LUTs and registers are marginally less

(74% LUTs and 46% registers), with LUTeqv area savings of 30%.

As discussed earlier, multi-pumping is feasible only if the throughput requirement

of the full system is half of the maximum throughput supported by the embedded

DSP blocks. Here, we are focused on the area efficient implementation of a compu-

tationally intensive inner loop of a larger system. As DSP48E1 primitives on the

Xilinx Virtex 6 can run at a maximum frequency of 473 MHz (Figure 3.4), imple-

mentations with multi-pumping can achieve a maximum system clock frequency of

up to 236 MHz (half the maximum DSP48E1 frequency). On more modern Virtex

7 devices where the DSP block can reach 700 MHz, this translates to a 350 MHz

system clock which is above the maximum achievable frequency for most larger

designs, as shown in Figure 7.1. As shown in Table 7.4 and Table 7.5, for most of

the benchmarks, multi-pumping is able to achieve a frequency of around 236 MHz.
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Brute-force SDC FDS

Benchmarks Original MulOnlyMP MP MulOnlyMP MP RTRMP MPRS MulOnlyMP MP RTRMP MPRS

Chebyshev 3.7 4.1 3.7 4.5 3.9 3.8 3.9 4.1 3.7 3.7 3.7

Mibench2 8.4 15.4 8.2 10.0 8.6 8.2 8.6 9.5 8.2 8.2 8.2

FIR2 13.8 - - 16.6 13.7 13.0 13.6 16.2 13.3 13.3 13.2

SG Filter 6.7 8.9 6.9 8.4 7.2 6.8 7.0 7.9 6.8 6.7 6.6

Horner Bezier 9.2 12.8 9.7 10.8 9.7 9.1 9.5 10.3 9.3 9.2 9.2

Poly1 5.6 6.3 5.7 6.5 5.9 5.7 5.9 6.2 5.7 5.7 5.6

Poly2 5.0 5.6 5.2 5.9 5.3 5.1 5.2 5.5 5.1 5.0 5.0

Poly3 6.6 8.1 7.0 7.7 7.1 6.8 6.9 7.3 6.8 6.6 6.7

Poly4 4.1 4.8 4.4 4.9 4.5 4.3 4.4 4.6 4.3 4.2 4.2

Poly5 12.8 132.6 13.5 16.4 13.7 13.0 13.4 15.3 13.1 12.7 12.8

Poly6 20.5 - - 30.4 23.7 22.4 23.1 25.5 22.1 21.5 21.4

Poly7 16.1 - - 21.1 18.1 17.2 17.6 20.0 17.0 17.0 16.6

Poly8 13.3 - - 16.3 14.7 13.8 14.4 15.8 13.7 13.7 13.4

Quad Spline 8.7 11.8 18.0 9.1 9.5 8.9 9.6 9.1 9.2 9.1 9.0

ARF 15.3 258.0 215.5 16.6 18.5 17.3 18.6 15.7 15.8 15.9 15.9

EWF 16.6 390.3 17.9 17.5 17.1 15.9 17.1 18.0 17.1 17.1 16.8

Motion Vector 11.3 30.4 6.3 12.0 11.6 11.0 11.8 12.2 11.7 11.8 11.2

Smooth Triangle 16.9 - - 18.1 17.9 17.4 18.0 19.9 18.7 18.6 17.8

Geo Mean 9.6 19.2 10.1 11.3 10.3 9.8 10.2 10.9 9.9 9.8 9.7

Table 7.7: Run time for generating RTL from C (ms) for all scenarios.

7.9.2 Tool Runtime

The times taken to generate synthesisable RTL from the inputs C file, including

graph partitioning and scheduling, for all the techniques discussed in this chapter

are shown in Table 7.7. Runtimes for MulOnlyMP are slightly higher compared to

other implementations due to increased number of nodes. Runtimes for exhaustive

search based scheduling are much higher compared to other techniques; up to 4s

for EWF. For SDC and FDS based scheduling, runtimes vary from just 3.7 ms to

a maximum of 31 ms across all benchmarks, which is reasonable for a small step

of the design flow, considering that this includes all the intermediate steps of RTL

generation.

7.10 Summary

In this chapter, we have demonstrated the concept of multi-pumping applied to

the flexible DSP blocks in modern Xilinx FPGAs. Since these blocks can run

at significantly higher frequencies than most large designs, we can clock them
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at double the system clock, allowing them to be shared by two operations in a

single system clock cycle. We first demonstrates the benefits of multi-pumping

embedded DSP blocks with sub-blocks instead of just the multiplier as in previous

work. Compared to multi-pumping multipliers only, this utilises 15% more DSP

blocks but reduces LUTs and registers by 60% and 43% respectively, resulting

in an 11% LUTeqv area reduction. The exhaustive schedule search makes this

approach infeasible for large designs.

We proposed two scheduling techniques, one based on the SDC framework and an-

other based on force-directed scheduling, that could both generate multi-pumped

schedule for flexible DSP blocks in deterministic time. With improved scheduling

techniques and using dynamic programmability, we showed that multi-pumping

can result in a reduction of DSP block usage by 38% and 39% and LUTeqv area

by 14% and 16% for SDC and FDS based scheduling respectively.

Finally, we presented an approach for improving savings further by sharing across

schedule times through multi-pumping, resulting in DSP block reduction by 47%,

effectively saving 30% LUTeqv area compared to non multi-pumped implementa-

tions.



8
Conclusions and Future Research

Wider adoption of FPGAs to implement complex, computationally intensive ap-

plications has driven enhancements in FPGA architecture. Embedded hard blocks

like DSP blocks have improved significantly over time in their functionality and

performance. However, these enhancements also increase the complexity of au-

tomatically mapping hardware design code to implementations that exploit these

capabilities. And this is compounded by the fact that even high level synthesis

tools still target generic RTL that lacks the flexibility required to create optimal

mappings. In this thesis, we have demonstrated that current vendor tools do not

in fact fully utilise DSP blocks with all their capabilities, specifically their flexi-

bility. This is true at both the HLS and RTL levels. DSP blocks support internal

pipelining, which significantly improves the throughput at no additional resource

187
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Figure 8.1: Tool flow overview including all the proposed techniques.

cost. But designs must be targeted around this structure to map efficiently. Tech-

niques proposed in this thesis attempt to utilise the full potential of DSP blocks

to generate high-throughput implementations, achieving close to the peak theo-

retical performance of DSP blocks. DSP blocks can also be reprogrammed on a

cycle-by-cycle basis to implement different operations. Dynamic programmability

can be efficiently used for resource constrained implementations, where multiple

operations are mapped on to the same hardware block. We have proposed various

scheduling techniques to generate resource constrained implementations, taking

advantage of dynamic programmability, resulting in significant improvement com-

pared to traditional approaches. This chapter draws conclusions from the different

contributions described in this thesis and outlines area for future research.

8.1 Summary of Contributions

The proposed techniques for resource unconstrained and resource constrained im-

plementations of computational datapaths presented in this thesis have been in-

tegrated into an end-to-end automated tool flow. The automated tool accepts a
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design description in C and generates synthesisable RTL which can be directly

fed to the vendor tool chain for final mapping to specific devices. It also gener-

ates testbenches for verification. An overview of the tool flow including all the

implementations techniques is shown in Figure 8.1.

8.1.1 High-Throughput Resource Unconstrained

Implementations

After discussing the evolution of DSP blocks from a hard-wired multipliers to

fully functional DSP blocks, we discussed the internal structure in detail, and

elaborated the possible arithmetic configurations into a “template database” in

Chapter 3. In Chapter 4, we presented an automated tool flow, that takes a com-

putational dataflow graph and maps to DSP blocks by matching sub-graphs from

this database. The dataflow graph is generated from a C description, then parti-

tioned using both a greedy and improved heuristic method. We built the tool to

also generate other implementations including Vivado HLS for comparison. We

found that instantiating DSP48E1 primitives could be avoided by simply generat-

ing RTL code that matches the structure of the DSP block templates. Exploiting

the architectural features of DSP blocks, we were able to show consistently better

throughput than all other methods, including mean 1.2× and 2× improvements

over Vivado HLS and generic ASAP/ALAP schedule implementations respectively.

Performance of implementations with direct instantiation of DSP blocks is com-

pared to replacing instantiations with equivalent RTL code.

8.1.2 Initiation Interval Aware Resource Sharing

In Chapter 6, we explored how we could share DSP blocks taking into account

their flexibility. We presented an SDC based scheduling technique, constrained

by initiation interval (II) instead of the number of resources available. With the

high latency of a fully-pipelined DSP block, resource sharing can have a significant

impact on the II of a circuit, since each iteration through the block must wait for
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the previous to complete. We presented an II-aware resource sharing technique

that could improve II by considering the pipeline structure of the DSP blocks.

Exploiting the dynamic programmability of the DSP block offered significantly

more sharing opportunities and a lower cost as more computational nodes could

be absorbed.

8.1.3 Multi-Pumping Fixed and Flexible DSP Blocks

Traditional and II aware resource sharing generally increase the schedule length

of the design. Multi-pumping is another technique which can reduce DSP block

utilisation without significant impact on schedule length. This is done by run-

ning the DSP block at twice the speed of the surrounding logic, allowing it to

complete two processing steps in a single global clock. In Chapter 7, we first

demonstrated multi-pumping with fixed configuration DSP blocks to reduce DSP

block utilisation as well as FPGA logic resources through use of the pre-adder and

ALU sub-blocks of the DSP48E1. We then exploit the dynamic programmability

of the DSP blocks to multi-pump DSP blocks performing different operations as

well. Two scheduling techniques based on SDC and FDS were discussed, which

can generate optimised schedules to maximise the extent of multi-pumping among

different operations, achieving up to a 50% reduction in DSP block utilisation.

However, the structure of the dataflow graph can mean an odd number of DSP

blocks are scheduled in a single timestep and hence not all can be combined. We

proposed an improved approach that could then share these remaining individual

DSP blocks to always achieve a 50% reduction in DSP block usage.

8.1.4 Truncation Error Minimisation

The DSP48E1 primitive has varied input and output wordlengths. Hence, while

partitioning the dataflow graph for mapping onto DSP blocks, intermediate DSP

block outputs must be truncated to fit input port widths. Truncating based on

wordlength alone leads to over-pessimistic implementations with high error. In
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Chapter 5, we presented an error minimisation technique to minimise the trun-

cation error in our mapping to DSP block primitives. We used an open-source

tool, Gappa, to determine realistic wordlengths for all intermediate outputs, and

then truncated the least significant fractional bits to minimise the error. With

realistic wordlengths, we are able to reduce the error on average by 5× for short

wordlengths and by 115× for longer wordlengths. This was incorporated into our

tool flow and applied to all techniques described above.

8.2 Future Research

We have shown that highly capable hard blocks in modern FPGAs can be exploited

to produce high performance and efficient datapaths, and that information from

the higher level computation description should be combined with architectural

information to arrive at an optimal RTL implementation. We plan to release the

automated tool flow discussed in this thesis for use by other researchers interested

in these investigations. In addition to this, we have identified numerous possible

extensions to the different aspects of the work presented which can be explored in

future research.

8.2.1 Integration into an HLS flow

The tool flow we presented generates synthesisable RTL implementations from a

C description of a computational kernel. As we were optimising around a low-level

primitive and keen to explore the limits, this was sufficient. However, integration

of these proposed techniques within a functional HLS flow would allow them to be

exploited in more complex designs. Open source HLS frameworks like LegUp [4]

could be extended to add these features.
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8.2.2 Extension of II-Aware Resource Sharing

The II-aware resource sharing presented in Chapter 6 accepts II constraints in

increments of the latency of the DSP block. This could be extended to more

advanced scheduling techniques that interleave start times to to generate sched-

ules for II constraints with different values. However, this will also increase the

complexity of control logic required to configure the DSP blocks.

8.2.3 Support for Newer DSP Blocks

We have used DSP48E1 primitive, available on Xilinx Virtex-6 and 7 series de-

vices. The latest Ultrascale devices from Xilinx have advanced DSP48E2 DSP

blocks, which are similar in structure but with other features like native support

for computing squares. We have designed our tool in such a way that all partition-

ing techniques discussed in Chapter 4 can be easily extended for the newer devices.

Since the latest DSP blocks can run even faster and accept wider operands, multi-

pumping would make more sense, and errors could be improved further.

8.2.4 Template Database Expansion

The template database discussed in Chapter 4 consists of operations using a single

DSP block. Many signal processing and image processing applications use specific

functions like normalisation. The template database can be expanded to include

these operations by adding custom-optimised implementations as templates. Oper-

ations like division or wide-multiplications can also be included to further minimise

the error for applications with strict requirement of exact computations.

8.2.5 Intermediate Virtual Fabric

The fundamental argument demonstrated in this thesis is that a better interme-

diate representation between high level languages and the back-end flow would
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help facilitate better implementations. This intermediate representation would

incorporate aspects of the architectural features of the target device and allow

manipulations that take into account the constraints of the target hardware re-

sources.

8.3 Summary

This thesis has explored ways of exploiting modern DSP block capabilities to

arrive at better implementations of arithmetic kernels. A thorough evaluation,

development of a modular tool flow, and new techniques have demonstrated that

the gap between algorithm and architecture can be bridged. We are hopeful that

this work encourages discussions about alternative ways of facilitating high level

design, and proves the benefits of flexibility in hard blocks.



Bibliography

[1] I. Kuon, R. Tessier, and J. Rose. FPGA architecture: Survey and challenges.

Proceedings of Foundations and Trends in Electronic Design Automation,

2(2):135–253, February 2008.

[2] [Online] Field Programmable Gate Array (FPGA). http://www.xilinx.

com/training/fpga/fpga-field-programmable-gate-array.htm.

[3] [Online] Xilinx Autopilot. http://www.xilinx.com/.

[4] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. Anderson,

S. Brown, and T. Czajkowski. LegUp: high-level synthesis for FPGA-based

Processor/Accelerator systems. In Proceedings of the ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays (FPGA), pages

33–36, 2011.

[5] [Online] Bluespec. http://www.bluespec.com/.

[6] [Online] Synphony C from Synopsys. https://www.synopsys.com/Tools/

Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx.

[7] [Online] Catapult C from Mentor Graphics. https://www.mentor.com/

hls-lp/catapult-high-level-synthesis/.

[8] T. Haroldsen, B. Nelson, and B. Hutchings. RapidSmith 2: A framework

for BEL-level CAD exploration on Xilinx FPGAs. In Proceedings of the

194

http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
http://www.xilinx.com/
http://www.bluespec.com/
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
https://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/


BIBLIOGRAPHY 195

ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), pages 66–69, 2015.

[9] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutch-

ings. HMFlow: Accelerating FPGA compilation with hard macros for rapid

prototyping. In IEEE International Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), pages 117–124, May 2011.

[10] J. Lotze, S. A. Fahmy, J. Noguera, B. Ozgul, L. Doyle, and R. Esser.

Development framework for implementing FPGA-based cognitive network

nodes. In Proceedings of the IEEE Global Telecommunications Confer-

ence(GLOBECOM), 2009.

[11] J.-P. Delahaye, J. Palicot, C. Moy, and P. Leray. Partial reconfiguration

of FPGAs for dynamical reconfiguration of a software radio platform. In

Proceedings of the IST Mobile and Wireless Communications Summit, 2007.

[12] J. Kok, L. F. Gonzalez, and N. Kelson. FPGA implementation of an evo-

lutionary algorithm for autonomous unmanned aerial vehicle on-board path

planning. IEEE Transactions on Evolutionary Computation, 17(2):272–281,

2013.

[13] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz. Reconfigurable computing

in next-generation automotive networks. IEEE Embedded Systems Letters,

5(1):12–15, 2013.

[14] S. A. Fahmy, K. Vipin, and S. Shreejith. Virtualized FPGA accelerators for

efficient cloud computing. In Proceedings of the International Conference

on Cloud Computing Technology and Science (CloudCom), pages 430–435,

2015.

[15] B. Ronak and S. A. Fahmy. Evaluating the efficiency of DSP block synthesis

inference from flow graphs. In Proceedings of the International Conference

on Field-Programmable Logic and Applications (FPL), pages 727 –730, Aug

2012.



BIBLIOGRAPHY 196

[16] B. Ronak and S. A. Fahmy. Experiments in mapping expressions to DSP

blocks. In Proceedings of the IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 101–101, May

2014.

[17] B. Ronak and S. A. Fahmy. Efficient mapping of mathematical expressions

into DSP blocks. In Proceedings of the International Conference on Field-

Programmable Logic and Applications (FPL), pages 1–4, Sept 2014.

[18] B. Ronak and S. A. Fahmy. Minimising DSP block usage through multi-

pumping. In Proceedings of the IEEE International Conference on Field-

Programmable Technology (FPT), pages 184–187, Dec 2015.

[19] B. Ronak and S. A. Fahmy. Mapping for maximum performance on FPGA

DSP blocks. Proceedings of IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 35(4):573–585, April 2016.

[20] B. Ronak and S. A. Fahmy. Initiation interval aware resource sharing for

FPGA DSP blocks. In Proceedings of the IEEE International Symposium

on Field-Programmable Custom Computing Machines (FCCM), May 2016.

[21] B. Ronak and S. A. Fahmy. Improved resource sharing for FPGA

DSP blocks. In Proceedings of the International Conference on Field-

Programmable Logic and Applications (FPL), Sept 2016.

[22] G. de Micheli. Synthesis and Optimization of Digital Circuits. Tata McGraw-

Hill, 2003.

[23] S. Chatterjee. On Algorithms for Technology Mapping. PhD thesis, Univer-

sity of California, Berkeley, 2007.

[24] F. Mailhot. Technology Mapping for VLSI Circuits exploiting Boolean Prop-

erties and Operations. PhD thesis, Stanford University, 1991.

[25] J. A. Darringer, D. Brand, J. V. Gerbi, W. H. Joyner, and L. Trevillyan.

LSS: A system for production logic synthesis. Proceedings of IBM Journal

of Research and Development, 28(5):537–545, 1984.



BIBLIOGRAPHY 197

[26] W. H. Joyner, Jr., L. H. Trevillyan, D. Brand, T. A. Nix, and S. C.

Gundersen. Technology adaption in logic synthesis. In Proceedings of the

ACM/IEEE Design Automation Conference (DAC), pages 94–100, 1986.

[27] S. Suzuki, T. Bitoh, M. Kakimoto, K. Takahashi, and T. Sugimoto. TRIP:

an automated technology mapping system. In Proceedings of the ACM/IEEE

Design Automation Conference (DAC), pages 523–529, 1987.

[28] J. Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y. Kazuma, and

S. Murai. A rule based logic reorganization system LORES/EX. In Proceed-

ings of the IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 262–266, 1988.

[29] D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel. SOCRATES: a system

for automatically synthesizing and optimizing combinational logic. In Pro-

ceedings of the ACM/IEEE Design Automation Conference (DAC), pages

79–85, 1986.

[30] K. Keutzer. DAGON: Technology binding and local optimization by DAG

matching. In Proceedings of Papers on Twenty-five years of electronic design

automation, pages 617–624, 1988.

[31] A. V. Aho and M. Ganapathi. Efficient tree pattern matching (extended

abstract): an aid to code generation. In Proceedings of the ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages, pages 334–

340, New York, NY, USA, 1985. ACM.

[32] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.

Technology mapping in MIS. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), volume 87, pages 116–119,

1987.

[33] R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University of

California, Berkeley, 1989.



BIBLIOGRAPHY 198

[34] C. R. Morrison, R. M. Jacoby, and G. D. Hachtel. TECHMAP: Technol-

ogy mapping with delay and area optimization. Proceedings of Logic and

Architecture Synthesis for Silicon Compilers, pages 53–64, 1989.

[35] R. Lisanke, F. Brglez, and G. Kedem. McMAP: a fast technology mapping

procedure for multi-level logic synthesis. In Proceedings of the IEEE Interna-

tional Conference on Computer Design: VLSI in Computers and Processors,

pages 252–256, 1988.

[36] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. Sangiovanni-

Vincentelli. Logic synthesis for programmable gate arrays. In Proceedings

of the ACM/IEEE Design Automation Conference (DAC), pages 620–625,

1990.

[37] J. P. Roth and R. M. Karp. Minimization over Boolean graphs. Proceedings

of IBM Journal of Research and Development, 6(2):227–238, April 1962.

[38] R. Francis, J. Rose, and Z. Vranesic. Chortle-crf: Fast technology mapping

for lookup table-based FPGAs. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC), pages 227–233, 1991.

[39] R. Murgai, N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli. Im-

proved logic synthesis algorithms for table look up architectures. In Proceed-

ings of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 564–567, Nov 1991.

[40] R. J. Francis, J. Rose, and Z. Vranesic. Technology mapping of lookup table-

based FPGAs for performance. In Proceedings of the IEEE/ACM Interna-

tional Conference on Computer-Aided Design (ICCAD), pages 568–571, Nov

1991.

[41] K. Karplus. Xmap: a technology mapper for table-lookup field-

programmable gate arrays. In Proceedings of the ACM/IEEE Design Au-

tomation Conference (DAC), pages 240–243, 1991.



BIBLIOGRAPHY 199

[42] E. L. Lawler, K. N. Levitt, and J. Turner. Module clustering to minimize

delay in digital networks. Proceedings of IEEE Transactions on Computers,

C-18(1):47–57, 1969.

[43] K.-C. Chen, J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar. DAG-Map:

graph-based FPGA technology mapping for delay optimization. Proceedings

of IEEE Design Test of Computers, 9:7–20, 1992.

[44] J. Cong and Y. Ding. FlowMap: an optimal technology mapping algorithm

for delay optimization in lookup-table based FPGA designs. Proceedings of

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), 13:1–12, Jan 1994.

[45] J. Cong, Y. Ding, T. Gao, and K.-C. Chen. LUT-based FPGA technology

mapping under arbitrary net-delay models. Proceedings of Computers &

Graphics, 18(4):507–516, 1994.

[46] H. Yang and D. F. Wong. Edge-map: Optimal performance driven technol-

ogy mapping for iterative LUT based FPGA designs. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 150–155, 1994.

[47] J. Cong and Y. Ding. On area/depth trade-off in LUT-based FPGA tech-

nology mapping. Proceedings of IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 2(2):137–148, 1994.

[48] J. Cong and Y.-Y. Hwang. Simultaneous depth and area minimization in

LUT-based FPGA mapping. In Proceedings of the ACM/SIGDA Interna-

tional Symposium on Field Programmable Gate Arrays (FPGA), pages 68–

74, 1995.

[49] J. Cong and Y. Ding. An optimal technology mapping for delay optimization

for lookup-table based FPGA designs. In Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pages 48–

53, Nov 1992.



BIBLIOGRAPHY 200

[50] J. He and J. Rose. Technology mapping for heterogeneous FPGAs. Proceed-

ings of the ACM/SIGDA International Symposium on Field Programmable

Gate Arrays (FPGA), Feb 1994.

[51] J. Cong and S. Xu. Delay-optimal technology mapping for FPGAs with

heterogeneous LUTs. In Proceedings of the ACM/IEEE Design Automation

Conference (DAC), pages 704–707, June 1998.

[52] A. H. Farrahi and M. Sarrafzadeh. FPGA technology mapping for power

minimization. In Proceedings of Field-Programmable Logic Architectures,

Synthesis and Applications, volume 849, pages 66–77. Springer Berlin Hei-

delberg, 1994.

[53] Z.-H. Wang, E.-C. Liu, J. Lai, and T.-C. Wang. Power minimization in

LUT-based FPGA technology mapping. In Proceedings of the Asia and

South Pacific-Design Automation Conference (ASP-DAC), pages 635–640,

2001.

[54] H. Li, W.-K. Mak, and S. Katkoori. LUT-based FPGA technology mapping

for power minimization with optimal depth. In Proceedings IEEE Computer

Society Workshop on VLSI, pages 123–128, 2001.

[55] J. Anderson and F. N. Najm. Power-aware technology mapping for LUT-

based FPGAs. In Proceedings of the IEEE International Conference on

Field-Programmable Technology (FPT), pages 211–218, 2002.

[56] S. Jang, B. Chan, K. Chung, and A. Mishchenko. WireMap: FPGA tech-

nology mapping for improved routability and enhanced LUT merging. Pro-

ceedings of ACM Transactions on Reconfigurable Technology and Systems

(TRETS), 2(2):14:1–14:24, June 2009.

[57] V. Manohararajah, S. D. Brown, and Z. G. Vranesic. Heuristics for area min-

imization in LUT-Based FPGA technology mapping. Proceedings of IEEE

Transsactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 25(11):2331–2340, November 2006.



BIBLIOGRAPHY 201

[58] M. Schlag, J. Kong, and P. K. Chan. Routability-driven technology map-

ping for lookup table-based FPGAs. In Proceedings of International Confer-

ence on Computer Design: VLSI in Computers and Processors, pages 86–90,

1992.

[59] J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: enabling a general

and efficient FPGA mapping solution. In Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays (FPGA),

pages 29–35, 1999.

[60] A. Kaviani and S. Brown. Technology mapping issues for an FPGA with

lookup tables and PLA-like blocks. In Proceedings of the ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays (FPGA), pages

60–66, 2000.

[61] S. Krishnamoorthy, S. Swaminathan, and R. Tessier. Area-optimized tech-

nology mapping for hybrid FPGAs. In Proceedings of the International Con-

ference on Field-Programmable Logic and Applications (FPL), pages 181–

190, 2000.

[62] A. H. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table min-

imization problem for FPGA technology mapping. Proceedings of IEEE

Transsactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), 13(11):1319–1332, November 2006.

[63] D. Dickin and L. Shannon. Exploring FPGA technology mapping for frac-

turable LUT minimization. In Proceedings of the IEEE International Con-

ference on Field-Programmable Technology (FPT), pages 1–8, 2011.

[64] M. Hutton, J. Schleicher, D. M. Lewis, B. Pedersen, R. Yuan, S. Kap-

tanoglu, G. Baeckler, B. Ratchev, K. Padalia, M. Bourgeault, A. Lee,

H. Kim, and R. Saini. Improving FPGA performance and area using an

adaptive logic module. In Proceedings of the International Conference on

Field-Programmable Logic and Applications (FPL), pages 135–144, 2004.



BIBLIOGRAPHY 202

[65] W. Chen, X. Zhang, T. Yoshimura, and Y. Nakamura. A low power technol-

ogy mapping method for adaptive logic module. In Proceedings of the IEEE

International Conference on Field-Programmable Technology (FPT), pages

1–5, 2011.

[66] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness. Logic decom-

position during technology mapping. Proceedings of IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

16(8):813–834, 1997.

[67] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.

Kent, P. Jamieson, and J. Anderson. The VTR project: architecture and

CAD for FPGAs from verilog to routing. In Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays (FPGA),

pages 77–86, 2012.

[68] [Online] The Verilog-to-Routing (VTR) Project for FPGAs. https://

github.com/verilog-to-routing/vtr-verilog-to-routing/.

[69] J. Luu, J. H. Anderson, and J. S. Rose. Architecture description and packing

for logic blocks with hierarchy, modes and complex interconnect. In Proceed-

ings of the ACM/SIGDA International Symposium on Field Programmable

Gate Arrays (FPGA), pages 227–236, 2011.

[70] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,

M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,

and V. Betz. VTR 7.0: Next generation architecture and CAD system for

FPGAs. Proceedings of ACM Transactions on Reconfigurable Technology

and Systems (TRETS), 7(2):6:1–6:30, June 2014.

[71] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon. Odin II - an open-

source Verilog HDL synthesis tool for CAD research. In Proceedings of the

IEEE International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 149–156, 2010.

https://github.com/verilog-to-routing/vtr-verilog-to-routing/
https://github.com/verilog-to-routing/vtr-verilog-to-routing/


BIBLIOGRAPHY 203

[72] R. Brayton and A. Mishchenko. ABC: an academic industrial-strength veri-

fication tool. In Proceedings of International Conference on Computer Aided

Verification (CAV), pages 24–40. Springer-Verlag, 2010.

[73] [Online] ABC: A System for Sequential Synthesis and Verification. http:

//www.eecs.berkeley.edu/~alanmi/abc/.

[74] [Online] VPR 6.0. http://code.google.com/p/

vtr-verilog-to-routing/wiki/VPR.

[75] A. Somerville and K. B. Kent. Improving memory support in the VTR flow.

In Proceedings of the International Conference on Field-Programmable Logic

and Applications (FPL), pages 197–202, 2012.

[76] J. C. Libby, A. Furrow, P. O’Brien, and K. B. Kent. A framework for ver-

ifying functional correctness in Odin II. In Proceedings of the IEEE Inter-

national Conference on Field-Programmable Technology (FPT), pages 1–6,

2011.

[77] V. Betz and J. Rose. VPR: a new packing, placement and routing tool for

FPGA research. In Proceedings of the International Conference on Field-

Programmable Logic and Applications (FPL), pages 213–222. Springer Berlin

Heidelberg, 1997.

[78] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Proceedings of Science, 220(4598):pp. 671–680, 1983.

[79] V. Betz and J. Rose. Directional bias and non-uniformity in FPGA global

routing architectures. In Proceedings of the IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD), pages 652–659, 1996.

[80] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns. Placement and

routing tools for the Triptych FPGA. Proceedings of IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 3(4):473–482, 1995.

[81] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, K. Kent,

and J. Rose. VPR 5.0: FPGA CAD and architecture exploration tools

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
http://code.google.com/p/vtr-verilog-to-routing/wiki/VPR
http://code.google.com/p/vtr-verilog-to-routing/wiki/VPR


BIBLIOGRAPHY 204

with single-driver routing, heterogeneity and process scaling. Proceedings

of ACM Transactions on Reconfigurable Technology and Systems (TRETS),

4(4):32:1–32:23, December 2011.

[82] Marquardt A. R. Cluster-Based architecture, timing-driven packing and

timing-driven placement for FPGAs. Master’s thesis, University of Toronto,

1999.

[83] [Online] Xilinx SDSoC. http://www.xilinx.com/products/

design-tools/software-zone/sdsoc.html.

[84] G. de Micheli. Hardware synthesis from C/C++ models. In Proceedings

of the International Conference on Design, Automation and Test in Europe

(DATE), pages 382–383, 1999.

[85] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang. High-

level synthesis for FPGAs: From prototyping to deployment. Proceedings of

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), 30(4):473–491, April 2011.

[86] S. A. Edwards. The challenges of synthesizing hardware from C-like lan-

guages. Proceedings of IEEE Design Test of Computers, 23(5):375–386, 2006.

[87] D. Ku and G. de Micheli. Hardware C - A Language for Hardware Design

(Version 2.0). Stanford, CA Tech. Report, 1990.

[88] [Online] Handel-C. http://celoxica.com/.

[89] [Online] Catapult. http://www.mentor.com/products/esl/high_level_

synthesis/catapult_synthesis/.

[90] [Online] Impulse-C. http://www.impulsec.com/.

[91] A. Jones, D. Bagchi, S. Pal, X. Tang, A. Choudhary, and P. Banerjee. PACT

HDL: a C compiler targeting ASICs and FPGAs with power and performance

optimizations. In Proceedings of the International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems, pages 188–197, 2002.

http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html
http://celoxica.com/
http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis/
http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis/
http://www.impulsec.com/


BIBLIOGRAPHY 205

[92] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and S. Eg-

gers. CHiMPS: A C-level compilation flow for hybrid CPU-FPGA architec-

tures. In Proceedings of the International Conference on Field-Programmable

Logic and Applications (FPL), pages 173–178, Sep 2008.

[93] F. Verdier and B. Zavidovique. A complete environment for global archi-

tecture synthesis. In Proceedings of Computer Architectures for Machine

Perception, pages 77–81, Dec 1993.

[94] L. Semeria and G. de Micheli. SpC: synthesis of pointers in C application

of pointer analysis to the behavioral synthesis from C. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pages 340–346, Nov 1998.

[95] L. Semeria, K. Sato, and G. de Micheli. Resolution of dynamic memory

allocation and pointers for the behavioral synthesis form C. In Proceedings

of the International Conference on Design, Automation and Test in Europe

(DATE), pages 312–319, 2000.

[96] L. Semeria, K. Sato, and G. de Micheli. Synthesis of hardware models in C

with pointers and complex data structures. Proceedings of IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, 9(6):743 –756, Dec

2001.

[97] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,

E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with

the SUIF compiler. Proceedings of Computer, 29(12):84–89, December 1996.

[98] Xilinx. MicroBlaze Processor Reference Guide, v9.0 edition, 2008.

[99] L. Kaouane, M. Akil, T. Grandpierre, and Y. Sorel. A methodology to

implement real-time applications onto reconfigurable circuits. Proceedings

of The Journal of Supercomputing, 30:283–301, 2004.

[100] F. Berthelot, F. Nouvel, and D. Houzet. Design methodology for runtime

reconfigurable FPGA: from high level specification down to implementation.



BIBLIOGRAPHY 206

In Proceedings of IEEE Workshop on Signal Processing Systems Design and

Implementation, pages 497–502, Nov 2005.

[101] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid prototyping

for real-time embedded heterogeneous multiprocessors. In Proceedings of

International Workshop on Hardware/Software Co-Design(CODES), May

1999.

[102] Jongsok C., S. Brown, and J. Anderson. From software threads to parallel

hardware in high-level synthesis for FPGAs. In Proceedings of the IEEE

International Conference on Field-Programmable Technology (FPT), pages

270–277, Dec 2013.

[103] N. Calagar, S. D. Brown, and J. Anderson. Source-level debugging for FPGA

high-level synthesis. In Proceedings of the International Conference on Field-

Programmable Logic and Applications (FPL), pages 1–8, Sept 2014.

[104] [Online] LegUp 4.0. http://legup.eecg.utoronto.ca/docs/4.0/.

[105] F. Winterstein, S. Bayliss, and G. A. Constantinides. High-level synthesis

of dynamic data structures: A case study using Vivado HLS. In Proceedings

of the IEEE International Conference on Field-Programmable Technology

(FPT), pages 362–365, Dec 2013.

[106] K. S. Vallerio and N. K. Jha. Task graph extraction for embedded system

synthesis. In Proceedings on VLSI Design, pages 480 – 486, Jan 2003.

[107] R. Namballa, N. Ranganathan, and A. Ejnioui. Control and data flow graph

extraction for high-level synthesis. In Proceedings IEEE Computer society

Annual Symposium on VLSI, pages 187 – 192, Feb. 2004.

[108] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for free. In

Proceedings of the International Workshop on Hardware/Software Codesign

(CODES/CASHE), pages 97 –101, Mar 1998.

[109] N. Togawa, T. Hisaki, M. Yanagisawa, and T. Ohtsuki. A high-level synthesis

system for digital signal processing based on enumerating data-flow graphs.

http://legup.eecg.utoronto.ca/docs/4.0/


BIBLIOGRAPHY 207

In Proceedings of the Asia and South Pacific-Design Automation Conference

(ASP-DAC), pages 265–274, Feb 1998.

[110] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek. Fast module

mapping and placement for datapaths in FPGAs. In Proceedings of the

ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), pages 123–132, 1998.

[111] W. Sun, M. J. Wirthlin, and S. Neuendorffer. Combining module selection

and resource sharing for efficient FPGA pipeline synthesis. In Proceedings

of the ACM/SIGDA International Symposium on Field Programmable Gate

Arrays (FPGA), pages 179–188, 2006.

[112] W. Sun, M. J. Wirthlin, and S. Neuendorffer. FPGA pipeline synthesis

design exploration using module selection and resource sharing. Proceedings

of IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), 26(2):254–265, Feb 2007.

[113] B. R. Rau. Iterative modulo scheduling: an algorithm for software pipelin-

ing loops. In Proceedings of International Symposium on Microarchitecture,

pages 63–74, 1994.

[114] [Online] FloPoCo. http://flopoco.gforge.inria.fr/.

[115] [Online] FloPoCo developer manual. http://flopoco.gforge.inria.fr/

flopoco_developer_manual.pdf.

[116] M. Gort and J. Anderson. Design re-use for compile time reduction in FPGA

high-level synthesis flows. In Proceedings of the IEEE International Confer-

ence on Field-Programmable Technology (FPT), pages 4–11, Dec 2014.

[117] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutch-

ings. RapidSmith: Do-it-yourself CAD tools for Xilinx FPGAs. In Pro-

ceedings of the International Conference on Field-Programmable Logic and

Applications (FPL), pages 349–355, 2011.

http://flopoco.gforge.inria.fr/
http://flopoco.gforge.inria.fr/flopoco_developer_manual.pdf
http://flopoco.gforge.inria.fr/flopoco_developer_manual.pdf


BIBLIOGRAPHY 208

[118] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French. Torc:

Towards an open-source tool flow. In Proceedings of the ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays (FPGA), pages

41–44, 2011.

[119] S. Hadjis, A. Canis, J. H. Anderson, J. Choi, K. Nam, S. Brown, and T. Cza-

jkowski. Impact of FPGA architecture on resource sharing in high-level

synthesis. In Proceedings of the ACM/SIGDA International Symposium on

Field Programmable Gate Arrays (FPGA), pages 111–114, 2012.

[120] Y. Hara-Azumi, T. Matsuba, H. Tomiyama, S. Honda, and H. Takada. Im-

pact of resource sharing and register retiming on area and performance of

FPGA-based designs. Proceedings of Information and Media Technologies,

9(1):26–34, 2014.

[121] R. Jain, A. Parker, and N. Park. Predicting area-time tradeoffs for pipelined

design. In Proceedings of Conference on Design Automation, pages 35–41,

June 1987.

[122] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin. PLS: a scheduler for pipeline syn-

thesis. Proceedings of IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), 12(9):1279–1286, Sep 1993.

[123] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett. Some exper-

iments in local microcode compaction for horizontal machines. Proceedings

of IEEE Transactions on Computers, C-30:460–477, July 1981.

[124] T. L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules

for parallel processing systems. Proceedings of Communications of the ACM,

17:685–690, December 1974.

[125] A. Parker, J. Pizarro, and M. Mlinar. MAHA: A program for datapath

synthesis. In Proceedings of the ACM/IEEE Design Automation Conference

(DAC), pages 461–466, June 1986.



BIBLIOGRAPHY 209

[126] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavioral

synthesis of ASICs. Proceedings of IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 8(6):661–679, 1989.

[127] W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J. L.

Van Meerbergen, and A. van der Werf. Improved force-directed scheduling in

high-throughput digital signal processing. Proceedings of IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

14:945–960, Aug 1995.

[128] F. Rousseau, J. Benzakki, J. M. Berge, and M. Israel. Adaptation of force-

directed scheduling algorithm for hardware/software partitioning. In Pro-

ceedings of IEEE International Workshop on Rapid System Prototyping,

pages 33–37, Jun 1995.

[129] S. Gupta and S. Katkoori. Force-directed scheduling for dynamic power

optimization. In Proceedings of IEEE Computer Society Annual Symposium

on VLSI, pages 68–73, 2002.

[130] A. K. Allam and J. Ramanujam. Modified force-directed scheduling for

peak and average power optimization using multiple supply-voltages. In

Proceedings of IEEE International Conference on Integrated Circuit Design

and Technology, pages 1–5, 2006.

[131] M. Areno, B. Eames, and J. Templin. A force-directed scheduling based

architecture generation algorithm and design tool for FPGAs. Proceedings

of Journal of Systems Architecture, 56:124–135, Feb 2010.

[132] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu. A formal approach to the schedul-

ing problem in high level synthesis. Proceedings of IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),

10(4):464–475, Apr 1991.

[133] C. H. Gebotys and M. I. Elmasry. Global optimization approach for ar-

chitectural synthesis. Proceedings of IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (TCAD), 12:1266–1278, Sep 1993.



BIBLIOGRAPHY 210

[134] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm based

on SDC formulation. In Proceedings of the ACM/IEEE Design Automation

Conference (DAC), pages 433–438, 2006.

[135] S. O. Memik, G. Memik, R. Jafari, and E. Kursun. Global resource sharing

for synthesis of control data flow graphs on FPGAs. In Proceedings of the

ACM/IEEE Design Automation Conference (DAC), pages 604–609, June

2003.

[136] Z. Jin and J. D. Bakos. A heuristic scheduler for port-constrained floating-

point pipelines. Proceedings of International Journal of Reconfigurable Com-

pututing, 2013:1:1–1:1, Jan 2013.

[137] J. Cong and W. Jiang. Pattern-based behavior synthesis for FPGA resource

reduction. In Proceedings of the ACM/SIGDA International Symposium on

Field Programmable Gate Arrays (FPGA), pages 107–116, 2008.

[138] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph

isomorphism detection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 20(5):493–504, May 1998.

[139] R. Scrofano, L. Zhuo, and V. K. Prasanna. Area-efficient arithmetic ex-

pression evaluation using deeply pipelined floating-point cores. Proceed-

ings of IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

16(2):167–176, Feb 2008.

[140] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell. iDEA: A DSP block based

FPGA soft processor. In Proceedings of the IEEE International Conference

on Field-Programmable Technology (FPT), pages 151–158, Dec 2012.

[141] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell. The iDEA DSP

block-based soft processor for FPGAs. Proceedings of ACM Transactions on

Reconfigurable Technology and Systems (TRETS), 7(3):19:1–19:23, Septem-

ber 2014.



BIBLIOGRAPHY 211

[142] F. Brosser, H. Y. Cheah, and S. A. Fahmy. Iterative floating point computa-

tion using FPGA DSP blocks. In Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), pages 1–6, Sept 2013.

[143] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER

architecture with DSP blocks as an overlay for the Xilinx Zynq. In Proceed-

ings of the International Symposium on Highly-Efficient Accelerators and

Reconfigurable Technologies (HEART), Jun 2015.

[144] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki,

and K. Sankaralingam. Design, integration and implementation of the

DySER hardware accelerator into OpenSPARC. In Proceedings of Inter-

national Symposium on High Performance Computer Architecture (HPCA),

pages 1–12, Feb 2012.

[145] A. K. Jain, D. A. Maskell, and S. A. Fahmy. Throughput oriented FPGA

overlays using DSP blocks. In Proceedings of the International Conference

on Design, Automation and Test in Europe (DATE), March 2016.

[146] Xilinx Inc. UG479: 7 Series DSP48E1 Slice User Guide, 2013.

[147] Z. Chun, Z. Yongjun, C. Xin, and G. Xiaoguang. Research on technology

of color space conversion based on DSP48E. In Proceedings of Interna-

tional Conference on Measuring Technology and Mechatronics Automation

(ICMTMA), volume 3, pages 87–90, 2011.

[148] G. Conde and G. W. Donohoe. Reconfigurable block floating point process-

ing elements in Virtex platforms. In Proceedings of International Conference

on Reconfigurable Computing and FPGAs (ReConFig), pages 509–512, 2011.

[149] R. Mehra and S. Devi. FPGA implementation of high speed pulse shaping

filter for SDR applications. In Proceedings of Recent Trends in Networks and

Communications. Springer Berlin Heidelberg, 2010.



BIBLIOGRAPHY 212

[150] H. M. Kamboh and S. A. Khan. An algorithmic transformation for FPGA

implementation of high throughput filters. In Proceedings of International

Conference on Emerging Technologies (ICET), pages 1–6, 2011.

[151] S. Xu, S. A. Fahmy, and I. V. McLoughlin. Square-rich fixed point poly-

nomial evaluation on FPGAs. In Proceedings of the ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays (FPGA), pages

99–108, 2014.

[152] F. de Dinechin and B. Pasca. Designing custom arithmetic data paths with

FloPoCo. Proceedings of IEEE Design & Test of Computers, 28(4):18–27,

2011.

[153] S. Gopalakrishnan, P. Kalla, M. B. Meredith, and F. Enescu. Finding linear

building-blocks for RTL synthesis of polynomial datapaths with fixed-size

bit-vectors. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 143–148, Nov 2007.

[154] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench: a tool for

evaluating and synthesizing multimedia and communications systems. In

Proceedings of International Symposium on Microarchitecture, pages 330–

335, Dec 1997.

[155] [Online] Polynomial Test Suite. http://www-sop.inria.fr/saga/POL/.

[156] K. Vipin and S. A. Fahmy. DyRACT: A partial reconfiguration enabled

accelerator and test platform. In Proceedings of the International Conference

on Field-Programmable Logic and Applications (FPL), pages 1–7, Sept 2014.

[157] F. de Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification of

elementary functions using Gappa. In Proceedings of the ACM Symposium

on Applied Computing, pages 1318–1322, 2006.

[158] M. Gort and J. Anderson. Range and bitmask analysis for hardware op-

timization in high-level synthesis. In Proceedings of the Asia and South

http://www-sop.inria.fr/saga/POL/


BIBLIOGRAPHY 213

Pacific-Design Automation Conference (ASP-DAC), pages 773–779, Jan

2013.

[159] A. Klimovic and J. Anderson. Bitwidth-optimized hardware accelerators

with software fallback. In Proceedings of the IEEE International Conference

on Field-Programmable Technology (FPT), pages 136–143, Dec 2013.

[160] A. Tisserand. Automatic generation of low-power circuits for the evaluation

of polynomials. In Proceedings of Asilomar Conference on Signals, Systems

and Computers (ACSSC), pages 2053–2057, Oct 2006.

[161] A. Tisserand. Hardware reciprocation using degree-3 polynomials but only 1

complete multiplication. In Proceedings of Midwest Symposium on Circuits

and Systems (MWSCAS), pages 301–304, Aug 2007.

[162] A. Tisserand. Function approximation based on estimated arithmetic oper-

ators. In Proceedings of International Conference on Signals, Systems and

Computers, pages 1798–1802, Nov 2009.

[163] F. de Dinechin, C. Lauter, and G. Melquiond. Certifying the floating-point

implementation of an elementary function using Gappa. Proceedings of IEEE

Transactions on Computers, 60(2):242–253, Feb 2011.

[164] M. D. Linderman, M. Ho, D. L. Dill, T. H. Meng, and G. P. Nolan. Towards

program optimization through automated analysis of numerical precision. In

Proceedings of the IEEE/ACM International Symposium on Code Genera-

tion and Optimization, pages 230–237, 2010.

[165] H. Martorell and N. Kapre. FX-SCORE: A framework for fixed-point com-

pilation of SPICE device models using Gappa++. In Proceedings of the

IEEE International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 77–84, April 2012.

[166] D. Ye and N. Kapre. MixFX-SCORE: Heterogeneous fixed-point compila-

tion of dataflow computations. In Proceedings of the IEEE International



BIBLIOGRAPHY 214

Symposium on Field-Programmable Custom Computing Machines (FCCM),

pages 206–209, 2014.

[167] S. Raje and R. A. Bergamaschi. Generalized resource sharing. In Proceed-

ings of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pages 326–332, 1997.

[168] J. M. P. Cardoso. A novel algorithm combining temporal partitioning and

sharing of functional units. In Proceedings of the IEEE International Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM), pages

31–40, March 2001.

[169] R. Zhao, M. Tan, S. Dai, and Z. Zhang. Area-efficient pipelining for FPGA-

targeted high-level synthesis. In Proceedings of the ACM/IEEE Design Au-

tomation Conference (DAC), pages 157:1–157:6, 2015.

[170] M. Alle, A. Morvan, and S. Derrien. Runtime dependency analysis for loop

pipelining in high-level synthesis. In Proceedings of the ACM/IEEE Design

Automation Conference (DAC), pages 1–10, May 2013.

[171] P. Li, P. Zhang, L.-N. Pouchet, and J. Cong. Resource-aware throughput

optimization for high-level synthesis. In Proceedings of the ACM/SIGDA In-

ternational Symposium on Field Programmable Gate Arrays (FPGA), pages

200–209, 2015.

[172] P. G. Paulin and J. P. Knight. Force-directed scheduling in automatic data

path synthesis. In Proceedings of the ACM/IEEE Design Automation Con-

ference (DAC), pages 195–202, 1987.

[173] [Online] LP Solve 5.5. http://lpsolve.sourceforge.net/5.5/.

[174] A. Canis, J. H. Anderson, and S. D. Brown. Multi-pumping for resource

reduction in FPGA high-level synthesis. In Proceedings of the International

Conference on Design, Automation and Test in Europe (DATE), pages 194–

197, March 2013.

http://lpsolve.sourceforge.net/5.5/


BIBLIOGRAPHY 215

[175] C. E. Laforest and J. G. Steffan. Efficient multi-ported memories for FP-

GAs. In Proceedings of the ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pages 41–50, 2010.

[176] L. Shannon, V. Cojocaru, C. N. Dao, and P. H. W. Leong. Technology scaling

in FPGAs: Trends in applications and architectures. In Proceedings of the

IEEE International Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 1–8, May 2015.

[177] H. E. Yantir, S. Bayar, and A. Yurdakul. Efficient implementations of multi-

pumped multi-port register files in FPGAs. In Proceedings of Euromicro

Conference on Digital System Design (DSD), pages 185–192, Sept 2013.

[178] F. Anjam, S. Wong, and F. Nadeem. A multiported register file with register

renaming for configurable softcore VLIW processors. In Proceedings of the

IEEE International Conference on Field-Programmable Technology (FPT),

pages 403–408, Dec 2010.

[179] C. E. Laforest, M. G. Liu, E. R. Rapati, and J. G. Steffan. Multi-ported

memories for FPGAs via XOR. In Proceedings of the ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays (FPGA), pages

209–218, 2012.

[180] R. P. Tidwell. XAPP706: Alpha Blending Two Data Streams Using a DSP48

DDR Technique. Xilinx Inc, 2005.

[181] J. Edmonds. Paths, trees, and flowers. In Classic Papers in Combinatorics,

Modern Birkhuser Classics, pages 361–379. Birkhuser Boston, 1987.


	Acknowledgements
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Organisation
	1.5 Publications

	2 Background and Literature Review
	2.1 Field Programmable Gate Array
	2.1.1 Programmable Logic Blocks
	2.1.2 Flexible Routing Fabric
	2.1.3 I/O Resources
	2.1.4 Embedded Blocks
	2.1.4.1 Block RAMs
	2.1.4.2 DSP Blocks


	2.2 FPGA Design Flow
	2.3 Graph Computations
	2.3.1 Undirected Graphs
	2.3.2 Directed Graphs

	2.4 Technology Mapping
	2.4.1 Preliminaries and Basic Definitions
	2.4.2 Overview
	2.4.3 Related Work
	2.4.3.1 LUT Mapping
	2.4.3.2 Mapping to Other Resources


	2.5 Verilog-to-Routing (VTR)
	2.5.1 ODIN-II
	2.5.2 ABC
	2.5.3 VPR

	2.6 High Level Synthesis
	2.7 Resource Sharing
	2.8 Summary

	3 The DSP48E1 DSP Block Primitive
	3.1 DSP Block Evolution
	3.2 The DSP48E1 Primitive
	3.2.1 Attributes
	3.2.1.1 Register Control Attributes
	3.2.1.2 Feature Control Attributes

	3.2.2 Input Ports
	3.2.3 Output Ports

	3.3 DSP48E1 Template Database
	3.4 DSP48E1 Characterisation
	3.5 Dynamic Programmability
	3.6 Summary

	4 Automated Mapping to DSP Blocks from Flow Graphs
	4.1 Introduction
	4.2 Related Work
	4.3 Dataflow Graph Representation
	4.4 Dataflow Graph Implementation
	4.4.1 Combinational Logic with Re-timing: Comb
	4.4.2 Scheduled Pipelined RTL: Pipe
	4.4.3 High-Level Synthesis: HLS
	4.4.4 Direct DSP Block Instantiation: Inst
	4.4.5 DSP Block Architecture Aware RTL: DSPRTL
	4.4.6 Ensuring a Fair Comparison

	4.5 DFG Segmentation for DSP Blocks
	4.5.1 Greedy Segmentation
	4.5.2 Improved Segmentation

	4.6 Automated Mapping Tool
	4.6.1 C-to-DOT
	4.6.2 DFG Generation
	4.6.3 Graph Partitioning
	4.6.4 Pre-processing
	4.6.5 RTL Generation
	4.6.6 Vendor Tool Flow

	4.7 Experiments and Analysis
	4.7.1 Tool Runtime
	4.7.2 Resource Usage and Frequency
	4.7.3 Case Study

	4.8 Summary

	5 Error Minimisation
	5.1 Introduction
	5.2 Related Work
	5.3 Error Minimisation
	5.3.1 Ideal Wordlength Calculation
	5.3.2 Resegmentation

	5.4 Updated Tool Flow
	5.4.1 DFG Generation and Ideal Wordlength Calculation
	5.4.2 Error Minimisation

	5.5 Experiments and Analysis
	5.5.1 Tool Runtime
	5.5.2 Error Minimisation

	5.6 Summary

	6 Improved Resource Sharing for DSP Blocks
	6.1 Introduction
	6.2 Related Work
	6.3 Traditional Resource Sharing (TRS)
	6.3.1 Scheduling
	6.3.1.1 Initialise LP problem
	6.3.1.2 Modelling scheduling constraints
	6.3.1.3 Formulate objective function
	6.3.1.4 Solve LP and determine schedule time

	6.3.2 Implementation
	6.3.3 An Illustrative Example

	6.4 Improved Resource Sharing (IRS)
	6.4.1 Scheduling
	6.4.2 Implementation
	6.4.3 An Illustrative Example

	6.5 Automated Tool Flow
	6.5.1 Pre-processing
	6.5.2 RTL Generation

	6.6 Experiments and Analysis
	6.6.1 Resource Usage and Frequency
	6.6.2 Tool Runtime

	6.7 Summary

	7 Multi-pumping Flexible DSP Blocks
	7.1 Introduction
	7.2 Related Work
	7.3 Vendor Tools Case Study
	7.3.1 Xilinx ISE
	7.3.2 Vivado HLS

	7.4 Resource Sharing and Multi-Pumping
	7.5 Multi-pumped DSP Block Architecture
	7.6 Multi-Pumping Scheduling
	7.6.1 Brute-Force Scheduling
	7.6.2 SDC-Based Scheduling
	7.6.3 FDS-Based Scheduling

	7.7 Combining Multi-Pumping and Resource  Sharing
	7.8 Automated Tool Flow
	7.8.1 RTL Generation

	7.9 Experiments and Analysis
	7.9.1 Resource Usage and Frequency
	7.9.1.1 Baseline Multiplier Multi-Pumping
	7.9.1.2 Fixed Function Multi-Pumping
	7.9.1.3 SDC-Based Flexible Multi-Pumping
	7.9.1.4 FDS-Based Flexible Multi-Pumping

	7.9.2 Tool Runtime

	7.10 Summary

	8 Conclusions and Future Research
	8.1 Summary of Contributions
	8.1.1 High-Throughput Resource Unconstrained  Implementations
	8.1.2 Initiation Interval Aware Resource Sharing
	8.1.3 Multi-Pumping Fixed and Flexible DSP Blocks
	8.1.4 Truncation Error Minimisation

	8.2 Future Research
	8.2.1 Integration into an HLS flow
	8.2.2 Extension of II-Aware Resource Sharing
	8.2.3 Support for Newer DSP Blocks
	8.2.4 Template Database Expansion
	8.2.5 Intermediate Virtual Fabric

	8.3 Summary

	Bibliography

