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Abstract 

Embedded virtualization is a promising solution for several big challenges in embedded systems, 

such as ECU consolidation, real-time industrial control, software complexity, safety, security and 

robustness. However, existing virtualization techniques for embedded systems only consider CPU-based 

processing solutions. With the trend towards hybrid computing platforms, virtualizing the conventional 

general purpose microprocessor (the software part) without considering the FPGA (the hardware part) 

only  addresses part of the problem.  

This thesis aims to propose a new approach to embedded virtualization by applying the 

microkernel-based hypervisor to a hybrid ARM – FPGA platform in order to virtualize both software and 

hardware tasks. This work involves firstly porting a traditional microkernel-based hypervisor (in this case 

CODEZERO) to an ARM-based dual core processor on a hybrid computing platform (the Xilinx Zynq 

7000). We then examine the necessary modifications to the hypervisor’s driver and APIs in order to 

support the FPGA hardware of the hybrid platform. An integrated hardware accelerator running on the 

FPGA under hypervisor control is developed as a prototype to evaluate the ability and functionality of the 

modified hypervisor. In order to compare the performance and hardware utilization of the hypervisor to 

Embedded Linux, the context switch overhead and the idle time of the hardware module are examined. 

Experimental results are presented that show CODEZERO is able to switch hardware contexts two to 

three orders of magnitude faster than that of Embedded Linux. 
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Chapter 1  

Introduction 

1.1 Motivation 

Motor vehicles today have a large number of electronic components, which control many parts of 

the car, such as the engine, brake assist system, airbag system, suspension system, information system, 

etc. Nowadays, more than 100 electronic control units (ECUs) are being used in a top end car. However, 

those ECUs just share a 20% mix of the automotive control system, while the other 80% is in charge of 

mechanical and hydraulic components and connections which link control components (e.g. gears, pedals 

and steering wheels) to the steering column and drive shafts, etc. In order to reduce system costs, one of 

the long term goals is to integrate many of the mechanical/hydraulic components to unified-

electrical/electronic ones. However, the complexity of the user’s requirements contributes to the increase 

in the number of ECUs since implementing new and complex functions needs additional ECUs, causing a 

cost increment, more power consumption, more heat dissipation, and more space consumption (e.g. 

communication). The introduction of multicore and hybrid architectures, such as FPGA-based 

reconfigurable computing, has resulted in the automobile industry proposing ECU consolidation [1-3] as 

a means to reduce some of these detrimental effects. ECU consolidation uses a (or several) centralized 

multicore processor(s) to replace many of the distributed ECUs. 

ECU consolidation does have its own problems, in terms of robustness, determinism, predictability 

and dependability, particularly when the centralized multi-core executes both real-time tasks and common 

applications (such as entertainment or navigation) at the same time. To overcome this issue, the 

virtualization technique is considered, so that both real-time and non-critical applications can run in an 

isolated environment (i.e. separate operating systems (OS) with separate memory areas) on the same 

physical centralized computing platform. Moreover, as more computational intensive applications (e.g. 

intelligent driving, multi-media and network applications) are integrated into high end cars, the 

computational requirements increase. As a result, hardware accelerators for these applications can be 

adopted in the centralized platform to enhance the performance and processing abilities. Therefore, the 
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virtualization system should also be able to manage the reconfigurable logic to implement multiple 

hardware accelerators by taking advantage of a software-hardware (SW-HW) hybrid computing platform 

which contains a multi-core processor and an FPGA. 

There are several existing embedded hypervisors or virtual machine managers on the market, some 

of which are certified for hard real-time systems. However, all of those hypervisors only virtualize the 

conventional general purpose microprocessor (the software part) without considering the FPGA (the 

hardware part). Thus, FPGA virtualization (e.g. FPGA resource abstraction, the general hardware 

accelerator interface, etc.) and its integration into a current hypervisor are important for ECU 

consolidation using a hybrid computing platform, and are the focus of this research project. 

In this project we examine existing virtualization techniques for both conventional microprocessor 

based systems and for FPGA systems. Moreover, reliable and secure techniques for incorporating FPGA 

reconfiguration for application acceleration into the virtualized computing space will need to be 

developed. This includes both hardware designs on FPGA and software abstractions inside the 

hypervisor. Analysis of hardware virtualization using various benchmarks will be used to examine the 

hardware-dependent impact and to identify deficiencies, and hence develop approaches to further improve 

the hardware virtualization. 

1.2 Contribution 

This thesis proposes a new approach to embedded virtualization by applying the microkernel-based 

hypervisor to the hybrid ARM – FPGA platform. It includes a modification of the microkernel-based 

hypervisor to the hybrid platform and support for an FPGA hardware accelerator for compute intensive 

applications. Based on examining, evaluating and analyzing the basic functionalities of CODEZERO, a 

specific hypervisor, we show how to manage the FPGA resources using a traditional hypervisor. That is 

to schedule a hardware task and to perform hardware context switching. Moreover, an FPGA hardware 

accelerator which can support the hardware context switch is developed.  A prototype of the modified 

hypervisor and some preliminary experiments are then presented. 

Part of the work carried out in  this thesis has been published in [26]. 
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1.3 Organization 

In Chapter 2, a review of technical terminologies is presented in terms of embedded virtualization, 

microkernel, and hybrid platforms. Some user cases will be introduced to answer the question: why do we 

need to use the embedded virtualization technique? Moreover, some existing embedded hypervisors will 

be reviewed. 

Chapter 3 describes the CODEZERO porting to the Xilinx Zynq 7000 platform (ZedBoard). The 

boot sequence of CODEZERO on the ZedBoard and some highlights of the porting work are discussed 

further. 

The new hybrid platform for virtualizing both hardware and software components is presented in 

Chapter 4. Further modifications to CODEZERO to support the FPGA part of the hybrid platform are 

described. Experiments are performed to compare the performance between applications running on 

CODEZERO and on Embedded Linux. These results are presented and discussed. 

The conclusions and recommendations for future work are given in Chapter 5. 
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Chapter 2  

Background 

2.1 Definitions and concepts 

2.1.1 Embedded virtualization 

Virtualization on embedded systems has gained momentum since the appearance of the Motorola 

Evoke [4] in April 2009. Although virtualization on desktops and servers is mature, virtualization on 

embedded systems is not common, but is growing quickly. Due to their limited resources, virtualization 

on embedded systems needs different approach techniques from virtualization on desktops or servers. 

Embedded systems may use a real-time OS for embedded real-time applications, a general purpose OS for 

user interfaces and non-critical computing, or have no operating system at all. A server or desktop system 

just needs to run many virtual copies of the same or a similar OS, such as Linux or Windows [5]. 

Embedded virtualization is a more complex, but promising solution for more complex embedded systems, 

such as ECU consolidation, real-time industrial control, software complexity, safety, security and 

robustness, etc. 

2.1.2 Hypervisor or virtual machine manager 

A hypervisor or virtual machine manager (VMM) is a middle layer which allows a number of guest 

OSs to run at the same time. There are 2 types of hypervisor, categorized as: type 1 and type 2, as shown 

in Figure 1. In type 1, the hypervisor runs directly on the hardware layer without the host OS, and is 

called a bare-metal hypervisor; whereas the hypervisor installed on a host OS, on which other guest OSs 

will run is a type 2 hypervisor, referred to as a hosted hypervisor. The bare-metal hypervisor controls 

hardware resources and manages one (or many) guest OS(s) running above it, so it produces less 

overhead than its hosted counterpart. However, the bare-metal hypervisor must have its own scheduler, 

and in fact, it works as a lightweight OS. Conversely, the hosted hypervisor only produces hardware 

emulation for its guest OSs, while the host OS does the resource allocation and the task scheduling. In the 
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embedded virtualization scenario, due to hardware resource limitations, the bare-metal hypervisor is 

preferable to the hosted hypervisor, which is more popular in desktop and server virtualization. 
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Figure 1. Type 1 (bare-metal) and Type 2 (hosted) hypervisor 

 

2.1.3 Para-virtualization versus full-virtualization 

Para-virtualization is a virtualization technique that introduces a software interface between the 

guest OS and the hypervisor. The guest OS needs to be ported to the interface in order to run on the 

hypervisor. In the porting modification, all privileged instructions in the guest OS must be replaced by 

calls to the hypervisor [6]. Thus, instead of invoking a processor exception when an application tries to 

access resources which are not available, the guest OS calls to the hypervisor. After that, the hypervisor 

makes the necessary system calls to the processor to handle those instructions. In fact, the guest OS is 

treated as a normal application running on the hypervisor as shown as in Figure 2.  

On the other hand, full-virtualization provides a complete simulation of the underlying hardware, in 

terms of instruction set, I/O peripherals, interrupts, memory access, etc. In full-virtualization, any stand-

alone operating system can run successfully on a hypervisor as a guest OS without any modification. 

When the guest OS executes a privileged instruction or makes a system call, the hypervisor will trap that 

operation and emulate the privileged instruction or the system call as if the guest OS is running on a real 

hardware. 

In summary, the para-virtualization technique introduces lower overhead and higher performance 

but requires more development cost and may contain more potential bugs than the full-virtualization 
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technique running an unmodified guest OS. Again, due to the highly constrained hardware resource, it 

seems that the para-virtualization technique is more suitable than its counterpart in embedded 

virtualization. 
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Figure 2. Para-virtualized Linux 

 

2.1.4 Microkernel 

The microkernel is a minimal set of primitives to implement an OS. It just keeps a small number of 

very fundamental primitives (e.g. the scheduler, memory management, inter-process communication, etc.) 

in kernel space, while putting other parts, such as device drivers, the file system, networking, or so on, in 

user space. Originally, the microkernel concept was designed for more secure and reliable OSs, as an 

answer to the monolithic-kernel concept, which tried to implement all the OS’s services in the kernel. 

However, the first two generations of microkernel-based OSs fell out of favor, because inappropriate 

implementations made them inefficient and inflexible [7]. Since 1995, when Jochen Liedtke proposed 

some new approaches to implement the microkernel and improved its overall performance [7, 8], the 

microkernel has become more popular. The comparison between structures of monolithic kernel and 

microkernel is shown in the Figure 3. 



18 

 

Hardware

Scheduler, memory management, basic IPC

Application 

IPC

Device 

drivers
File server

UNIX 

server

Hardware

Device drivers

Scheduler, memory management

File server, IPC

Virtual file system

Application

System calls

Kernel space

User space

Monolithic-kernel based 

operating system

Microkernel based 

operating system

Application

 

Figure 3. Monolithic-kernel based OS versus microkernel based OS 

 

There is some research which found that the microkernel is very suitable for use as a hypervisor for 

embedded virtualization [9, 10]. However, most microkernels just support para-virtualization, because of 

its better performance and less overhead. It also requires more effort to modify the guest OS to run on top 

of a microkernel based hypervisor, and can introduce hidden bugs. Moreover, it makes the update of the 

guest OS more difficult, expensive and risky. 

2.1.5 Benefits of virtualization on embedded systems 

When considering some of the attributes of microkernels, such as good isolation, fast inter-

communication, real-time capabilities, etc., embedded virtualization has some obvious benefits, 

including: 

• Increasing the system’s reliability by isolating the physical memory regions for each guest OS 

without interfering with each other 

• Increasing the software life cycle by enabling reuse of old and legacy software 

• Preventing fault propagation between separated domains, making the system more robust and 

reliable 
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• Enabling efficient task scheduling and intercommunication between guest OSs 

• Reducing hardware cost, software complexity and power consumption 

Some of embedded virtualization’s practical examples are listed below. 

Safety-critical backup: Some safety-critical systems may need to keep a backup function and 

replace the primary function immediately when the system fails and needs to be rebooted. A virtualization 

technique can be applied to this scenario by creating a backup virtual machine and putting it into standby 

mode. In this way, a system crash on the primary virtual machine will not lead to a catastrophic result 

because the backup virtual machine can take over immediately [11] as in the Figure 4. 
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Figure 4. Primary VM + Backup VM 

 

OS isolation: An automotive OS, for example AUTOSAR, coexists with an infotainment OS, such 

as Linux or Windows, on the same ECU. The virtualization technique enables safe integration by creating 

two divided virtual machines, one for each OS. The benefits are: reduced hardware cost and software 

complexity and improved robustness and reliability [5] as shown in Figure 5. 
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Figure 5. Infotainment VM + Automotive VM 

 

Software reuse: A change in hardware often requires a change in software. In the embedded 

systems domain, some applications need to be completely rewritten. Rewriting and testing code just for a 

new hardware platform is costly and wasteful.  Virtualization can reduce the overall cost by executing the 

legacy OS and its applications on a virtual machine running on the new hardware platform as in the 

Figure 6, thus extending the life cycle of the software. 

Improve security: A corporation may need to provide personnel with a secure mobile device (e.g. 

a mobile-phone or a tablet) in order to let them access the enterprise’s internal database. In this case, 

virtualization can be used to create two virtual phones on a unified physical device: a personal virtual 

phone on an open OS and an enterprise virtual phone on a trusted OS, both of which are running at the 

same time on the same physical platform. The enterprise virtual phone is managed by the corporation’s IT 

staff, while the personal phone is fully controlled by the user as in Figure 7. This isolation keeps sensitive 

data safe and secure, even if the user installs a low-security application onto the personal phone [5]. 
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Figure 7. Personal VM + Enterprise VM 
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2.1.6 Constraints for embedded virtualization 

There are a number of constraints imposed on an embedded hypervisor. 

Code size: The code size of an embedded hypervisor must be small due to the limited memory in 

most embedded systems. Some popular embedded hypervisors are only around ten thousand lines of code 

[12]. A bigger size means the system needs more memory, leading to more hardware cost and more 

power consumption. In addition, for safety-critical systems, which need to have every line of code 

analyzed by experts, a bigger size means more expense and a bigger potential threat. Server hypervisors 

usually have several million lines of code, and are not suitable for embedded systems. The code size 

requirement is one of the most important reasons why the microkernel is preferable as an embedded 

hypervisor. 

Determinism and latency: Some applications running on an embedded hypervisor are real-time 

applications. These applications not only need to be responded to quickly, but also within a bounded time. 

Therefore, the embedded hypervisor must be able to handle an interrupt within a very short time, as well 

as execute its internal operations within a deterministic time [13]. 

Security: With the small code size, an embedded hypervisor can easily be validated and shown to 

be bug free [14]. Some hypervisor vendors have certifications to show that their products are bug free. 

This is very important because some of the applications of embedded virtualization are safety-critical 

systems that could cause catastrophic damage when a failure occurs. The microkernel approach is very 

helpful in keeping the hypervisor simple and small, because it outsources most of the complex and less 

trusted system parts to user space. Thus, the microkernel is the minimal portion running in privileged 

mode, conducting processor and memory management, and serving as the trusted computing base (TCB). 

Isolation: The ability to isolate a guest OS from another one is also essential for a microkernel-

based hypervisor. This way, it not only prevents fault propagation from one domain to another, but also 

improves the security and reliability of the whole systems. In a microkernel-based hypervisor, each guest 

OS will be allocated to a typical memory space and only privileged (kernel controlled) inter-process 

communication (IPC) can be used to communicate cross-domain. 

Communication: The isolation and security requirements for a microkernel-based hypervisor need 

a secure and efficient mechanism to communicate between different domains or guest OSs residing in 

divided memory spaces. Without this communication mechanism, the hypervisor cannot share or 

synchronize data between multi-tasks, threads or guest OSs. 
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Scheduling: Embedded virtualization has two levels of scheduling. The first scheduling level is in 

the guest OS to schedule tasks running on it. The second is in the microkernel to choose which virtual 

machine or guest OS will be run. There are two commonly used algorithms for the microkernel’s 

scheduler: round-robin and fixed priority. The later one is to support real-time capability, which allows a 

critical task in a higher priority domain to run whenever it is available. 

2.2 Existing virtualization techniques 

There are a number of commercial embedded virtualization products currently available. 

PikeOS: One of the most popular microkernel-based hypervisors is PikeOS [15], which is used 

widely for some safety-critical applications in the avionics industry. The PikeOS’ structure is shown in 

Figure 8. With embedded virtualization, old and legacy applications can coexist with later applications on 

the same hardware platform, but in separated virtual machines. PikeOS supports a number of 

architectures, including ARM, x86, PowerPC, SuperH, etc… A number of guest OSs, application 

programming interfaces and runtime environments, for example PikeOS native interfaces, Linux, 

Android, ARINC 653 APEX, POSIX, Real-time Java are supported by PikeOS.  As PikeOS uses the 

para-virtualization technique, guest OSs need to be modified from their original versions to run in a 

PikeOS virtual machine. Although widely used in the avionics industry, PikeOS is actively targeting the 

automobile industry. COQOS [16], which can virtualize both Android and AUTOSAR on the same 

platform, is a commercial product based on the PikeOS structure. 

OKL4: OKL4 [17] was developed by Open Kernel Labs (OK Labs). This product is very popular 

in the consumer electronics area. It focuses on security applications to create more secure devices used in 

business mobile phones, set-top-boxes or network routers. As with other products in the L4 family, OKL4 

only supports the para-virtualization technique. It means that guest OSs such as Linux, Android, etc., 

must be adapted in order to run on top of OKL4. Many guest OSs have been released by OK Labs, 

including, OK:Linux, OK:Android and OK:Symbian. However, till now, there is no industrial example 

which uses the OKL4 microkernel for safety-critical applications. The structure of OKL4 is summarized 

in Figure 9. 
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Figure 9. OKL4's structure 

 

NOVA: NOVA [18] is a third generation microkernel, because it supports full-virtualization. Guest 

OSs do not need to be modified to run on the NOVA hypervisor. It takes less time and effort to port 
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applications to one of its virtual machines, as well as reducing the number of potential bugs when 

modifying them. However, NOVA has to add one more middle layer, which consists of a root partition 

manager, device drivers and VMMs, into user space. In this way, NOVA can keep its kernel small and 

reliable, but introduces more overheads, as it has to emulate the hardware for execution of the guest OSs’ 

privileged instructions. The Figure 10 displays the NOVA’s structure. 
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Figure 10. NOVA's structure 

 

The L4 Microkernel: The L4 microkernel was first introduced by Jochen Liedtke [7] and provides 

3 key primitives to implement policies: address spaces, threads, and IPC. With the address space concept, 

memory management and paging can be implemented outside the microkernel, based on granting, 

mapping and unmapping, which are kept inside the kernel [19]. Threads are used to support multitasking, 

while IPC creates a mechanism for communication between threads in divided address spaces. Moreover, 

IPC is used to control the executing flow’s changes between protected areas, to control data transfer 

among them and to entrust resources with mutual agreement between senders and receivers [10]. With 

this simple IPC primitive, the microkernel can minimize the necessary security mechanisms as well as the 

kernel complexity and code size. The smaller the code size, the fewer errors the kernel can introduce and 
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the smaller the cache footprint. This means that the system is cheaper, smaller and has less power-

consumption. 

In order to achieve the necessary performance and flexibility, the microkernel has to be optimized 

based on the processor’s architecture to take advantage of the specific hardware. Because one processor’s 

architecture has some tradeoffs compared with another, the microkernel should be the lowest level of OS 

on the hardware without any other abstraction. This means that the microkernel is hardware-dependent 

and is inherently not portable [7]. 

The L4 microkernel can also support real-time applications concurrently with general-purpose 

applications by using cache partitioning and the IPC model. Because real-time tasks need to meet their 

deadlines, the required resources must always be allocated and scheduled. Cache partitioning means the 

microkernel uses the main-memory manager (pager) to partition the second-level cache among various 

real-time tasks and to isolate them from timesharing ones. This helps to avoid cache interference and 

cache miss, thus improving the predictability and the performance for real-time tasks. With this IPC 

model, a server can easily pre-allocate kernel and user resources, threads and stacks, dedicated to specific 

applications [8]. 

2.3 CODEZERO 

CODEZERO [12] is developed from the L4 microkernel, and follows the latest concept and 

research principles on microkernel design [15]. The code size is about ten thousands of lines of C code, 

and its APIs consist of twelve main system calls. Therefore, CODEZERO is simple, small and efficient, 

compared to other L4 microkernels. Figure 11 summarizes the CODEZERO’s structure. 

CODEZERO is able to schedule threads to multiple cores, on both symmetric multi-processor 

(SMP) and asymmetric multi-processor (AMP) architectures. In SMP, CODEZERO delivers threads to 

any core on the platform without any restriction on which core is running which thread. It helps to utilize 

computing performance and power. In addition, for the determinism requirements of real-time 

capabilities, CODEZERO can also schedule specific threads onto specific cores, supporting the AMP 

architecture. Additionally, CPU time-slices can be adjusted with demand. 
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Figure 11. CODEZERO's structure [12] 

 

CODEZERO supports kernel preemption for real-time tasks. Moreover, CODEZERO keeps the 

interrupt handler as small as possible. It just clears the interrupt flag and then calls the child thread to 

handle the interrupt function. Thus, both the interrupt threads as well as the other threads can be 

scheduled and pre-empted whenever another more critical event happens. 

2.3.1 System partitioning by using containers 

CODEZERO introduces the concept of a container for virtualization on embedded systems. A 

container provides an isolated virtual environment with its own set of resources such as threads, address 

spaces, and memory resources, as in the Figure 12. CODEZERO uses a fixed priority scheduler to 

schedule which container will be run based on its priority. This is helpful when an RTOS is run 

concurrently with a GPOS, because tasks in the RTOS’s domain will always be scheduled before tasks in 

the GPOS’s domain. 
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Figure 12. CODEZERO's containers 

 

At the beginning, there is only one privileged task called a pager running in each container. The 

pager then creates further children tasks running in their own virtual memory spaces to produce a 

multitasking environment inside its container. This model is a typical setup for a virtualized guest OS. For 

example in container 0 in Figure 12, the kernel acts as the pager and its applications are child tasks. 

Another model is for a bare-metal or self-contained application, where the application is the pager 

itself, as shown as in container 1 in Figure 12. The pager can create multiple children threads in the same 

address space and then works as a standalone application on the hardware. Those standalone 

multithreaded applications can be used to test hardware devices or to develop a lightweight RTOS. 

The pager task possesses all privileged capabilities inside the container. It can create and manage 

threads, because it owns the thread control, and exchange register capabilities. Moreover, a pager can map 

a physical address to a virtual address for its own address space and the address space of its children 

tasks, because it also has possession of both physical and virtual resources. Because the pager only has 

rights to its own container, it is very easy and simple to manage isolation between containers. 

Capability is a security mechanism implemented in a CODEZERO’s container.  It represents a right 

to access to kernel-managed resources in terms of system calls, memory regions, memory pools, and 

IPCs. Capabilities can be possessed by all tasks inside the container or by some of them. Children tasks, 
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as shown Figure 13, own a mutex pool capability, so they are allowed to communicate with any thread 

inside the container via IPC. 
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Figure 13. Capabilities inside a container 

 

2.3.2 Communication by IPC and shared memory 

IPC requires the User Thread Control Block (UTCB), which is defined for every unique thread on 

the system, as a message buffer. Moreover, this UTCB can be used as thread-local storage. Typically for 

the ARM architecture, UTCBs are 64 word memory blocks. 

IPC is implemented as a synchronous communication mechanism in CODEZERO. There are three 

types of IPC, namely: short IPC, full IPC and extended (long) IPC. The short IPC is the most frequently 

used method of IPC between user space threads. Two communicating threads only transfer their primary 

message registers, which are registers that are capable of mapping onto real registers in the system. For 

example in an ARM system, they are MR0-MR5, which could map onto R3-R8 on real hardware 

registers. The whole UTCB buffer with 64 words is transferred among threads in full IPC, whereas a 

transferred message might be up to 2KB in extended IPC. 
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Figure 14. Inter-process communication inside and between containers 

 

Children tasks in a container can communicate with their pager and each other. With appropriate 

capabilities, a child task can communicate with tasks in different containers via inter-container IPCs, as in 

the Figure 14. 

In a shared-memory mechanism, two pagers in different containers may have the same physical 

address, and therefore can communicate each other. This mechanism depends on the relevant physical and 

virtual memory capabilities they possess. 

2.3.3 Virtualization 

CODEZERO supports the para-virtualization methodology, in which the guest OS kernel is 

abstracted away from the hardware details. It means that the guest OS kernel’s privileged instructions are 

replaced by calls to the microkernel. In the CODEZERO runtime environment, the guest OS kernel works 

as the pager in a container with capabilities to create and manage applications, as shown in the Figure 15. 

The guest OS kernel’s access rights are limited by the boundaries of that container. 
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Figure 15. Para-virtualized Linux on CODEZERO 

 

2.4 Summary 

In this chapter the concept of embedded hypervisors was introduced. A review of the state of the art 

in embedded hypervisors and an analysis of one on the newer embedded hypervisors (CODEZERO) were 

conducted.  

This then develops the groundwork for my current work which involves porting CODEZERO to a 

hybrid ARM-FPGA platform described in Chapter 3. This also leads into, and becomes the focus of my 

work which will include the first steps in the virtualization of the FPGA hardware on the Zynq 7000 

platform which is described in Chapter 4.  
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Chapter 3  

Porting CODEZERO on ZedBoard 

This chapter introduces the Xilinx Zynq 7000 extensible processing platform, and the possibility of 

adding virtualization support for FPGA-based hardware tasks. It then goes on to describe the porting of 

the B-Labs CODEZERO hypervisor to the Xilinx Zynq 7000 family of FPGAs. The starting point for the 

CODEZERO Zynq 7000 port is CODEZERO version 0.5 for the Texas Instruments OMAP4430 

processor on the PandaBoard platform [20]. The target platform is the ZedBoard [21] based on the 

XC7Z020-1CLG484C, Zynq-7000 SoC [22].  Throughout this chapter we will use the terms “ZedBoard” 

as well as “Zynq 7000 platform” interchangeably. The CODEZERO port to the ZedBoard was a joint 

effort, with some of the initial work being done by author 3 of [26].  

3.1 Virtualizing the Xilinx Zynq 7000 extensible 

processing platform 

The Zynq 7000 extensible processing platform (EPP) is a new system-on-chip (SoC) introduced by 

Xilinx in 2012. It integrates a dual-core Cortex-A9 processor, a Xilinx 7000 series FPGA [23] and some 

common peripherals onto a single die. The powerful dual-core Cortex-A9 processor is for general-

purpose applications, and the programmable logic is for users to develop new peripherals, hardware 

accelerators or application specific processing units. Moreover, on a conventional two-chip platform 

(processor + FPGA) which communicate each other via the I/O port, the performance is limited due to 

communication latency, I/O bandwidth and power budget. However, the single chip Zynq 7000 is not 

limited by these factors and is able to achieve a much higher computing performance. This approach 

gives the Zynq 7000 chip a chance to become a very customized, flexible and powerful processing 

platform. The characteristics of the Zynq 7000 platform are given in Table 1 and Figure 16. 
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Table 1. Zynq 7000's specifications [23] 

Processing system 

Processor Dual-core ARM Cortex-A9 up to 1GHz 

 ARMv7-A architecture with TrustZone ® security and Thumb®-2 

instruction set 

Memory 32 KB Level 1 and 512KB Level 2 caches 

 On-chip boot ROM 

 256 KB on-chip RAM 

 External memory supports multiprotocol dynamic memory controller, 

static memory interfaces 

Peripherals USB, CAN, SPI, UART, I2C, GPIO, etc. 

Interconnect ARM AMBA® AXI bus system for data transfer between processing 

system and programmable logic 

Programmable logic  

Configurable logic blocks Look-up tables (LUT), flip-flops (FF), cascadeable adders 

Memory 36 Kb block RAM 

DSP blocks 18x25 signed multiply, 48-bit adder/accumulator, 25-bit pre-adder 

Other peripherals Programmable I/O blocks 

 16 receivers and transmitters with up to 15 Gb/s data rate 

 Two 12-bit analog-to-digital converters 

 

 

Figure 16. Zynq 7000's organization [23] 
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Both the microkernel-based hypervisor and the hybrid platform open a new horizon for applications 

on embedded systems. We can use the microkernel to virtualize many different kinds of OSs and SW-HW 

co-designed applications running on them, with the FPGA part of the hybrid platform used for application 

acceleration. The acceleration could be for the virtualization itself or for some compute-intensive 

applications running on one of the guest OSs. The challenges are not only to implement these hardware 

accelerators, but also how to abstract and integrate those new hardware parts into the existing microkernel 

without affecting the system’s performance. 

 Hardware accelerators and SW-HW application partitioning is relatively mature and can be 

implemented using the conventional FPGA resources. However, enabling hardware acceleration to work 

with a hypervisor in a virtualized environment is not a simple procedure. Because the microkernel is 

small, efficient and simple, increasing the number of APIs should be avoided as much as possible. This 

means that we have to utilize existing APIs to abstract new hardware functions and modify the guest OS 

to use those abstractions. The overheads from data transfer between processing system and programmable 

logic need to be considered and analyzed carefully. The initial idea of the platform for SW-HW 

virtualization is shown in the Figure 17. 
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Figure 17. Initial idea for SW-HW virtualization platform 
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3.2 Booting CODEZERO on the ZedBoard 

3.2.1 The overall boot sequence 

In the ZedBoard, the NAND flash, NOR flash, SD card, Quad-SPI, and JTAG are five possible 

boot sources. The master boot method uses one of the first four boot sources in order to load the external 

boot image from non-volatile memory into the on-chip memory (OCM). In the slave boot mode, an 

external host PC uses the JTAG connection to load the boot image into the processing system (PS) while 

the PS CPU is not executing. The boot sequence of the ZedBoard has 3 stages: stage 0, stage 1 and stage 

2 (optional). Its boot sequence is summarized in Figure 18. 

In stage 0, a hard-coded boot program stored in ROM executes and initializes some basic 

peripherals such as the NAND flash, NOR flash, the SD card and the Quad-SPI and PCAP interfaces 

immediately after power-on reset (POR). This boot program runs on the primary CPU and is in charge of 

loading the stage 1 boot image. Other peripherals, such as DDR, CLK, MIO, etc…, are not initialized in 

this stage. They are initialized in stage 1 or later stages. 

The first stage boot-loader (FSBL) configures the CLK, DDR, and MIO for the PS part. Moreover, 

it also programs the programmable logic (PL) part if the bit-stream is provided. Then, the second stage 

boot-loader (SSBL) or bare-metal application will be loaded into DDR memory. In addition, the FSBL 

also invalidates the instruction cache and disables the cache and MMU for the U-Boot in the later stage. 

Finally, it gives the control to the SSBL or the bare-metal application. 

Currently, we do not have the bitstream downloaded automatically in this first stage boot, but we 

can compile that bitstream with the FSBL later by using the Xilinx SDK tool [24]. 

The second stage boot-loader (SSBL) is optional and user-designed (for example U-Boot), but it is 

necessary to bring the operating system from the permanent storage media into memory. It provides some 

useful features, such as transferring, loading and executing kernel images from flash memory, USB, serial 

port, and Ethernet. Moreover, the boot-loader can initialize hardware, such as the DDR or serial port, 

which is very important for booting or debugging. 
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Figure 18. Boot sequence of the ZedBoard 

 

In the case of the CODEZERO boot on the ZedBoard, we use the same U-Boot as is used to boot 

the Linux kernel on ZedBoard [25]. The U-Boot command mmcinfo is used to initialize the SD card. 

./mmcinfo 

After that, the fatload command is used to load the kernel image (the uImage file) from partition 0 

of the SD card to the beginning of the main memory (the main memory starts from 0x0 in the ZedBoard). 

./fatload mmc 0 0 uImage 

Then, another command bootm is executed from the specified memory where the final image is 

stored. 

./bootm 0 

U-Boot automatically decompress the final image file, re-allocates the CODEZERO loader image 

in the final image to the address 0x02000000 which is the entry point address stored in the ELF file 

header. Finally, the execution jumps to the entry point address of the CODEZERO loader to start 

CODEZERO (the label _start in the file crt0.S). The CODEZERO kernel and loader start addresses are 

configured by the user in the compilation step according to the Zynq 7000 hardware manual, because 
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these addresses are different across various platforms. The configuration step and CODEZERO’s final 

image layout will be described later. The stage 2 boot process is shown in Figure 19. 

 

 

Figure 19. The stage 2 boot 

 

CODEZERO starts after the U-Boot command bootm has executed. Its boot sequence is displayed 

in the Figure 20. The CODEZERO loader will first start to load the CODEZERO kernel and user 

container images, then the CODEZERO kernel initialization will continue.  

3.2.2 CODEZERO’s folder structure and final image layout 

CODEZERO’s folder structure is illustrated to provide a better understanding of CODEZERO’s 

boot sequence and the necessary modifications. The entire CODEZERO source code consists of three 

parts, as shown in Figure 21: the CODEZERO loader, the kernel, and the user containers. In this chapter, 

we only describe the CODEZERO loader and CODEZERO kernel, as user containers are not affected 

heavily by the target platform. The loader folder has the source code for the loader. CODEZERO’s kernel 

source code is contained in the folder src and includes subfolders arch for architecture-specific functions, 

drivers for peripherals’ device drivers, glue for architecture-generic function, and platform for platform-

specific functions. The include folder contains all related header files for drivers, architectures, platforms, 

CODEZERO’s structures and APIs. The contents of these three folders are modified during the porting 

process. 
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Figure 20. CODEZERO's boot sequence 

 

 

Figure 21. CODEZERO’s shortened folder structure 

 

The CODEZERO loader, kernel and user containers are compiled independently to generate several 

separated binary images (loader.elf for the CODEZERO loader, kernel.elf for the CODEZERO kernel and 



39 

 

contX.elf for the user containers). At the final stage of the entire CODEZERO compilation the separated 

images are merged and compressed, if applicable, into the final image (the uImage file). 

Figure 22 shows the CODEZERO final image layout on the Zynq 7000 platform, with the 

CODEZERO kernel start address at 0x0, the loader start address at 0x02000000 and with user cont0 and 

cont1 at 0x04000000 and 0x05000000, respectively. 
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Figure 22. CODEZERO final image layout on ZedBoard 

 

The start addresses of the CODEZERO loader, kernel and user container images are stored in 

separated linker script files (kernel.ld for the kernel compilation, loader.ld for the loader image and 

linker.ld for the container images) and are defined by user configuration. 

The “make menuconfig” command is used to configure the CODEZERO kernel and loader start 

addresses as shown in Figure 23. The start address of each user container image is set by changing the 

parameters PHYSMEM_START and PHYSMEM_END in the file config.h as shown in the Figure 24.  
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Figure 23. Kernel and Loader start addresses configuration 

 

 

Figure 24. Container memory area configuration 

 

The CODEZERO loader and CODEZERO kernel initialization are critical parts for the ZedBoard 

port, as these two parts are hardware-dependent. Figure 25 shows the folder structure and the files that 

have been modified during the porting process. 
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Figure 25. CODEZERO's detail folder and file structure 

 

3.2.3 CODEZERO loader porting 

The loader loads the kernel and container images to the appropriate memory locations, then 

initializes the UART and finally jumps to the kernel section. Loader routines and functions that have been 

modified during the porting process are located in the loader folder, and are described in Table 2. 
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Table 2. The loader folder’s file description 

File name and location Function 

loader/libs/c/crt/sys-baremetal/arch-

arm/crt0.S 

Contains the entry point’s function of the loader section, checks 

the memory offset if the loader image is on correct memory 

location, if not then calls the function loader_copy in the file 

loader/main.c to copy the loader image on correct memory 

location, initializes the UART for debug purpose, then jumps to 

the main function in the loader/main.c file 

loader/loader.ld.in Defines the memory layout of the loader image, points out the 

entry point _start label and links the start physical address 

(CONFIG_HYP_LOADER_PHYS_START, configured in the 

compilation step) to that label 

loader/loader.S Defines which image file should be loaded in case image 

compression or non-compression 

loader/main.c Copies the kernel and container images on appropriate memory 

locations, loads the kernel entry point, then jumps to the kernel 

section 

 

The _start label is the entry point of the loader section according to the linker description file. Then 

the _start function in the file loader/libs/c/crt/sys-baremetal/arch-arm/crt0.S is executed first to check the 

memory offset. If the loader image is at the correct physical memory location, which is defined by the 

user, as different platforms require different CODEZERO loader and kernel address offsets, via “make 

menuconfig” as mentioned above. If the memory location is not correct, it will reallocate that image to the 

corresponding memory location. After that, the UART is initialized with the base register address 

according to the Zynq 7000 hardware manual. This initialization is one of the most important steps in this 

stage because the serial port is crucial to debug further. Here we need to rewrite the UART driver for this 

purpose, which is detailed in Section 3.3.2. The main function in the file loader/main.c is executed to load 

and decompress kernel and container’s images to memory. Finally, the loader jumps to the kernel’s start 

address (the _start procedure in src/arch/arm/head.S) for further CODEZERO kernel initialization. 

3.2.4 CODEZERO kernel initialization porting 

The kernel initialization starts after the loader finishes. This sequence will initialize the primary 

CPU core, enable the MMU, set up CODEZERO’s identical structures and initialize the platform 

peripherals. Because CODEZERO’s high-level structures such as UTCB, KIP, scheduler and other APIs 
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are hardware-independent, we do not need to touch them in this porting work. Table 3 describes some 

files which we have changed in the CODEZERO kernel source code. 

 

Table 3. The src folder's file description 

File name and location Function 

src/arch/arm/head.S Contains the kernel entry point’s function; disables MMU, I-

cache, D-cache, Write buffer and Branch prediction in the 

primary CPU for later initialization; backs up general registers’ 

values into stack, and then jumps to the start_kernel function to 

initialize the platform peripherals 

src/arch/arm/head-smp.S Contains the entry point’s function for the secondary CPU;  

disables MMU, I-cache, D-cache, Write buffer and Branch 

prediction in that secondary CPU for later initialization; and 

jumps to the smp_secondary_init function to initialize the 

secondary CPU core 

src/arch/arm/linker.ld.in Defines the memory layout of the kernel image, calculates the 

offset between the configured 

CONFIG_HYP_KERNEL_PHYS_START address and the 

KERNEL_AREA_START address, then maps the kernel’s 

sections on right memory locations 

src/arch/arm/mapping-common.c Contains some common and abstracted low-level page-table 

functions between v5 – v7 ARM architectures 

src/arch/arm/v7/init.c Contains specific system initialization for v7 ARM architecture 

src/glue/arm/init.c Contains common initialization routine between v5 – v7 ARM 

architectures 

src/glue/arm/smp.c Contains the secondary CPU’s wake-up and initialization 

functions 

src/platform/zynq/irq.c Contains generic irq handling for specific Zynq 7000 platform 

src/platform/zynq/platform.c Contains the specific platform initialization for Zynq 7000 

platform 

src/platform/zynq/smp.c Contains SMP related definitions for Zynq 7000 platform 

 

CODEZERO’s kernel starts from the _start procedure, specified in src/arch/arm/head.S, after the 

loader copies the kernel and container images to the correct memory location. It uses the start_kernel 

function (file src/glue/arm/init.c) in order to initialize the primary CPU, because different ARM 

architectures have various routines to set up the CPUs. Moreover, the kernel will initialize the page tables 

(the function init_kernel_mappings, in src/arch/arm/v7/init.c) and wake up the MMU (the function 

start_virtual_memory, also in src/arch/arm/v7/init.c) since it was disabled in the stage 1 boot process. We 

will describe this issue in detail in the next section. 
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Several CODEZERO structures need to be initialized and mapped into user-space in this stage for 

further operations, for example the User-space Thread Control Block structure, l4_utcb, Kernel Interface 

Page structure, l4_kip, guest’s shared memory page and system-call jump-table page. As this step is 

hardware-independent, we will not discuss it further. 

Other platform peripherals, such as the timer, scheduler, and interrupt controller, are set up and 

mapped to the virtual address area by the function platform_init in src/platform/zynq/platform.c. The 

timer and GIC device drivers need to be rewritten as described in the next section. 

In the next step, if dual-core mode is configured, we need to wake up the second CPU core by 

calling the function smp_start_cores in glue/arm/smp.c. This function needs to be changed as  the Zynq 

7000 secondary CPU wake-up procedure is different from the PandaBoard’s one. This issue will also be 

discussed further in the next section. After finishing the hardware and kernel’s initialization, the kernel 

starts the timer and then enters the scheduler loop to run applications in the hypervisor containers. The 

platform initialization routine is summarized in the Figure 26. The highlighted steps of the platform 

initialization routine are discussed further in the next section. 
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Primary CPU start-up

Translation page-table initialization

Virtual memory (MMU) start-up

CODEZERO’s scheduler initialization

CODEZERO’s UTCB and kernel-thread 
initialization

Zynq platform’s peripherals initialization

ARM high vector base enabling

Secondary CPU wake-up

CODEZERO’s KIP set-up

CODEZERO’s guest shared memory page 
initialization

CODEZERO’s system-call jump-table 
page initialization

Platform’s timer and CODEZERO’s 
scheduler start

 

Figure 26. CODEZERO's platform initialization 
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3.3  CODEZERO port detail 

3.3.1 Zynq 7000 base address definitions 

For CODEZERO to run on the ZedBoard, we need to modify some parts of the original source 

code for the Pandaboard. Firstly we need to change the register base addresses for all peripherals 

according to the Zynq 7000 hardware manual [22].  The essential base addresses for the Zynq 7000 

platform [22] are defined in the file include/l4/platform/zynq/offsets.h, as shown in the Table 4. 

 

Table 4. ZedBoard's base addresses 

Definition Description Physical address 

PLATFORM_PHYS_MEM_START  0x0 

PLATFORM_DEVICES1_START Base address for I/O peripheral registers 0xE0000000 

PLATFORM_GIC0_BASE Base address for GIC 0 registers 0xF8F00100 

PLATFORM_SYSCTRL_BASE Base address for system control registers 0xF8000000 

PLATFORM_UART1_BASE Base address for console port 1 0xE0001000 

PLATFORM_TIMER0_BASE Base address for triple timer 0 0xF8001000 

PLATFORM_TIMER1_BASE Base address for triple timer 1 0xF8002000 

CPU1_START_ADDR_BASE Start address for CPU1 core 0xFFFFFFF0 

FPGA_CLOCK0_BASE Base address for clock 0 for FPGA 0xF8000170 

FPGA_CLOCK1_BASE Base address for clock 1 for FPGA 0xF8000180 

FPGA_CLOCK2_BASE Base address for clock 2 for FPGA 0xF8000190 

FPGA_CLOCK3_BASE Base address for clock 3 for FPGA 0xF80001A0 

 

3.3.2 Rewriting the drivers 

The UART, timer and generic interrupt controller (GIC) are all essential for CODEZERO’s 

operation. The UART is used for console display and debug, the timer is used by the CODEZERO 

scheduler and the GIC is for hardware management. Other peripherals may be initialized and handle later 

by CODEZERO’s guest OS (for example Linux or µC/OS). The drivers are in the src/drivers directory. 

The modification to the GIC module is relatively trivial as there are no differences for platforms 

using the ARMv7 architecture. We simply need to change the base address of the GIC0 register to 

0xF8F00100 in offsets.h (located in folder include/l4/platform/zynq). 

For the UART, we have to change the base address (the address 0xE0001000) as well as initializing 

procedures due to changes in the register’s organization in the Zynq 7000 platform. Because the UART is 
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important for debug, it needs to be initialized earlier than the other peripherals. The updated driver file is 

src/drivers/uart/pl101.c. Before starting transmission and reception, we need to disable the transmit and 

receive paths, configure the character frame and baud rate, set the number of stop bits, and then enable the 

transmit and receive paths. In order to disable the transmit and receive paths, the ZYNQ_RXE and 

ZYNQ_TXE bits in the ZYNQ_UARTCR (defined with the offset 0x0 in the file 

include/l4/drivers/uart/pl101.h) are cleared to 0, while ZYNQ_RXDIS and ZYNQ_TXDIS are set to 1. 

The UART character frame is configured by writing the value 0x00000020 to the register 

ZYNQ_UARTMD (offset 0x4), enabling 8-bit character length, 1 stop bit, and no parity. Then, the CD 

value in the ZYNQ_UARTBRG (offset 0x18) and the BIDV value in the ZYNQ_UARTBRD (offset 

0x34) are written to achieve the default baud-rate of 115200 bps for the default frequency of 50 MHz. 

Finally, the transmit and receive paths are enabled by setting ZYNQ_RXE and ZYNQ_TXE bits to 1 and 

clearing ZYNQ_RXDIS and ZYNQ_TXDIS to 0. After these changes, the UART in the ZedBoard starts 

to operate again as shown in Figure 27. Some common UART sequences are summarized in Table 5. 

 

Table 5. Common UART sequences 

Name of sequence Detail 

Transmit and receive paths disable Clearing bits ZYNQ_RXE and ZYNQ_TXE in the 

ZYNQ_UARTCR (equal to the PLATFORM_UART1_BASE 

address with the offset 0x0) 

Character frame configuration Writing value 0x00000020 to ZYNQ_UARTMD (offset 0x4) to 

define a 8-bit length, 1 stop bit, and no parity character frame 

Baud-rate configuration Writing appropriate values to CD field in ZYNQ_UARTBRG 

(offset 0x18) and BIDV field ZYNQ_UARTBRD (offset 0x34) 

Transmit and receive paths enable Setting bits ZYNQ_RXE and ZYNQ_TXE in the 

ZYNQ_UARTCR to value 1 
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UART initialized 

successfully

 

Figure 27. The UART starts on ZedBoard 

 

The timer is essential for the correct operation of the CODEZERO scheduler. In the ZedBoard, 

there is a 24-bit watchdog timer and two 16-bit triple timer/counters. We use triple timer/counter 0 (base 

address at 0xF8001000) as the clock source for the scheduler. It is initialized to use the pclk source with 

pre-scale mode enabled and the prescaler value set to 7 (i.e. the count rate is divided by (2^7+1)). Some 

common sequences for timer 0 are summarized in Table 6. 
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Table 6. Common Timer sequences 

Name of sequence Detail 

Timer periodic initialization Disable the timer by setting the DIS bit in the 

ZYNQ_TIMER0_CTRL (offset 0xC) register to high 

Select the clock input source, and set the prescaler value in the 

ZYNQ_TIMER0_CLKCTRL (offset 0x0) 

Choose the interval mode for the timer by setting the INT bit in 

the ZYNQ_TIMER0_CTRL register 

Enable the timer interrupt by setting corresponding bit of the IEN 

field in the ZYNQ_TIMER0_INTEN (offset 0x60) register 

Set the match value by writing the value into the 

ZYNQ_TIMER0_LOAD (offset 0x24) register 

Timer start Read back the value of ZYNQ_TIMER0_CTRL register 

Clear the DIS bit 

Write back to the register 

Timer stop Read back the value of ZYNQ_TIMER0_CTRL register 

Set DIS bit to 1 

Write back to the register 

Timer restart Read back the value of ZYNQ_TIMER0_CTRL register 

Set RST bit to 1 

Write back to the register 

Timer interrupt clear Read back the value of ZYNQ_TIMER0_INTREG (offset 0x54) 

register, then the value of this register will be cleared 

automatically 

 

3.3.3 Enabling the MMU  

The MMU enable routine is summarized in Figure 28. Functions for this routine are contained in 

the file src/arch/arm/v7/init.c.  

The MMU module was the most complicated as the values of registers such as program counter 

(PC), link register (LR), system control register (SCTLR) and page-table address are essential to 

determine where the program actually resides in memory. The MMU module was the most difficult 

module to port and required considerable debugging effort, as initially, after the MMU started, the 

program counter (PC) did not load the correct address to continue the boot sequence. As we needed the 

UART for debugging this module, we decided to map the UART register to virtual memory before 

enabling the MMU using the function add_boot_mapping_bf_mmu function in the file 

src/arch/arm/mapping-common.c. The normal practice is to enable the MMU first and then map 

peripheral registers to the virtual address later. By comparing the values displayed on the monitor with the 

address in the assembly code, we were able to correct address mismatches. 
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Translation page-table initialization

Set up the translation page-table base 
address

Set the access right for that page-table

Write the offset for virtual-to-physical 
translation table

Write the offset for one-to-one 
translation table

Map the UART physical address to 
virtual address before starting MMU by 
writing its offset to the translation table

MMU initialization by writing 
appropriate value to the TTBR0, TTBCR, 

and SCTLR

Update SP, FP, and PC with virtual 
address

Set link register to virtual offset and 
jump to it

PC lost here without the one-to-one translation table

 

Figure 28. MMU enable routine 

 

Another technique is to map and use the one-to-one translation table for the PC register. It is 

applied to prevent a problem when the PC cannot translate the current virtual address to a corresponding 

physical address by using the virtual-to-physical translation table after the MMU starts. After that, we 

load the virtual address to the PC and use the virtual-to-physical translation table as normal. Once the PC 

is correct and the program is running as expected we can remove the one-to-one translation page to save 

memory space. The result of enabling the MMU on the ZedBoard is displayed in Figure 29. 
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Information used to debug

MMU enabled successfully

 

Figure 29. MMU enables on the ZedBoard 

 

3.3.4 Secondary CPU wake-up and FPGA clock initialization 

The second core of the dual core A9 SoC has a  start-up procedure which is different for various 

platforms. The second core (CPU1) wake up on the Zynq 7000 platform must strictly follow the sequence 

described in its hardware manual [22]. Firstly, we need to write the address of the application __smp_start 

(in src/arch/arm/head-smp.S) for CPU1 to the CPU1_START_ADDR_BASE register at 0xFFFFFFF0, 

and then execute the SEV instruction to cause CPU1 to wake up and jump to that application. This routine 

is initiated by platform_smp_start in src/platform/zynq/smp.c. The application will firstly initialize the 

secondary core’s peripherals such as starting virtual memory, initializing the GIC CPU interface and 

enabling the interrupt sources. Then, the secondary core will send a signal to the primary core to 

announce that it is ready for execution. Finally, CPU1’s scheduler is started to run its own applications. 

Figure 30 displays the result after the CPU1 starts on ZedBoard. 
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CPU1 enabled successfully

 

Figure 30. The CPU1 wakes up on ZedBoard 

 

Initializing the clock source and clock frequency for programmable logic (PL) is a specific stage 

for the Zynq 7000 platform, and is not relevant for ARM CPU only platforms. We configure 4 clock 

sources for the PL part with frequencies of 100 MHz (by writing value 0x00100A00 to the 

FPGA_CLOCK0_BASE register at 0xF8000170), 175 MHz (value 0x00100600 to 0xF8000180), 200 

MHz (value 0x00100500 to 0xF8000190), and 50 MHz (value 0x00101400 to 0xF80001A0), 

respectively. This initialization is added to the function init_timer_source in src/platform/zynq/platform.c. 

3.4 Summary 

In this chapter, the CODEZERO porting on the ZedBoard is presented. This includes the 

introduction of the Zynq 7000 extensible processing platform, the required boot sequence, the change to 

the memory layout, the driver modifications, enabling the MMU, and the hardware-dependent peripheral 

initialization. 

This work is the first step to enable CODEZERO so that it can manage and virtualize hardware 

tasks on the hybrid ARM – FPGA platform. We will describe the platform framework for the software 

and hardware virtualization as well as the modification of CODEZERO in the next chapter. 
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Chapter 4  

SW-HW virtualization platform 

In this chapter, we propose a general framework for a microkernel based hypervisor to virtualize 

the Xilinx Zynq 7000 hybrid computing platform. The CODEZERO hypervisor [12] is modified to 

virtualize both the hardware and software components of this platform enabling the use of the CPU for 

software tasks and the FPGA for hardware tasks in a relatively easy and efficient way. The reconfigurable 

fabric of this framework is developed as a prototype to show how and what the modified CODEZERO 

could do in SW-HW virtualization. 

Parts of this chapter have been published in [26], and have been reproduced with permission. 

Copyright on the reproduced portions is held by the IEEE.   

4.1 Platform framework 

4.1.1 Overview 

In this framework, we are able to execute a number of operating systems (including µC/OS-II, 

Linux and Android) as well as bare metal/real-time software, each in their own isolated container. By 

modifying the CODEZERO hypervisor API (described in Section 4.2.2), support for hardware 

acceleration can also be added, either as dedicated real-time bare metal hardware tasks, real-time SW-HW 

bare metal applications or SW-HW applications running under OS control. This allows the time-

multiplexed execution of software and hardware tasks concurrently. In these scenarios, a hardware task 

corresponds to FPGA resources configured to perform a particular acceleration operation, while a 

software task corresponds to a traditional task running on the CPU. The framework treats the FPGA 

region as a static reconfigurable region, a dynamic partial reconfiguration (DPR) region or a region of 

intermediate fabric (IF) similar to those in [27, 28] or any combination of these. The hypervisor is able to 

dynamically modify the behavior of the DPR and IF regions and carry out hardware and software task 
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management, task-scheduling and context-switching. A block diagram of the hybrid computing platform 

is shown in Figure 31. 

 

CPU

Microkernel based Hypervisor

uC/OS-II Linux
Bare-metal 
applications 

(SW, HW)

CPU

DMA

Peripherals

Interface

Intermediate fabrics (IF)
Dynamic partial reconfiguration 

(DPR) Region

DMAContext sequencer

Static Accelerators 
Region

 

Figure 31. Block Diagram of the Hybrid Computing Platform [26] 

 

As an example, a hardware task such as JPEG compression can be decomposed into several 

contexts where each context can determine the behavior of the IF or DPR. These contexts can then be 

used to perform a time multiplexed execution of the task by loading context frames consecutively. These 

context frames can be defined as either hypervisor controlled commands for the IF region or pre-stored 

bit-streams for the DPR region. The context sequencer, shown in Figure 33, is used to load context frames 

into these regions and also to control and monitor the execution of these hardware tasks. The context 

sequencer is described in more detail in the next section. 

4.1.2 The hybrid platform 

The modified CODEZERO hypervisor needs to support both the hardware (FPGA) and software 

components (running on the ARM processor) in a relatively easy and efficient way. To achieve this, a 

number of additional structures are needed to support hypervisor control of regions of the reconfigurable 

fabric, as shown in Figure 32. 



55 

 

IF or DPR

Master Controller
(DMA Master)

CFB

AXI Slave AXI Master HP

12

DMA Controller in PS 
attached on AXI  Main Memory

CFB

CPU 3

Monitor Status

AXI Interconnection

3

DMA Control

Data

ConfigurationRegisters
Context 

Sequencer

Dual Port BRAMs

PCAP

 

Figure 32. Block Diagram of the Reconfigurable Region [26] 

 

4.1.2.1 Task communication 

The Zynq-7000 provides several AXI based interfaces to the reconfigurable fabric. Each interface 

consists of multiple AXI channels and hence provides a large bandwidth between memory, processor and 

programmable logic. The AXI interfaces to the fabric include: 

• AXI ACP – one cache coherent master port 

• AXI HP – four high performance, high bandwidth master ports 

• AXI GP – four general purpose ports (two master and two slave ports) 

All of these interfaces support DMA data transfer between the fabric and main memory (at 

different bandwidths) as shown in Figure 32. These different communication mechanisms can be applied 

for different performance requirements. For example, for a DPR region, a DMA transfer can be used to 

download and read-back the bit-stream via the processor configuration access port (PCAP), while for an 
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IF region, the contexts are transferred between main memory and the context frame buffer (CFB) under 

DMA control. 

4.1.2.2 Context Frame Buffer 

A CFB, as shown in Figure 32, is needed to store the context frames. A HW task can be 

decomposed into several consecutive contexts. While the context frames and other user data for small 

applications could be stored in Block RAMs (BRAMs) in the fabric, this would scale poorly as the 

number of contexts and size of the IF increases. Hence, the CFB is implemented as a two level memory 

hierarchy. The main (external) memory is used to store context frames which are transferred to the CFBs 

(implemented as BRAMs in the FPGA) when needed, similar to the cache hierarchy in a processor. 

4.1.2.3 Context sequencer 

A context sequencer (CS) is needed to load context frames (parts of a hardware task) into the 

configurable regions and to control and monitor their execution, including context switching and data-

flow. We provide a memory mapped register interface (implemented in the FPGA fabric and accessible to 

the hypervisor via the AXI bus) for this purpose. The control register is used by the hypervisor to instruct 

the CS to start a HW task in either the IF or DPR regions. The control register also sets the number of 

contexts and the context frame base address for a HW task. The status register is used to indicate the HW 

task status, such as the completion of a context or of the whole HW task. The behavior of this context 

sequence is summarized in Figure 33. The CS detail can be found in [26]. 
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Figure 33. State machine based Context Sequencer [26] 

 

4.1.2.4 Reconfigurable Fabric 

A number of FPGA-based techniques are used to implement hardware modules in the 

reconfigurable fabric. They are: a static accelerator, intermediate fabric (IF) or dynamic partial 

reconfiguration (DPR) region, or any combination of them. 

4.1.2.4.1 Reconfigurable Intermediate Fabric [26] 

An IF similar to those in [27, 28] was developed in [26]. The actual implementation is not part of 

this work but is reproduced here for completeness. The IF consists of programmable processing elements 

(PEs) and programmable crossbar (CB) switches as shown in Figure 34. A multiplexer is used to 

implement the CB as shown in Figure 35, and the DSP48E1 slice [29] for the PE implementation as 

shown in Figure 36. 
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Figure 34. Block Diagram of the Intermediate Fabric [26] 
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Figure 35. The CB's organization 
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Figure 36. The PE's organization 

 

In order to configure the data direction for a CB, two 32-bit configuration registers are used for 

every CB. The pattern for this configuration is as shown in Table 7. The operation of each PE is 

configured by three 4-byte configuration registers with the pattern as in Table 8. In a context frame, the 

operation of the PEs and CBs is set by PE and CB commands. These commands are provided in the 

hypervisor’s IF driver, as described in Section 4.2. 

 

Table 7. The CB's configuration registers 

Register Field Function 

WS w_mux: WS[23:12] Choose the input data for the W output direction 

 s_mux: WS[11:0] Choose the input data for the S output direction 

EN e_mux: EN[23:12] Choose the input data for the E output direction 

 e_mux: EN[11:0] Choose the input data for the N output direction 
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Table 8. The PE's configuration registers 

Register Field Function 

dsp_config alumode: dsp_config[31:28] Choose the ALU mode for the DSP slice 

 inmode: dsp_config[27:23] Choose the IN mode for the DSP slice 

 opmode: dsp_config[22:16] Choose the OP mode for the DSP slice 

 dir_sel: dsp_config[15:14] Choose the input data direction 

 sel: dsp_config[13:11] Choose the d, p, b inputs using the input data or 

the immediate values 

dsp_config_d d_im: dsp_config_d[15:0] The immediate value for the input d 

dsp_config_pb p_im: dsp_config_pb[31:16] The immediate value for the input p 

 b_im: dsp_config_pb[15:0] The immediate value for the input b 

 

4.1.2.4.2 DPR region 

The DPR region provides a mechanism for hardware task management at the cost of a significant 

reconfiguration time overhead. This is because the DPR region can only be efficiently modified using pre-

stored bit-streams (generated using vendor tools). However, DPR allows for highly customized IP cores 

for better performance. While the framework supports the concept of a DPR region, the actual 

implementation is not part of this work and has been left for future work.  

4.1.3 The hypervisor support 

CODEZERO needs to be modified to support the new hybrid computing platform. This 

modification includes porting CODEZERO to the new Zynq 7000 platform (described in Chapter 3), new 

drivers for the programmable logic (PL) modules and new APIs to support the hardware management 

mechanisms (such as DMA transfer and IF scheduling policies). Those parts are described in the next 

section. 

4.2 The hybrid platform hypervisor 

In this section, we describe the modifications to CODEZERO in order to support this new platform. 

Because the porting work was mentioned in detail in Chapter 3, we do not discuss it here, and instead 

focus on the modifications to device drivers and API development. 
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4.2.1 Device driver for the IF 

Device drivers have been added to CODEZERO to support the IF, as shown in Table 9. These 

drivers are implemented using the l4_map API to map the IF registers’ physical addresses to 

CODEZERO’s virtual addresses. These drivers can then access, configure and control the IF operation 

and can be used to implement applications on the IF without needing a detailed understanding of the IF 

structure. 

 

Table 9. Intermediate Fabric driver functions [26] 

Driver function Functionality 

gen_CF (context_id, addr, latency, num_pe, 

num_cb, context_mode) 

Generate a CF for a context with id to location addr 

in memory, set latency, numbers of PEs (num_pe), 

numbers of CBs (num_cb) and mode 

(1D/2D/dataflow) 

set_CB_command (pos, dir, mode) Configure the direction and cross-connection for a 

CB in the IF 

set_PE_command (pos, dir, op) Configure the direction and operation of a PE in the 

IF 

set_BRAM_command (pos, input/output, mode) Configure the I/O and the data pattern mode of a 

BRAM in the IF 

start_IF (addr, num_context) Start a HW task in the IF, load the CF from the 

base address, and set the context number 

reset_IF () Reset the IF 

set_Input_addr (addr) Set the start address for data/BRAM input 

set_Output_addr (addr) Set the start address for data/BRAM output 

 

4.2.2 API for task communication 

Two modes have been adopted to transfer context frames and user data using DMA between the IF 

(or DPR region) and main memory. The first, called active DMA, uses a dedicated DMA master 

controller, independent of the CPU, which automatically loads data when the CFB is not full. The second, 

called passive DMA, uses the existing DMA controller on the AXI interconnection controlled and 

monitored by CPU. Passive DMA has lower throughput than active DMA. 

The APIs given in Table 10 were added to support the DMA transfer modes, as well as a non-DMA 

transfer mode. These APIs need to be updated into l4_kip structure, the CODEZERO’s Kernel Interface 

Page, and the system-call jump table in order to provide the system-call function to user-space. Indeed, an 
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API is treated as a software interrupt to the ARM processor, which triggers the CPU to execute the 

corresponding function when the API is called. 

 

Table 10. Hypervisor API to support DMA transfer [26] 

API Functionality 

init_Active_data (s_addr, d_addr, size) Load user data from main memory s_addr to 

BRAM d_addr via DMA controller, size indicates 

the data block size needed to move 

start_Active_transfer 

reset_Active_transfer 

stop_Active_transfer 

These are only invoked by a fabric start, reset or 

stop (never by the user) 

load_CF (addr, num_context, mode) Load context frame from main memory addr to 

CFB (PCAP). Mode is 1) passive DMA; 2) non-

DMA (CPU); 3) active DMA 

interrupt_CFB_full Interrupt handler triggered when CFB is full, used 

for CPU monitoring the CFB status in passive 

DMA mode 

interrupt_PCAP_done This interrupt indicates that a bit stream 

downloading via DPR is done 

load_Data (s_addr, d_addr, size, mode) Move user data from s_addr to d_addr memory-to-

BRAMs or inter-BRAM. Mode is 1) passive DMA, 

2) non-DMA (CPU) 

poll_CFB_status CPU polls the CFB status and return the number of 

empty slots 

 

4.2.3 Hardware task scheduling and context switching 

In this section, we introduce two scheduling mechanisms to enable HW task scheduling under 

hypervisor control: non-preemptive hardware context switching and preemptive hardware context 

switching. 

4.2.3.1 Non-preemptive hardware context switching 

 HW task scheduling only occurs when a HW context completes. At the start of a context (when 

interrupt start context is triggered), we use the hypervisor mutex mechanism (l4_mutex_control) to lock 

the reconfigurable fabric (IF or DPR) so that other contexts cannot use the same fabric. This denotes the 

fabric as a critical resource in the interval of one context and can only be accessed in a mutually exclusive 

way. At the completion of a context (when interrupt_Finish_context is triggered by the hardware context 
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sequencer), the reconfigurable fabric lock is released via l4_mutex_control. After that, a possible context 

switch (l4_context_switch) among the HW tasks can happen. The advantage of non-preemptive hardware 

context switching is that context saving or restoring is not necessary, as task scheduling occurs after a 

context finishes. Thus minimal hypervisor modifications are required to add support for HW task 

scheduling as the existing hypervisor scheduling policy and kernel scheme are satisfactory. The interrupt 

handlers and API modifications added to CODEZERO to support this scheduling scheme are shown in 

Table 11. 

 

Table 11. Hypervisor API to support Hardware Task Scheduling [26] 

API Functionality 

interrupt_Start_context Triggered when every context starts. In the handler, 

it locks IF or DPR 

interrupt_Finish_context Triggered when every context finished. In the 

interrupt handler, it should unlock IF 

poll_Context_status 

poll_Task_status 

Poll the completion (task done) bit of a context 

(HW task) in the status register. Also unlocks IF 

(DPR) after a context finishes 

 

4.2.3.2 Pre-emptive hardware context switching 

 CODEZERO can be extended to support pre-emptive hardware context switching. In this scenario, 

it must be possible to save a context frame and restore it. Context-saving refers to a read-back mechanism 

to record the current context counter (context id), the status, the DMA controller status and the internal 

state (e.g. the bit-stream for DPR) into the thread/task control block (TCB), similar to saving the CPU 

register set in a context switch. The TCB is a standard data structure used by an OS or microkernel-based 

hypervisor. In CODEZERO this is called the User Thread Control Block (UTCB). A context frame 

restore occurs when a HW task is swapped out, and an existing task resumes its operation. This approach 

would provide a faster response, compared to non-preemptive context switching, but the overhead 

(associated with saving and restoring the hardware state) is considerably higher. This requires 

modification of the UTCB data structure and the hypervisor’s context switch (l4_context_switch) 

mechanism, as well as requiring a number of additional APIs. While the framework supports the concept 

of pre-emptive hardware context switching, the actual implementation is still very much “work in 

progress” and its physical implementation has been left for future work.  
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4.3 Case study 

In this section, we present the details of a fully functioning virtualized hardware example using a 

simple IF operating under CODEZERO hypervisor control. In this example, the hypervisor uses three 

isolated containers (the term that CODEZERO uses to refer to a virtual machine), as shown in Figure 37. 

The first container runs a simple RTOS (µC/OS-II) executing 14 independent software tasks. The second 

container is a bare metal application (an application which directly accesses the hypervisor APIs and does 

not use a host OS) which runs an FIR filter as a hardware task. The third container is also a bare metal 

application which runs a hardware matrix multiplication task. The two hardware tasks are executed on the 

same fabric, scheduled and isolated by the hypervisor. 
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Figure 37. Multiple Hardware and Software Task Scheduling [26] 

 

4.3.1 Systolic FIR Filter 

A simple 5-tap systolic FIR filter (shown in Figure 38) is used for the first HW task. This structure 

is composed of five processing units and can be efficiently mapped to the IF as shown in Figure 38 with a 

latency of 12 cycles. That is, the FIR application has a single context frame. The PE is configured as a 

DSP block with 3 inputs and 2 outputs. The FIR filter coefficients are input and stored to a PE internal 

register. The CBs are configured to map the data-flow as shown in Figure 38. The input data is transferred 

via the AXI bus and stored in the “input” BRAM. The processed data is stored to the “output” BRAM. 

The output data is then read by the CPU via the AXI bus. 
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Figure 38. Systolic FIR filter and its mapping to the IF [26] 

 

4.3.2 Matrix Multiplication 

The second HW task performs a matrix multiplication. Figure 39 shows the computation of one 

output element C for the matrix product of 3×3 matrices, A and B. By mapping this structure as a HW 

task to the IF three times it is possible to calculate three output elements simultaneously, as shown in 

Figure 39. Thus the task can be completed in three such contexts. In this example, the PE is configured as 

a DSP block with 3 inputs and a single output. The CBs are configured to map the data-flow as shown in 

Figure 39, requiring 3 “input” BRAMs and 3 “output” BRAMs. The latency of a context is 8 cycles. 
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Figure 39. Matrix Multiplication and its mapping to the IF [26] 

 

4.3.3 Multiple SW-HW tasks on the ZedBoard 

In this experiment, µC/OS-II runs in container 0, while the FIR Filter and the matrix multiplication 

run in container 1 and 2, respectively, as shown in Figure 37. We use the CODEZERO microkernel 

scheduler to switch tasks between container 0, 1 and 2. SW tasks running in container 0 are allocated and 

executed on the CPU. HW tasks running in containers 1 and 2 are allocated and run on the IF. A context 

of a HW task will first lock the IF, configure the fabric behavior, execute to completion and then unlock 

the fabric (that is it implements non-preemptive context switching). Algorithm 1, in Figure 40, shows the 

steps involved in non-preemptive context switching. The hardware resource utilization is reported in the 

design summary shown in Table 12. 
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Figure 40. Pseudo-code for IF configuration [26] 

 

Table 12. IF design summary 

Resource Numbers 

Slice Registers 24228 

Slice LUTs 29347 

DSP48E1s 12 

RAMB36E1 50 

 

4.4 Experiment 

We have designed two experiments to examine the efficiency of using CODEZERO to manage the 

FPGA hardware. Experiment 1 measures the lock and context switch overhead on CODEZERO as well as 

the IF configuration and IF execution, using the software global timer in non-preemptive operation. The 

second experiment compares the hardware utilization between CODEZERO and Embedded Linux. 
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4.4.1 Experiment 1 

4.4.1.1 Purpose 

This experiment was designed to measure how long CODEZERO’s lock and context switch 

mechanisms takes when using the IF. It also measures the IF configuration time, the execution time and 

the hardware task response time for non-preemptive operation. This is shown in the Figure 41.  

4.4.1.2 Method 

We initialized and used a 64-bit global timer running at 333 MHz in order to measure every lock, 

unlock, IF configuration, IF execution and context switch activity which happens when two hardware 

tasks are running on CODEZERO. The two hardware tasks are identical to those described in Section 4.3 

(one is a 5-tap FIR filter and the other is a 3x3 Matrix Multiplication (MM)) and are executed in two 

separate containers. The two containers then are mapped in two different scenarios: firstly, the two 

containers run on the same physical CPU core, and secondly, the two containers run individually on 

separate CPU cores (the Zynq platform has a dual-core ARM processor). These two mapping scenarios 

are illustrated in the Figure 42. 

 

Configuration Input Execution Outputlock

Hardware task’s response time

switch

 

Figure 41. A Hardware Task's organization 
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Figure 42. 2 HW tasks on one core (Scenario 1) and 2 HW tasks on separated cores (Scenario 2) 

 

In the first scenario, container zero, cont0, and container one, cont1, are mapped to the same core, 

Core0, and the l4_context_switch is used to switch between cont0 and cont1 (the hardware contexts are 

running one by one without lock contention). When a context of FIR is finished, CODEZERO switches to 

the MM, and vice versa. With this scenario, the lock overhead does not contain the whole working time of 

the other hardware task. In the second scenario, cont0 is mapped on the Core0 while cont1 is on the 

Core1. Then the two containers run on two separated cores simultaneously, and both containers try to 

access the IF. However, in this case as we are operating in non-preemptive mode, the lock overhead may 

contain the whole working time of the other hardware task since the software timer is already activated 

but has to wait until the resource is free before it can obtain it, as illustrated in the Figure 43. 

 

.

. Task 2 starts running

.

.

Task 2 running

Task 1 starts the timer

Task 1 tries to get the hardware

Hardware occupied by task 2

.

.
Hardware released

Task 1 running

Task 1 stops timer

t lo
ck

 w
it

h
 c

o
n

te
n

ti
o

n

 

Figure 43. Lock with contention 
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The hardware response time using a non-preemptive context switch is calculated as: 

                                 

 

4.4.1.3 Results and explanations 

The CODEZERO average lock and context switch overhead are shown in Table 13, while the 

configuration, execution and response times are given in Table 14. It should be noted that these times will 

increase both with application complexity and IF size. 

 

Table 13. Non-preemptive Lock and Context Switch Overhead [26] 

 Clock cycles (time)  

tlock (no contention) 214 (0.32 µs) 

tlock (with contention) 7738 (11.6 µs) 

tC0_switch 3264 (4.9 µs) 

 

Table 14. Configuration, Execution and Response Time [26] 

 Clock cycles (time) 

FIR MM 

tconf 2150 (3.2 µs) 3144 (4.7 µs) 

thw_resp (8.5 µs – 19.7 µs) (9.9 µs – 20.3 µs) 

 

The minimum lock overhead occurs when a task directly obtains the lock without needing to wait 

for the completion of the other task. Therefore, the pure overhead is the true overhead of the lock code in 

COZEZERO, and the worst case depends on the longest execution time of the other task. 

The configuration overhead is heavily affected by the IF size, the communications mechanism used 

and the user HW task function. The experiment above used the AXI general slave port for transferring 

data, and as a result the data transfer speed over AXI is a bottleneck. Using DMA mode and a high 
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performance AXI port would improve the transfer speed significantly. However this has been left for 

future work.  

The L4 API in CODEZERO enables users to implement self-defined scheduling policies (e.g. one-

by-one, priority base or frequency-customized) by explicitly invoking the l4_context_switch function.  As 

non-preemptive mode is used, the user can, before runtime, decide the task scheduling order and overhead 

for bare-metal applications (the scheduling policy in guest OSs is still unchanged). This is another 

advantage of the micro-kernel based hypervisor. 

4.4.2 Experiment 2 

4.4.2.1 Purpose 

This experiment was designed to compare the overheads of CODEZERO and Embedded Linux 

(kernel 3.6) when utilizing hardware tasks. Linux has been used by a number of other researchers [30-33] 

for running SW-HW applications under OS control. The hardware context switch efficiency of 

CODEZERO versus that of the Linux general-purpose OS is evaluated. The experimental setup is shown 

in Figure 44. To determine the overhead, we measured the idle time of the IF between any two 

consecutive hardware contexts. A shorter idle time means a shorter (and thus better) context switch 

overhead in kernel space. Embedded Linux was modified and a simple Linux driver, using some basic 

APIs such as ioremap, memcpy, kmalloc etc., was developed to control the IF.  
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Figure 44. Hardware Tasks run on CODEZERO and Embedded Linux 

 



72 

 

4.4.2.2 Method 

Since directly measuring the context switch overhead in Linux is quite difficult [34] (it needs 

kernel modification), we designed a hardware counter inside the FPGA fabric to ensure a fair comparison. 

A hardware context has the following steps to complete its execution: firstly the IF is locked, the 

configuration and input data are transferred, the execution cycle is entered and the results are generated. 

The results are then read from the IF, and lastly, the IF is unlocked making it available for the next 

hardware context. The idle time between any of two consecutive hardware contexts can be defined and 

illustrated as in Figure 45. The hardware idle counter will start counting when reading the results from the 

IF finishes, and then stop counting when the first configuration data for the next hardware task arrives. 

Thus, the lock and unlock overheads, the kernel context switch overhead, any system call overheads 

(including the Linux driver overhead), and any other implicit time interval between two tasks (the time 

tick used by other SW tasks, e.g. daemon process and other running applications) may increase the IF idle 

time. 

In this experiment, two hardware tasks are being repeatedly run without any interrupt or 

preemption in both CODEZERO and Linux. In the Linux scenario, other system processes still take CPU 

at the same time as the HW task is running. 

 

Configuration Input Execution Output Configuration Input Execution Outputunlock lockswitch

IF’s idle time

IF’s working time IF’s working time

 

Figure 45. IF's Idle Time 

 

We implemented the two hardware tasks in two separate containers on CODEZERO and mapped 

them on CPU cores using the same scenarios as shown in Figure 42. Therefore, in the first scenario, the 

idle time is caused by the lock overhead and the CODEZERO context switch overhead, while the idle 
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time of IF in the second scenario consists of the pure lock overhead, exclusive of any context switch 

overhead. 

The same 2 tasks are implemented in Linux with the pthread library and mutex lock, as shown in 

the Figure 46. The task switching and core allocation are totally controlled by the Linux kernel scheduler, 

and thus either task can run on either core dynamically and transparently. 
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(pthread1)

Dual-core in SMP IF
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(pthread2)

 

Figure 46. Hardware Tasks mapping on Linux 

 

4.4.2.3 Results and explanations 

The results of the hardware idle time in CODEZERO and Embedded Linux are shown in Table 15, 

which show that hardware task overheads for CODEZERO are 27 to 135 times better than that of 

Embedded Linux.  

 

Table 15. Idle Time on CODEZERO and Embedded Linux 

CODEZERO Embedded Linux 

0.32 µs ~ 5.4 µs 43.17 µs ~ 149.46 µs 

 

In CODEZERO, the idle time varies from 0.32 µs to 5.4 µs. The best case (0.32 µs) happens when 

the two containers run on separate cores. In this scenario, the two containers are running at the same time 

and competing to obtain the IF lock. Thus, only the lock overhead, without any context switch overhead, 

is measured. The worst case (5.4 µs) occurs when the two containers run on the same core. In this 

scenario, the idle time includes both the lock and switch overheads. 
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In Linux, the idle time varies from 43.17 µs to 149.46 µs. This wide variation occurs because in 

Linux there are some background tasks and other system calls running which can affect the IF idle time. 

4.5 Summary 

We have presented a platform framework for SW-HW virtualization on a hybrid platform under 

hypervisor control. This has included a system overview, the reconfigurable fabric (the IF), and the 

modified CODEZERO hypervisor. This platform was then used, by means of a case study, to examine the 

ability and functionality of the modified hypervisor running on the hybrid platform. Two experiments 

were designed to examine the performance of CODEZERO. 
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Chapter 5  

Conclusion and Future Work 

5.1 Conclusion  

In this thesis we have proposed a new approach to embedded virtualization by using a microkernel-

based hypervisor on a hybrid ARM – FPGA platform. This work included developing a deep 

understanding of the embedded virtualization concept, terminologies and techniques, and a modification 

of the state-of-the-art microkernel hypervisor, CODEZERO, to make it support hybrid SW-HW 

virtualization on the Zynq 7000. A platform framework was developed to examine the ability and 

functionality of the modified hypervisor. Case studies and experiments were designed to test the 

performance of the modified hypervisor on a real platform. 

Before we could begin developing a microkernel-based hypervisor for hybrid embedded 

virtualization, an in-depth knowledge of the current trends in embedded virtualization techniques as well 

as hypervisors needed to be obtained. As such, a review of concepts, terminologies, techniques and 

theoretical abilities were given in Chapter 2. Moreover, the practical functionalities of the CODEZERO 

hypervisor were examined on a real hardware platform (presented in Appendix A). Based on these 

understandings, the CODEZERO hypervisor was ported to the Xilinx Zynq 7000 hybrid platform. This 

work was discussed in detail in Chapter 3. Chapter 4 described additional modifications such as driver 

and APIs development for the hypervisor. 

A new platform framework for microkernel hypervisor based virtualization was also proposed in 

Chapter 4. The framework accommodates execution of software tasks on CPUs, as either real-time (or 

non-real-time) bare-metal applications or applications under OS control. By facilitating the use of static 

hardware accelerators, partially reconfigure modules and intermediate fabrics, a wide range of approaches 

to virtualization, to satisfy varied performance and programming needs, can be facilitated. A complete 

SW-HW solution using a dual-core ARM processor and an IF implemented in FPGA, both operating 

under hypervisor control was also demonstrated. 
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A case study was presented in Chapter 4 which demonstrated that the hypervisor functionality 

works, and that different tasks (both hardware and software) can be managed concurrently, with the 

hypervisor providing the necessary isolation. The computational overhead of the hypervisor solution was 

compared to that of Embedded Linux. A 27 to 135 times performance improvement in the hardware task 

overheads was seen. 

5.2 Future work 

As CODEZERO is a para-virtualization technique, guest OSs need to be modified before they can 

run in a container. Porting Embedded Linux as a guest OS on CODEZERO running on the hybrid 

platform needs to be carried out, as shown in the Figure 47. This would then enable us to perform 

comparisons with a system just running Linux. The starting point of this porting would be Linux for 

ZedBoard [25], and then all the original system calls need to be replaced by calls to CODEZERO [6]. For 

instance, Linux’s task creation and task context switch need to be replaced by l4_task_create and 

l4_context_switch, respectively. After that, new experiments will be designed in order to measure and 

compare the context switch overheads on Linux-CODEZERO, CODEZERO and the original Linux. 
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Figure 47. Linux runs as a Guest OS on CODEZERO 

 

Moreover, it would be beneficial to provide full support for DPR, enabling fast partial 

reconfiguration through the use of a custom PCAP controller and DMA bitstream transfer. Additionally, 

the IF described in [26] is relatively simplistic and just meant to demonstrate the hardware virtualization 

concept. A more comprehensive intermediate fabric needs to be developed, to enable higher performance 

and better resource use. We also plan to examine alternative communication structures between software, 

memory, hypervisor and FPGA fabric, to better support virtualized hardware based computing. 
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Finally, with these initiatives we hope to reduce the hardware context switching overhead, 

particularly of the IF, with the aim of developing a competitive preemptive hardware context switching 

approach, as displayed in the Figure 48. The read-back logic needs to be developed in order to pause and 

resume a hardware task in the intermediate fabric. Moreover, the User-Thread Control Block structure, 

the l4_utcb, in CODEZERO needs to be modified to store the current IF status (the current status in the 

state machine), context sequence number and on-processing data of all PEs. This data will be used to 

resume the preempted hardware task when the higher priority one finishes execution. 
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Figure 48. Pre-emptive hardware context switching 
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Appendix A  

CODEZERO on PandaBoard 

Chapter 2 presented some of the terminology relating to embedded virtualization, the novel 

concepts and structure of microkernel-based embedded hypervisors. It then examined some existing 

embedded hypervisors before introducing the CODEZERO hypervisor used in this work. In this 

Appendix, we examine the operation and present some practical results of the CODEZERO hypervisor, 

running on the conventional processor architecture, in order to understand its functionalities on a real 

platform. 

The PandaBoard [20] was chosen to test CODEZERO’s functionality as it has a similar dual-core 

ARM Cortex-A9 CPU with almost the same processor architecture as that of the Zynq 7000 extensible 

processing platform that we will be using later in this project. We believed that it would be easier and less 

time-consuming to test CODEZERO on the PandaBoard and then port it to the Zynq board once we had 

gained a better understanding of CODEZERO. 

A.1 Introduction to the PandaBoard 

The PandaBoard consists of the TI OMAP4430 SoC with dual-core ARM Cortex-A9, the 1GB 

DDR2 RAM memory, and some common peripherals such as USB and UART [20]. The PandaBoard is 

shown as in the Figure 49 and Table 16. 
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Figure 49. PandaBoard 

 

Table 16. PandaBoard's specifications 

Processor: SoC OMAP4430 with dual-core ARM Cortex-A9 at 1.2 GHz 

Memory: 1GB DDR2 RAM 

 SD/MMC card support 

Display: HDMI and DVI ports 

Peripherals: Ethernet, USB, and UART/RS-232 

 

A.2 Compiling CODEZERO to the PandaBoard 

CODEZERO’s configuration includes overall configuration, platform configuration, kernel 

configuration and container configuration. In the overall configuration, we choose the number of 

containers, the cross-compiler tool, applications for each container (Linux, Android or bare-metal), and 

the processor architecture on which the hypervisor would run. To configure the hardware platform, we 

choose the name of the platform, the number of processors, the memory area where the kernel will be, 

and so on. Kernel configuration specifies the physical memory start addresses for the kernel area and 

loader. For the last configuration, the virtual and physical memory for each container and the core that a 

container runs on is specified. 
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CODEZERO provides us with a tool to configure it automatically. That tool gives us several 

configuration packages, named in the form platform-application (e.g panda-hello, vx-linux, etc.). If there 

is no need for change, we can use those configuration sets directly by typing: 

 ./config-load.sh platform-application 

If we need to configure for a new hardware platform, or a new application, we can perform this 

process manually. However, in the case of a new platform, changes must be made in terms of the memory 

map, the peripheral controls and the interrupt controller. The overall configuration, the kernel 

configuration and the “Linux” container configuration are shown in the Figure 50, Figure 51 and Figure 

52. 

 

 

Figure 50. CODEZERO overall configuration 

 

 

Figure 51. CODEZERO kernel configuration 
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Figure 52. CODEZERO "Linux" container configuration 

 

CODEZERO also provides a user interface for configuration, based on the Linux-style 

configuration UI, as in the Figure 53. To invoke the UI simply type the command: 

 ./make menuconfig 

 

 

Figure 53. CODEZERO configuration UI 
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To compile CODEZERO’s kernel and containers, use the command: 

 ./make 

The compilation sequence will follow as the kernel will be compiled first then all the containers 

will be compiled. The compilation is successful when it finishes without any errors in any compilation 

step. The final result is the compressed kernel image file (zImage). 

We can then use the following command to copy the kernel image and boot commands into the 

Pandaboard’s SD card: 

 ./tools/panda-install.sh /media/boot 

A.3 CODEZERO’s boot sequence 

When CODEZERO boots, the xloader starts first to initialize clocks and memory, then it loads u-

boot into SDRAM and executes it. The utility u-boot performs some additional platform initialization, 

sets the boot arguments and passes control to the kernel image. The kernel image decompresses the 

kernel, loads the initialized Ramdisk and loads all containers into SDRAM. The overall boot sequence of 

CODEZERO is summarized in the Figure 54, and the result on the PandaBoard is shown in the Figure 55. 

 

CODEZERO 

boot-loader

Loader starts

Kernel starts

Application 

starts

 

Figure 54. CODEZERO boot sequence 
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Figure 55. CODEZERO boots on PandaBoard 

 

A.4 Bare-metal applications on CODEZERO 

A.4.1 How to configure a bare-metal application on CODEZERO 

A bare-metal application on CODEZERO is an application that runs in a CODEZERO container 

without any guest OS. To configure that bare-metal application, we just need to specify the physical and 

virtual memory areas, and the CPU core on which the application will run, as in the Figure 56. 
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Figure 56. Bare-metal's application configuration 

 

A.4.2 Hello-world application 

The “Hello-world” application is the simplest bare-metal application on CODEZERO. After the 

kernel boots, the “Hello-world” application will display a message “cont0: Hello world from cont0” onto 

the terminal. It means that the kernel has booted successfully and that the container is able to start. This 

“Hello-world” application must be tested successfully before moving to other examples. The Figure 57 

displays the result on PandaBoard. 

 

 

Figure 57. CODEZERO kernel starts and its container displays the messeage "Hello World!" 

 

A.4.3 Timer, interrupt & context switch: 

A more complicated bare-metal application is the context switch application. This application will 

not only test a context switch, but also the timer and the interrupt controller. At the beginning, the 
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application will create a number of child threads, and then it will configure the timer and the interrupt 

handler. When the application starts, child threads also start and display messages of the form “Tick X in 

tid: Y” (X is a number from 1 to 10, and Y is the id of the child thread). Then the timer’s interrupt occurs, 

the program jumps to the interrupt handler, clears the interrupt flag and displays the message “IRQ”. 

After a number of timer’s interrupts, another child thread will be scheduled to run, and the current child 

thread will be suspended, as in the Figure 58. 

 

Figure 58. The context switch application starts and runs 

 

A.5 GPOS (Linux) implementation on CODEZERO 

Linux will run in a container of the CODEZERO hypervisor and will be treated as a CODEZERO 

application. The CODEZERO kernel starts first, and then jumps to the container containing Linux to start 

the Linux kernel. At the end of the boot sequence, the root file system will be mapped and the console 

will be ready as shown in the Figure 59. 
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Figure 59. Linux starts running on CODEZERO 

 

A.6 RTOS implementation on CODEZERO 

µC/OS-II is a lightweight real-time OS written in ANSI C. µC/OS-II supports a preemptive fixed-

priority scheduler. In our experiment, we run µC/OS-II and one of its applications in a CODEZERO 

container. The µC/OS-II application will simply create a number of tasks with different priorities, as in 

the Figure 60. Each task will be allocated a specific processor’s time-slice based on its priority. When the 

program starts, it also starts all tasks and switches amongst them, as displayed in the Figure 61. A task 
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with a higher priority will appear more times (by pre-empting other lower priority tasks) and finish in a 

shorter time (more responsive), as shown in the Figure 62. 

 

 

Figure 60. The µC/OS-II application starts creating many tasks in different priorities 

 

 

Figure 61. Created tasks start executing 
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Figure 62. The µC/OS-II’s scheduler switches amongst running tasks. Task with higher priority appears more 

frequently by pre-empting other lower tasks 

 

A.7 Multiple applications running on CODEZERO 

To compile two (or more) applications on CODEZERO, we need to change the overall 

configuration file. The number of containers and the name of the applications running in those containers 

must be specified, as in the Figure 63. Moreover, the physical areas of containers must be separated and 

cannot be overlapped, as specified in the Figure 64 and Figure 65. 

 

 

Figure 63. The overall configuration for two applications on CODEZERO 
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Figure 64. The container configuration for the first “Linux” application (physical area from 0x80000000 to 

0x9d000000) 

 

 

Figure 65. The container configuration for the second “Hello-world” application (physical area from 0x9d000000 

to 0xa0000000) 

 

A.7.1 Two hello-world applications 

This example tests if two containers can start on CODEZERO. Those two containers must be 

allocated to two different memory areas to achieve system isolation. After kernel boot, each container will 

be started and scheduled to display a message “contX: Hello world from contX!” (X is the name of 

container) onto the terminal as shown in the Figure 66. 

 

Figure 66. Two different containers of CODEZERO can start and display messages 

 

A.7.2 Context switch + Linux 

This example is to test if a bare-metal application and the Linux OS can run concurrently on 

CODEZERO. Moreover, it tests the CODEZERO scheduler to ensure that the scheduler can switch tasks 

between different containers. This example runs successfully if and only if Linux can run in one container 

while timer interrupts and context switches keep happening in the other container. The Figure 67 shows 

the result on the PandaBoard. 
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Figure 67. The “Linux” application is booting in one container while timer interrupts and context switches happen 

in the other container 

 

A.7.3 Linux and Android 

This example aims to test if two guest OSs can run in two separate CODEZERO containers. The 

Linux OS with a pre-emptive scheduler and an Android OS were chosen for this test. The CODEZERO 

kernel started first as shown in the Figure 68. Android started later and the normal Android user interface 
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was displayed on the HDMI monitor as illustrated in the Figure 69. We were able to use the virtual 

network computing (VNC) application to switch to the Linux and remotely control the Linux virtual 

computer as summarized in the Figure 70 and shown in the Figure 71. Then, the normal Linux user 

interface was able to be displayed on the HDMI monitor as in the Figure 72. 

 

 

Figure 68.The “Android” and “Linux” applications can start in two different containers of CODEZERO 

 

 

Figure 69. The “Android” starts and is displayed on the HDMI screen 
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Figure 70. The VNC application is used to switch between “Android” and “Linux” 

 

 

Figure 71. The VNC application on “Android” 
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Figure 72. The “Linux” appears on the HDMI screen after switching from “Android” 

 

A.8 Summary 

In this Appendix we presented our experiments with the CODEZERO hypervisor on a real 

hardware platform (the PandaBoard), from the simplest bare-metal application to the most complicated 

two guest OSs example. These tests showed that the CODEZERO hypervisor could create multiple 

containers (CODEZERO’s own term for the virtual machine) with high isolation, fast inter-process 

communication and with an appropriate scheduling policy, and most importantly could run them 

concurrently. Based on these initial efforts, the confidence and expertise necessary to port the 

CODEZERO hypervisor to the Zynq 7000 hybrid platform has been developed, as described in Chapter 3. 

We will then create hardware accelerators on the FPGA reconfigurable fabric and abstract them into the 

original CODEZERO hypervisor as in Chapter 4. 

 

  



94 

 

References 

[1] R. Greene and G. Lownes, "Embedded CPU target migration, doing more with less," in 

Proceedings of the conference on TRI-Ada '94, Baltimore, Maryland, USA, 1994, pp. 429-436. 

[2] M. Broy, "Challenges in automotive software engineering," in Proceedings of the 28th 

international conference on Software engineering, Shanghai, China, 2006, pp. 33-42. 

[3] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, "Reconfigurable Computing in Next-Generation 

Automotive Networks," Embedded Systems Letters, IEEE, vol. 5, pp. 12-15, 2013. 

[4] G. Heiser. (2013, Aug 08). The Motorola Evoke QA4 - A Case Study in Mobile Virtualization. 

Available: http://www.ok-labs.com/_assets/evoke.pdf 

[5] G. Heiser, "Virtualizing embedded systems - why bother?," in Design Automation Conference 

(DAC), 2011 48th ACM/EDAC/IEEE, 2011, pp. 901-905. 

[6] J. Fornaeus, "Device hypervisors," in Design Automation Conference (DAC), 2010 47th 

ACM/IEEE, 2010, pp. 114-119. 

[7] J. Liedtke, "On micro-kernel construction," SIGOPS Oper. Syst. Rev., vol. 29, pp. 237-250, 1995. 

[8] H. Hartig, M. Hohmuth, J. Liedtke, J. Wolter, and S. Schonberg, "The performance of u-kernel-

based systems," SIGOPS Oper. Syst. Rev., vol. 31, pp. 66-77, 1997. 

[9] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. J. Magenheimer, "Are virtual machine 

monitors microkernels done right?," in HotOS, 2005. 

[10] G. Heiser, V. Uhlig, and J. LeVasseur, "Are virtual-machine monitors microkernels done right?," 

SIGOPS Oper. Syst. Rev., vol. 40, pp. 95-99, 2006. 

[11] Radisys Corporation. (2013, Aug 08). Leveraging Virtualization in Aerospace & Defense 

Applications. Available: http://embedded.communities.intel.com/docs/DOC-7061 

[12] B Labs Ltd. (2013, Aug 08). Codezero project overview. Available: http://dev.b-labs.com/ 

[13] R. Kaiser. (2013, Aug 08). Scheduling Virtual Machines in Real-time Embedded Systems. 

Available: http://www.eetimes.com/electrical-engineers/education-training/tech-

papers/4231015/Scheduling-Virtual-Machines-in-Real-time-Embedded-Systems 

[14] M. Tim Jones. (2013, Aug 08). Virtualization for embedded systems. Available: 

http://www.ibm.com/developerworks/library/l-embedded-virtualization/#author1 

[15] R. Kaiser and S. Wagner, "Evolution of the PikeOS microkernel," in First International 

Workshop on Microkernels for Embedded Systems, 2007, p. 50. 

http://www.ok-labs.com/_assets/evoke.pdf
http://embedded.communities.intel.com/docs/DOC-7061
http://dev.b-labs.com/
http://www.eetimes.com/electrical-engineers/education-training/tech-papers/4231015/Scheduling-Virtual-Machines-in-Real-time-Embedded-Systems
http://www.eetimes.com/electrical-engineers/education-training/tech-papers/4231015/Scheduling-Virtual-Machines-in-Real-time-Embedded-Systems
http://www.ibm.com/developerworks/library/l-embedded-virtualization/#author1


95 

 

[16] OpenSynergy GmbH. (2013, Aug 08). COQOS product information. Available: 

http://www.opensynergy.com/en/Products/COQOS 

[17] G. Heiser and B. Leslie, "The OKL4 microvisor: convergence point of microkernels and 

hypervisors," in Proceedings of the first ACM asia-pacific workshop on Workshop on systems, 

New Delhi, India, 2010, pp. 19-24. 

[18] U. Steinberg and B. Kauer, "NOVA: a microhypervisor-based secure virtualization architecture," 

in Proceedings of the 5th European conference on Computer systems, Paris, France, 2010, pp. 

209-222. 

[19] J. Liedtke, "Toward real microkernels," Commun. ACM, vol. 39, pp. 70-77, 1996. 

[20] PandaBoard Project. (2013, Aug 08). PandaBoard product information. Available: 

http://pandaboard.org/content/resources/references 

[21] ZedBoard Project. (2013, Aug 08). Zynq Evalualtion & Development Board. Available: 

http://zedboard.org/content/overview 

[22] Xilinx Ltd. (2013, Aug 08). Zynq-7000 Technical Reference Manual. Available: 

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf 

[23] Xilinx Ltd. (2013, Aug 08). Zynq-7000 AP SoC Overview. Available: 

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm 

[24] Xilinx Ltd. (2013, Aug 08). Zynq-7000 All Programmable SoC: Concepts, Tools, and Techniques 

(CTT). Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug873-

zynq-ctt.pdf 

[25] Digilent Inc. (2013, Aug 08). Linux kernel for ZedBoard. Available: 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1028&Prod=ZEDBOARD 

[26] K. Dang Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell, "Microkernel hypervisor for a 

hybrid ARM-FPGA platform," in Application-Specific Systems, Architectures and Processors 

(ASAP), 2013 IEEE 24th International Conference on, 2013, pp. 219-226. 

[27] J. Coole and G. Stitt, "Intermediate fabrics: virtual architectures for circuit portability and fast 

placement and routing," in Proceedings of the eighth IEEE/ACM/IFIP international conference 

on Hardware/software codesign and system synthesis, Scottsdale, Arizona, USA, 2010, pp. 13-

22. 

[28] G. Stitt and J. Coole, "Intermediate Fabrics: Virtual Architectures for Near-Instant FPGA 

Compilation," Embedded Systems Letters, IEEE, vol. 3, pp. 81-84, 2011. 

[29] Xilinx Ltd. (2013, Aug 08). Virtex-6 FPGA DSP48E1 Slice User Guide. Available: 

http://www.xilinx.com/support/documentation/user_guides/ug369.pdf 

[30] M. Vuletic, L. Righetti, L. Pozzi, and P. Ienne, "Operating system support for interface 

virtualisation of reconfigurable coprocessors," in Design, Automation and Test in Europe 

Conference and Exhibition, 2004. Proceedings, 2004, pp. 748-749 Vol.1. 

http://www.opensynergy.com/en/Products/COQOS
http://pandaboard.org/content/resources/references
http://zedboard.org/content/overview
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/index.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug873-zynq-ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug873-zynq-ctt.pdf
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1028&Prod=ZEDBOARD
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf


96 

 

[31] R. Brodersen, A. Tkachenko, and H. Kwok-Hay So, "A unified hardware/software runtime 

environment for FPGA-based reconfigurable computers using BORPH," in Hardware/Software 

Codesign and System Synthesis, 2006. CODES+ISSS '06. Proceedings of the 4th International 

Conference, 2006, pp. 259-264. 

[32] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, "Run-Time Management of Reconfigurable 

Hardware Tasks Using Embedded Linux," in Field-Programmable Technology, 2007. ICFPT 

2007. International Conference on, 2007, pp. 209-215. 

[33] K. Rupnow, F. Wenyin, and K. Compton, "Block, Drop or Roll(back): Alternative Preemption 

Methods for RH Multi-Tasking," in Field Programmable Custom Computing Machines, 2009. 

FCCM '09. 17th IEEE Symposium on, 2009, pp. 63-70. 

[34] F. M. David, J. C. Carlyle, and R. H. Campbell, "Context switch overheads for Linux on ARM 

platforms," in Proceedings of the 2007 workshop on Experimental computer science, San Diego, 

California, 2007, p. 3. 

 

 


