
A SCALABLE AND COMPACT LINEAR

SOLVER WITH A FOCUS ON MODEL

PREDICTIVE CONTROL

Ong Shen Hoong, Kevin

School of Computer Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirements for the degree of

Masters of Engineering

2014

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of

original research and has not been submitted for a higher degree to

any other University or Institution.

. .

Date Ong Shen Hoong, Kevin

Acknowledgments

I would like to express my sincere gratitude and appreciation to my supervisors, Prof

Suhaib A.Fahmy(SCE) and Prof Ling Keck-Voon(EEE) for the invaluable experience as

your research student. To Prof Suhaib, for your patience, constructive and forward think-

ing comments especially when my research direction tilted towards a different outcome.

To Prof Ling for teaching me how to crystallize my thoughts, proper technical writing and

keeping me on my toes at all times. In addition, a special mention to Prof Ling for the

rewarding experience gained from multiple roles during my secondment for the A*STAR

funded Embedded & Hybrid Systems II Programme (2008-2010).

Within NTU, I would like to thank various people at Centre for High Performance Em-

bedded Systems (CHiPES) and EEE Control Engineering Lab. From CHiPES, Jeremiah

Chua for his prompt IT system support and Vipin Kizheppatt for his helpful advice in

digital hardware designs for FPGA. Not forgetting the MSc students(Nithin, Zain and

Rakesh) who were willing to be my listening ear during the off-peak hours in CHiPES.

From the Control lab, Thuy Dang Van and Zhou Dexiang for their help with control

related jargons and latex programming respectively.

Last but not least, I would like to thank my wife Fangfang for her unwaivering love, pa-

tience, encouragement and company throughout the course of my study. Special mention

to my parents and sister for their continuous encouragement and support on my decision

for further studies.

Nanyang Technological University Singapore

Abstract

Systolic Array architectures are data-flow based but designing architectures for solv-

ing specific problems can pose a challenge. In this thesis, an investigation into a

scalable design for accelerating the problem of solving a dense linear system of equa-

tions using LU Decomposition is presented. A novel systolic array architecture that

can be used as a building block in scientific applications is described and proto-

typed on a Xilinx Virtex 6 FPGA. The proposed linear solver has a throughput of

approximately 1 million linear systems per second for matrices of size N = 4 and

approximately 82 thousand linear systems per second for matrices of size N = 16. In

comparison with similar work, the proposed design offers up to a 12x improvement

in speed whilst requiring up to 50% fewer hardware resources. As a result, a linear

system of size N = 64 can now be implemented on a single FPGA, whereas previous

work was limited to N = 12 and resorted to complex multi-FPGA architectures to

achieve the same effect. Moreover, the scalable design can be adapted to different

sized problems with minimum effort.

Nanyang Technological University Singapore

Contents

Acknowledgements i

Abstract iii

List of Contents v

List of Figures ix

List of Tables xii

List of Algorithms xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Linear Solver . 1

1.2 Scientific Computing Platforms . 2

1.3 High-Level Design Approaches . 4

1.3.1 Source-directed compilation approach 5

1.3.2 Digital Signal Processing IP Cores 7

Nanyang Technological University Singapore

vi CONTENTS

1.3.3 Model-based Approach . 7

1.4 Research Goals and Contributions . 8

1.4.1 Publications . 9

1.5 Thesis Organization . 9

2 Background 11

2.1 Model Predictive Control . 11

2.2 Systolic Arrays . 16

2.3 Software Linear System Solvers . 20

2.3.1 Bluespec . 21

2.3.2 Xilinx System Generator . 24

3 Literature Review 27

3.1 Linear Solver . 28

3.1.1 Algorithm Mapping using High-Level tools for FPGA 28

3.1.2 LU Decomposition on FPGA 28

3.1.3 Systolic Array implementations of LU Decomposition on FPGA 31

3.2 Linear Solvers for MPC . 32

3.2.1 General Processor-based Linear Solver for MPC 33

3.2.2 FPGA-based Linear solver Accelerators for MPC 34

3.3 Summary . 38

4 Case Study: High-Level Software Tool Selection 43

4.1 Direct-form FIR Filter - Bluespec . 45

Nanyang Technological University Singapore

CONTENTS vii

4.1.1 Bluespec Manual Declaration 46

4.1.2 Bluespec Static Elaboration 48

4.2 Direct-form FIR Filter - MATLAB Xilinx SysGen 50

4.2.1 MATLAB FIR Compiler . 50

4.2.2 MATLAB MAC FIR Filter 52

4.3 Results . 54

4.3.1 Bluespec . 54

4.3.2 Xilinx FIR Filter Compiler . 55

4.3.3 Xilinx MAC FIR Filter . 55

4.4 Summary . 57

5 Proposed Hardware Solver Architecture 61

5.1 TSA Hardware Building Blocks . 61

5.2 Example: LU-TSA Data Operation where N=3 63

5.3 Processing Elements (PE) for LU-TSA 66

5.3.1 Divider PE . 66

5.3.2 Multiply-Subtract (MS) PE 68

5.3.3 Modified Multiply-Subtract (MMS) PE 70

5.4 Triangular Systolic Array (TSA) Linear Solver 71

5.5 Main Contributions . 73

5.5.1 Exploitation of Serialized LU Decomposition 73

5.5.2 Data Throughput . 75

Nanyang Technological University Singapore

viii CONTENTS

5.5.3 Speedup . 76

5.5.4 Proposed TSA Linear Solver Architecture 76

6 Implementation Setup and Results 81

6.1 System Setup . 81

6.2 Results and Discussion . 85

6.2.1 LU-TSA . 85

6.2.2 Linear Solver . 86

6.2.3 Performance and Resource Scalability 88

6.2.4 Summary . 91

7 Conclusion 93

Bibliography 97

Nanyang Technological University Singapore

List of Figures

1.1 General-purpose Hardware Compilers [1] 6

1.2 Main Characteristics of various HLL C-to-FPGA Compilers [2] 6

2.1 Basic Structure of MPC [3] . 12

2.2 Similarities and differences of architectures (SIMD, MIMD, Systolic

Arrays and Wavefront Arrays) [4] [5] 17

2.3 (a) Linear (b) Orthogonal (c) Hexagonal (d) Triangular [5] 18

2.4 Classes of cells in systolic-type arrays 19

2.5 Overall System Architecture . 20

2.6 Bluespec Design Flow [6] . 21

2.7 Bluespec Software Module [6] . 22

2.8 Bluespec Simulation Speed Comparison [6] 24

4.1 Example of a 4–tap FIR Filter . 45

4.2 BSV Code for 8-tap FIR Filter using Manual Declaration 47

4.3 BSV Code for 8-tap FIR Filter using Static Elaboration 49

4.4 MATLAB Simulink FDATool Filter Design Tool 51

Nanyang Technological University Singapore

x LIST OF FIGURES

4.5 N-tap FIR Filter with Simulink FDATool Filter 52

4.6 Simulink code for N-tap FIR Filter using Xilinx FIR Compiler 6.1 IP

Block . 53

4.7 N-tap MAC Filter IP Block compact hardware architecture 53

4.8 2N-tap MAC Filter IP Block compact hardware architecture 54

4.9 Bluespec Resource and Performance Trade–off for N–taps FIR Filter

Design . 56

4.10 Resource and Performance Trade–off for N–taps FIR Filter Design

using Xilinx FIR Compiler 6.1 IP Block 57

4.11 Xilinx FIR Resource and Performance Trade–off for N–tap and 2N–

tap MAC–based FIR Filter Design 58

5.1 Comparison of Triangular Systolic Array Architecture 62

5.2 Comparison of Basic TSA Design and Components 63

5.3 Example TSA DataFlow for 3 x 3 LU Decomposition at different

time-steps . 64

5.4 8 x 8 TSA Design for LU Decomposition 65

5.5 Divider PE . 66

5.6 State Diagram for Div PE . 67

5.7 Multiply-Subtract (MS) PE . 68

5.8 State Diagram for Multiply-Subtract PE 69

5.9 Modified Multiply-Subtract (MMS) PE 70

5.10 State Diagram for Modified-Multiply-Subtract PE 71

5.11 Existing Linear Solver designs using Systolic Arrays 72

Nanyang Technological University Singapore

LIST OF FIGURES xi

5.12 Simplified System Architecture for proposed TSA Linear Solver . . . 77

5.13 Data Router PE in proposed TSA Linear Solver 78

5.14 State Diagram for Multiply-Subtract Forward Substitution PE in pro-

posed TSA Linear Solver . 79

6.1 LU-TSA Hardware Architecture . 82

6.2 Proposed Linear Solver Architecture 83

6.3 Internal logical blocks for Divider PE 84

6.4 Internal logical blocks for Multiply-Subtract PE 85

6.5 Regression Model Results for Proposed TSA-based Linear Solver (Ma-

trix Size vs Slices) . 89

6.6 Regression Model Results for Proposed TSA-based Linear Solver (Ma-

trix Size vs Fmax) . 89

6.7 Hardware Performance and Resource Trade-Off for LU-TSA 90

6.8 Hardware Performance and Resource Trade-Off for Proposed TSA-

based Linear Solver . 90

6.9 Design Scalability Example for TSA from N = 3 to N = 8 91

Nanyang Technological University Singapore

List of Tables

3.1 Summary of previous work . 39

5.1 Order of calculated values of L and U matrix output for 3x3 TSA . . 65

5.2 Latency and PE Comparison with Similar Work 75

6.1 LU-TSA Performance & Resource Benchmarking 86

6.2 Linear Solver Performance & Hardware Resource Benchmarking . . . 87

Nanyang Technological University Singapore

List of Algorithms

1 Interior Point Method . 15

Nanyang Technological University Singapore

Nanyang Technological University Singapore

LIST OF ALGORITHMS xv

List of Abbreviations

ASIC Application Specific Integrated Circuits

ASM Active Set Method

AST Altera Synthesis Tool

BLAS Algebra Subprograms

BRAM Block RAM

BSV Bluespec SystemVerilog

CGM Conjugate Gradient Method

CORDIC COordinate Rotation DIgital Computer

CUDA Compute Unified Device Architecture

DSP Digital Signal Processing

DSPB DSP Builder

EDK Embedded Development Kit

FGM Fast Gradient Method

FIR Finite Impulse Response

FPU Floating Point Unit

FRADL FPGA Regular Array Description Language

GPP General Purpose Processors

GPU Graphics Processor Unit

FPGA Field Programmable Gate Array

HDL Hardware Descriptive Language

HLS High-Level Synthesis

IPM Interior Point Method

KKT Karush-Kuhn-Tucker

Nanyang Technological University Singapore

xvi LIST OF ALGORITHMS

LAPACK Linear Algebra PACKage

LNS Logarithmic Number System

LUD LU Decomposition

MAC Multiply-Add-Subtract

MIMD Multiple-Instruction-Multiple-Data

MIMO Multiple Inputs Multiple Outputs

MINRES Minimum Residual

MMS Modified Multiply-Subtract

MPC Model Predictive Control

NI National Instruments

NRE Non-recurring Engineering

OpenCL Open Computing Language

PE Processing Elements

QP Quadratic Programming

QRD QR Decomposition

QRD-RLS QR Decomposition-based Recursive Least Squares

RHS Righ-hand-side

RTL Register-Transfer-Level

SA Systolic Array

SDR Software Defined Radio

SIMD Single-Instruction-Multiple-Data

SVD Singular Value Decomposition

SysGen System Generator

TI Texas Instruments

TSA Triangular Systolic Array

TTM Time-to-Market

VCD Value Change Dump

VLIW Very Long Instruction Word

WLF Wave Log Format

Nanyang Technological University Singapore

LIST OF ALGORITHMS xvii

XST Xilinx Synthesis Tool

Nanyang Technological University Singapore

Chapter 1

Introduction

1.1 Linear Solver

A large portion of scientific computing is concerned with solving a system of linear

equations through the use of numerical methods to give approximate but accurate

solutions to computationally complex problems. Solving a system of linear equa-

tions is the basis of a number of scientific applications and two approaches are often

used: iterative and direct methods. Iterative methods generate a sequence of ap-

proximations to the solution and the same computation procedure is performed in a

repeated manner. Although iterative methods can be efficient both computationally

and in terms of storage, a very good initial approximate value has to be chosen. This

is because iterative methods are prone to numerical inaccuracies and convergence

issues and the time taken to compute the exact solution becomes unpredictable. In

contrast, direct methods determine the exact solution through a finite sequence of

operations. As a result, the exact solution can be computed in a predictable amount

of time and storage requirements can be estimated at design time.

Nanyang Technological University Singapore

2 1.2. SCIENTIFIC COMPUTING PLATFORMS

1.2 Scientific Computing Platforms

As with all algorithmic implementations, development engineers usually survey a

wide-range of mainstream computing platforms in the ever-changing landscape of

computing architecture. The main reason for this change is due to the scaling limita-

tions of clock frequency as chip manufacturers innovate to grapple with minimizing

the amount of leakage current with each shrink in die size. More recently, semicon-

ductor manufacturers have looked to increasing the amount of parallelism, and this

has brought about the era of multi-cores with the latest General Purpose Processors

(GPP), such as the Intel i7-3960X [7], featuring 6 cores, with each core operating

at 3.3GHz and a combined onboard cache size of 15Mbytes. As general as a GPP

is, real-world performance is usually much lower than the theoretical peak perfor-

mance due to the fixed datapath and general architecture of the GPP computing

platform. It is only recently that the software industry has caught up with chip

manufacturers to exploit the computation power of multiple processor cores. In the

past decade, two other scientific computing platforms have gained prominence for

their alternative architectures, the Graphics Processor Unit (GPU) and the Field-

Programmable Gate Array (FPGA), offering data parallelism to achieve significant

hardware acceleration.

Modern day GPUs, such as those from AMD/ATI [8], contain hundreds of proces-

sor cores that can perform specialized matrix computation in a massively parallel

manner, using the Very Long Instruction Word (VLIW) computing architecture.

These devices boast high peak theoretical performance for single precision floating

point [9], of the order of >1 TFLOP/s. But such performance is only achievable

if sufficient parallelism can be applied, with some thousands of parallel threads,

and provided there are no race conditions for read/write operations in the memory

sub-system.

A different approach can be undertaken through the exploration of custom com-

puting architecture. Application Specific Integrated Circuits (ASICs) are known

Nanyang Technological University Singapore

1.2. SCIENTIFIC COMPUTING PLATFORMS 3

for having very high computation performance, low power consumption and offer a

small die size. But the complexity of designing and validating such ASIC devices

become a barrier as systems grow in design complexity and experienced hardware

designers become scarcer. ASICs are known to offer long time-to-market (TTM),

require high upfront costs and are only suitable for large volume applications. On

the contrary, innovative advances in reconfigurable computing have made FPGAs a

suitable platform for accelerating scientific computations. FPGAs boast fast TTM,

low upfront costs and design errors can be rectified easily in the field unlike ASICs.

Recently, low to mid-range FPGAs have been embedded with dedicated hardware

resources; Digital Signal Processing (DSP) blocks are included on-chip, equipping

FPGAs with more computational muscle whilst providing deterministic execution

time and low power consumption. With the availability of on-chip DSP blocks, most

of the general FPGA fabric can be available for other hardware tasks. The highly

optimized and onboard DSP blocks help accelerate the computational performance

of DSP intensive algorithms. Given knowledge of the target FPGA architecture and

embedded resources, hardware designers can better optimize their hardware design

to exploit available embedded resources. A recent FPGA, Xilinx Zynq 7000 [10],

includes an ARM dual-core Cortex A9 MPCore microprocessor, residing on the same

silicon die as the general-purpose FPGA fabric. An implicit benefit of residing on

the same silicon die is a high performance coupling of the two components.

On the design front, the availability of IP cores for common hardware peripher-

als seamlessly adds to the popularity of FPGAs. In addition, the productivity of

hardware designers is increased and more effort can be spent in designing complex

systems. A key disadvantage of FPGAs is design complexity compared to GPPs.

The amount of onboard FPGA fabric required to synthesize the required hardware

logic is also constrained by the efficiency of the design decisions made by the respec-

tive synthesis software tools.

FPGAs have previously been used to accelerate Model Predictive Control (MPC)

and offer the benefit of hardware accelerated performance, but with the flexibil-

Nanyang Technological University Singapore

4 1.3. HIGH-LEVEL DESIGN APPROACHES

ity to tailor the implementation to the specific problem of interest. The majority

of MPC researchers have focused on solving large problem sizes and their system

solvers utilize iterative algorithms, such as the Conjugate Gradient Method, to han-

dle sparse matrices. To achieve high linear solver performance, a digital hardware

designer must customize the design at a low level of detail. But the design complex-

ity in utilizing such linear solvers is well-beyond the reach of non-circuit designers

and scientific researchers in general. Moreover, the ability to connect algorithms

to hardware architectures and the use of high-level software tools for rapid design

prototyping and parameterization is not exploited.

1.3 High-Level Design Approaches

The popularity of FPGAs, in realizing application-specific or hardware accelerator

systems, is traditionally attained through the use of Hardware Descriptive Lan-

guages (HDL) such as VHDL and Verilog. In comparison with traditional high-level

programming languages, the HDL-based design methodology provides a relatively

low level of abstraction [11]. The pre-requisite for HDL design is prior/existing

background knowledge and experience in digital design techniques, such as Register-

Transfer-Level (RTL), in order to exploit the underlying FPGA architecture. More-

over, designing and troubleshooting of the application-specific design alone is time-

consuming and this is why the use of FPGAs is limited to digital hardware design

experts. The design complexity of state-of-the-art systems drives a strong need to

have a technology independent modelling tool to model such complex systems while

reducing the design effort required before the first prototype ASIC chip is taped-out

to an IC package. Note that the cost of developing the ASIC chip amounts to mil-

lions of dollars and any design changes will further marginalize the companys profits

per chip.

High-Level Synthesis (HLS) and compilers were created to promote the widespread

use of FPGAs for both digital and non-digital hardware design specialists. The aim

Nanyang Technological University Singapore

1.3. HIGH-LEVEL DESIGN APPROACHES 5

of HLSs is to allow the designers/programmers to rapidly create and model the

complex systems before generation of RTL design code. For example, the HLS

tools allow the designer to create a digital circuit, such as an embedded controller,

with ease on an FPGA through the use of high level languages such as C, MAT-

LAB and LabVIEW [12]. Hence, overall productivity of the designer/programmer

is increased and more time can be spent on verifying the functional correctness of

their customized system design. Examples of popular HLS tools include Handel-

C [13], ImpulseC [14], Xilinx Embedded Development Kit (EDK) [15], MATLAB

Simulink HDL Coder [16], National Instruments (NI) FPGA [12], Synphony [17], Vi-

vado [18] and Bluespec [6]. The proposed approaches are discussed in the following

sub-sections.

1.3.1 Source-directed compilation approach

[1] surveyed the architecture and design methods aspect of reconfigurable comput-

ing for various applications. Various design approaches including general-purpose,

special purpose, other design methods and emerging directions were reported. For

general-purpose methods, [1] shortlisted the more significant hardware compilers

and illustrated their corresponding use of various source and target languages, as

shown in Figure 1.1.

Similarly in 2010, a comprehensive survey of C-to-FPGA tools was conducted

by [2] and part of the survey focused on identifying the compilation method and the

synthesis techniques applied, see Figure 1.2.

The findings in both [1, 2] suggest that C language is the preferred source lan-

guage and the potential benefits of such an approach is well understood. To exploit

the target FPGA hardware performance and resources efficiently, variants of C lan-

guage are proposed to enhance the expressiveness of the C language for FPGAs.

In addition, FPGA platform architectures vary for different manufacturers. As a

result, more research efforts are required to make the source-directed compilation

Nanyang Technological University Singapore

6 1.3. HIGH-LEVEL DESIGN APPROACHES

communication. The principal innovation of Haydn-C is a
framework of optional annotations to enable users to
describe design constraints, and to direct source-level
transformations such as scheduling and resource allocation.
There are automated transformations so that a single high-
level design can be used to producemany implementations
with different trade-offs. This approach has been evaluated
using various case studies, including FIR lters, fractal
generators and morphological operators. The fastest mor-
phological erosion design is 129 times faster and 3.4 times
larger than the smallest design.
Bach-C [77] is similar to Handel-C but has an untimed

semantics, only synchronising between parallel threads on
synchronous communications between them, possibly
giving greater scope for optimisation. It also allows
asynchronous communications but otherwise resembles
Handel-C, using the same basic one-hot compilation
scheme.
Table 3 summarises the various compilers discussed in

this Section, showing their approach, source and target
languages, target architecture and some example appli-
cations. Note that the compilers discussed are not
necessarily restricted to the architectures reported; some
can usually be ported to a different architecture by using a
different library of hardware primitives.

4.2 Special-purpose design

Within thewidevariety of problemstowhich recon gurable
computing can be applied, there aremany speci c problem
domains which deserve special consideration. The motiv-
ation is to exploit domain-speci c properties: (a) to describe
the computation, such as using MATLAB for digital signal
processing, and (b) to optimise the implementation, such as
using word-length optimisation techniques described later.
We shall begin with an overview of digital signal

processing and relevant tools which target recon gurable
implementations. We then describe theword-length optim-
isation problem, the solution to which promises rich
rewards; an example of such a solution will be covered.
Final ly we summarise other domain-speci c design
methods which have been proposed for video and image
processing and networking.

4.2.1 Digital signal processing: Oneof themost
successful applicationsfor recon gurablecomputing isreal-
time digital signal processing (DSP). This is illustrated by
the inclusion of hardware support for DSP in the latest
FPGA devices, such as theembedded DSPblocks in Altera
Stratix II chips [20].
DSP problems tend to share the following properties:

design latency is usually less of an issue than design
throughput, algorithms tend to benumerically intensive but
have very simple control structures, controlled numerical
error is acceptable, and standard metrics, such as signal-to-
noise ratio, exist for measuring numerical precision quality.
DSPalgorithmdesign isoften initially performeddirectly

in a graphical programming environment such as Math-
works’ MATLAB Simulink [80]. Simulink is widely used
within the DSP community, and has been recently
incorporated into the Xilinx System Generator [81] and
Altera DSP builder [82] design ows. Design approaches
such as this are based on the idea of data- ow graphs
(DFGs) [83].
Tools working with this form of description vary in the

level of user intervention required to specify the numerical
propertiesof theimplementation. For example, in theXilinx
System Generator ow [81], it is necessary to specify the
number of bits used to represent each signal, the scaling of
each signal (namely thebinary point location), and whether
to use saturating or wrap-around arithmetic [84].
Ideally, theseimplementation detailscould beautomated.

Beyond a standard DFG-based algorithm description, only
onepieceof information should be required: a lower-bound
on the output signal to quantisation noise acceptable to the
user. Such a design tool would thus represent a truly
‘behavioural’ synthesis route, exposing to theDSPengineer
only thoseaspectsof design naturally expressed in theDSP
application domain.

4.2.2 The word-length optimisation problem:
Unlike microprocessor-based implementations where
the word-length is de ned a priori by the hard-wired
architecture of the processor, recon gurable computing
based on FPGAs allows the size of each variable to be
customised to produce the best tradeoffs in numerical

Table 3: Summary of general-purpose hardware compilers

System Approach Source language Target language Target architecture Example applications

Streams-C [63] Annotation=

constraint-driven

C þ library RTL VHDL Xilinx FPGA Image contrast

enhancement, pulsar

detection [78]

Sea Cucumber

[64]

Annotation=

constraint-driven

Java þ library EDIF Xilinx FPGA none given

SPARK [65] Annotation=

constraint-driven

C RTL VHDL LSI, Altera FPGAs MPEG-1 predictor,

image tiling

SPC [62] Annotation=

constraint-driven

C EDIF Xilinx FPGAs String pattern matching,

image skeletonisation

ASC [71] Source-directed

compilation

Cþ þ using

class library

EDIF Xilinx FPGAs Wavelet compression,

encryption

Handel-C [72] Source-directed

compilation

Extended C Structural VHDL,

Verilog, EDIF

Actel, Altera

Xilinx FPGAs

Image processing,

polygon rendering [79]

Haydn-C [73] Source-directed

compilation

Extended C Extended C

(Handel-C)

Xilinx FPGAs FIR lter, image erosion

Bach-C [77] Source-directed

compilation

Extended C Behavioural

and RTL VHDL

LSI FPGAs Viterbi decoders,

image processing

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005 201

Figure 1.1: General-purpose Hardware Compilers [1]

Compi l ing for Recon gurableComputing: A Survey 13:51

Table VI. Main Characteristics of Some Compilers: General Information (II)
I nput Programming Granular i ty of

Compiler Language descr ipt ion Model Used
Transmogr i er-C C-subset Operat ion Software, imperat ive
PRISM-I , I I C-subset Operat ion Software, imperat ive
Handel-C Concurrency +

channels + memor ies
(C-based)

Operat ion Delay, CSP model,
each assignment in
one cycle

Galadr iel & Nenya Any language
compiled to Java
bytecodes (subset)

Operat ion Software, imperat ive

SPARCS VHDL tasks Operat ion VHDL and tasks
DEFACTO C-subset Operat ion Software, imperat ive
SPC C, For t ran: (subsets) Operat ion Software, imperat ive
DeepC C, For t ran: (subsets) Operat ion Software, imperat ive
Maruyama C-subset Operat ion Software, imperat ive
MATCH MATLAB Operat ion and/or

funct ional blocks
Software, imperat ive

CAMERON SA-C Operat ion Software, funct ional
NAPA-C C-subset extended Operat ion Software, imperat ive

added with
concurrency

Stream-C C-subset extended Operat ion Software,
st ream-based,
processes

Garpcc C Operat ion Software, imperat ive
CHIMAERA-C C Operat ion Software, imperat ive
HP-Machine C++ (subset) extended

to specify Machines
Operat ion Machines

(process/thread)
Not ion of update per
cycle

ROCCC C-subset Operat ion Software, imperat ive
DIL DIL Operat ion Delay not ion, ?
RaPiD-C RaPiD-C Operat ion Speci c to RaPiD, par,

wait , signal, and
pipel ine statements

CoDe-X C-subset , ALE-X Operat ion Software, imperat ive
XPP-VC C-subset (extended) Operat ion Software, imperat ive

as one of their main products. As an example, research techniques used in theMATCH
compiler [Baner jee et al. 2000; Nayak et al. 2001a], were t ransfer red to AccelChip.
Other examples of academic research on compilers, the results of which have also
been transfer red to companies, include the research work on hardware compilat ion
from Handel-C per formed at the Oxford University [Page 1996] in the second half of
the 1990’s, ult imately leading to the creat ion of Celoxica. Research on the Streams-C
hardware compiler [Gokhale et al. 2000b] was l icensed to Impulse Accelerated Tech-
nologies, Inc. [Impulse-Accelerated-Technologies; Pel ler in and Thibault 2005]; and the
work on the garpcc compiler [Cal lahan et al. 2000] was used by Synopsys in theNimble
compiler [L i et al. 2000].
There has been ongoing research effor t . One of the most relevant recent effor ts is

the Tr ident C-to-FPGA compiler [Tr ipp et al. 2005], which was especial ly developed
for mapping scient i c comput ing appl icat ions descr ibed in C to FPGAs. The compiler
addresses oat ing-point computat ions and uses analysis techniques to expose high
levels of ILP and to generate pipel ined hardware circuits. I t was developed with user-
de ned oat ing-point hardware units in mind as well .

ACM Comput ing Surveys, Vol. 42, No. 4, Ar t icle 13, Publ icat ion date: June 2010.

Figure 1.2: Main Characteristics of various HLL C-to-FPGA Compilers [2]

Nanyang Technological University Singapore

1.3. HIGH-LEVEL DESIGN APPROACHES 7

approaches sufficiently attractive for low-level circuit designers to adopt.

1.3.2 Digital Signal Processing IP Cores

A typical drawback of using such high-level tools lies in the translation overheads,

which result in non-optimum performance and inefficient use of the FPGAs on-chip

resources, such as the inability to parallelize the hardware design sufficiently to gain

higher system throughput, as seen in [19]. The availability of IP cores attempts

to address such problems and is made available through software add-ons such as

Xilinx Core Generator [20], Altera MegaCore Functions [21] and OpenCores [22],

with an aim to reduce the development cycle to productively build modern day com-

plex systems. To integrate and debug the IP cores with the existing logic, digital

hardware designers require to be in the loop. The main disadvantage of using IP

cores is the reliability of the IP core as bug fixes can only be issued by respective

FPGA/CAD vendors and this introduces delay to the digital hardware designers

already tight project schedule. As a result, architecture exploration becomes pro-

hibitive when vendor-protected IP cores are involved. Similarly, OpenCores IPs are

user-contributed and unoptimized with the option for user-modification to be made

through HDL.

From the constraints mentioned, a model-based approach is more appropriate as

the programming environment is graphical and data visualization becomes natural

for non-circuit hardware designers.

1.3.3 Model-based Approach

The model-based approach utilizes graphical environments, such as MATLAB Simu-

link environment for design prototyping and verification of DSP applications on

FPGAs. Once the functional hardware design have been verified, the downstream

FPGA implementation steps involving synthesis and Place-and-Route are automat-

Nanyang Technological University Singapore

8 1.4. RESEARCH GOALS AND CONTRIBUTIONS

ically performed to generate an FPGA programming file. The two popular offerings

are Xilinx System Generator (SysGen) [23] and Altera DSP Builder (DSPB) [24].

Compared with previous approaches, the model-based approach enables rapid cre-

ation of custom peripherals when compared to programmatic flow using HDL and

previous experience with FPGAs is not required. In this thesis, the use of SysGen

is selected for design prototyping and verification of a data-flow based hardware

architecture for linear solvers.

1.4 Research Goals and Contributions

In this thesis, we aim to propose a scalable and parameterizable linear solver as

a building block in scientific applications, such as MPC. The structural regularity

and scalability of the systolic array approach allows the linear solver to be rapidly

prototyped using high-level software tools and non-circuit designers only need work

at the architecture level. The proposed scalable systolic array architecture is not

constrained to MPC and can be applied to general scientific computing problems

where a system of linear equations is to be solved.

The major contributions of the thesis are as follows:

1. Exploitation of architectural parallelism, idle sequential cycles and omission

of redundant arithmetic operations resulted in a novel systolic array hardware

design architecture.

2. Scalable and wordlength parameterizable hardware architecture for easy adap-

tation to different sized problems with minimum effort.

3. Proposed linear solver performs floating-point division and has a throughput

of about 1 million linear systems for matrices of size N = 4 and about 82

thousand linear systems for matrices of size N = 16.

4. Proposed design offers up to 12x improvement in solver speed whilst requiring

up to 50% less hardware resources when compared to similar works.

Nanyang Technological University Singapore

1.5. THESIS ORGANIZATION 9

5. A large linear solver of size N = 64 can now be implemented on a single FPGA

chip, whereas previous work was limited to N = 12 and resorted to complex

multi-FPGA architectures to achieve the same effect.

1.4.1 Publications

A conference poster [25] has been accepted and presented in IEEE International

Conference on Application-specific Systems, Architectures and Processors (ASAP)

2014.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 presents a background on how solving

a system of linear equations will accelerate scientific applications, such as Model

Predictive Control (MPC) and presents the various design approaches to accelerate

the linear solver. Chapter 3 summarizes prior work using general scientific platforms

and FPGAs as a linear solver hardware accelerator. Chapter 4 presents a case-study

to access the performance and hardware trade-off between Bluespec and MATLAB

Xilinx SysGen tools using a direct-form FIR filter hardware design. Chapter 5 de-

scribes the proposed hardware architecture to enable design scalability. Chapter 6

presents the implementation setup and discusses the results in comparison with sim-

ilar work. Chapter 7 describes the thesis’ conclusion and highlights the outstanding

issues for implementation as future work.

Nanyang Technological University Singapore

Chapter 2

Background

In this chapter, relevant background material is described. Firstly, the motivation for

accelerating the system of linear equations in Model Predictive Control application

is described. Secondly, an introduction to systolic arrays and existing work on

LU Decomposition based linear solvers is presented. Thirdly, various high-level

design approaches are reviewed. Finally, a brief overview of Bluespec and Xilinx

System Generator tools are described for reader’s reference prior to the case study

experiment in Chapter 4.

2.1 Model Predictive Control

Model Predictive Control (MPC) is an advanced control method that is well estab-

lished in the petrochemical industry. The natural ability in handling large multiple

inputs multiple outputs (MIMO) systems with physical constraints makes MPC

attractive. Characteristics of MPC include the moving horizon implementation,

performance oriented time domain formulation, incorporation of constraints and ex-

plicit system model for use in predicting the future plant dynamics [3]. Typical

components of MPC include the prediction model, objective function and obtaining

the control law, as shown in Figure 2.1. Conventional MPC requires that the sam-

Nanyang Technological University Singapore

12 2.1. MODEL PREDICTIVE CONTROL

pling interval be greater than the time taken to solve the optimization problem [26]

as it uses a model of the system to be controlled, to solve using numerical opti-

mization methods. As the first part of the solution is implemented, the deviation

error will occur between the next output measurement and the controller′s predicted

trajectory. Thus, the optimal control problem is only updated with new data after

new measurement data has to be obtained at the next sample instant. This process

is repeated for future sample instances.

Figure 2.1: Basic Structure of MPC [3]

The criteria for real-time MPC strongly depend on the speed at which the op-

timization problem is solved, in order to control the plant or system more quickly

and effectively. In addition, the optimization problem requires sampling at high

frequencies in order to capture fast occurring disturbances. That is why current

applications of MPC are restricted to slow processes such as chemical plants, with

sampling periods in the order of seconds although [27] reports growing research

interest into the use of MPC in other areas such as ships, aerospace and micro

scale devices. Therefore, it is useful to briefly understand the fundamental concepts

on how Constrained MPC can be formulated as a Quadratic Programming (QP)

problem.

Assume a discrete linear time-invariant plant with the following state space form:

Nanyang Technological University Singapore

2.1. MODEL PREDICTIVE CONTROL 13

∑x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(2.1)

where y(k) ∈ Rp,u(k) ∈ Rm and x(k) ∈ Rn represent the system output, input

and internal states, respectively. The constrained MPC problem’s objective is to

minimize the cost function of:

Φ (y,4u) =
Np∑
j=1

‖y(k + j)− ω(k + j)‖2q +
Nu−1∑
j=0

‖4u(k + j)‖2r

where the cost function is subject to the following inequality constraints,

yLB ≤ Jyy ≤ yUB (2.2)

xLB ≤ Jxx ≤ xUB (2.3)

uLB ≤ Juu ≤ uUB (2.4)

ûLB ≤ Jû4u ≤ ûUB (2.5)

The MPC problem can be converted into a QP problem [27] using the standard-

ized approach by first replacing the predicted system output with the following

definitions:

Ψu =


CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CANP−1B CANP−2B · · · CANP−NuB



Ψ′u =


CA

CA2

...

CANP

 z =


4u(k)

4u(k + 1)
...

4u(k +Nu − 1)



Nanyang Technological University Singapore

14 2.1. MODEL PREDICTIVE CONTROL

Hence, the constrained MPC problem can be formulated as a compact QP problem:

min
z∈Rnv

{
1

2
z′Qz + c′z : Jz ≤ g

}
(2.6)

From equation (2.6), nv = mNu denotes the number of decision variables while

Q = 2Ψ′uΨu+2I is an nv×Nu positive definite Hessian matrix and c = 2Ψ′u (Ψxxk − ω)

is an nv × 1 column vector. In addition, the size of J and g are mc × nv matrix

and mc × 1 respectively, where mc represents the total number of inequality con-

straints on z. Here, ω is the set-point while Np and Nu are the prediction and control

horizons respectively.

At each sampling instance, the QP solver will generate the corresponding control

signal to the plant. At the next sampling instance, the optimization solver pro-

cess is repeated. The size and complexity of the optimization problem affects the

computational requirements for online computation, condemning the use of MPC

further. That is why the mentioned approach can be replaced with that proposed

by Wright [28](pp. 91 of [29]), where the states and inputs during the prediction

horizon are kept as variables, in order to get a banded Q matrix. The consequent

solution of the linear system of equations, in both Interior Point Method (IPM) and

Active Set Method (ASM), can be obtained more quickly for problems with large

sizes. In the proposed research, we assume the MPC problems are insufficiently

large to adopt the proposed QP formulation approach in [28].

Common methods for solving the QP problems are the ASM and IPM. In this

thesis, IPM [30] is assumed and the Karush-Kuhn-Tucker (KKT) conditions for

optimality is applied to the infeasible IPM for solving a QP problem. Thereafter,

optimal control can be computed by applying Newton’s method and the search

direction can be obtained.

From Algorithm 1, it can be seen that step 3 is the most computationally in-

tensive, which solves a system of linear equations, Ax=b̂. Numerical methods such

as Cholesky, Minimum Residual (MINRES), Conjugate Gradient Method (CGM),

Nanyang Technological University Singapore

2.1. MODEL PREDICTIVE CONTROL 15

Algorithm 1 Interior Point Method

1: Start IPM and select initial conditions
2: procedure Initialize (z0, λ0, t0) with((λ0, t0)>0)
3: At k-th iteration, solve for

(
zk, λk, tk

)
with:[

Q J ′

J Γ

][
∆zk

∆λk

]
=

[
rk1
rk2

]
where Γ = −

(
Λk
)−1

T k

4: Increment variables and check for convergence
5: if Converge, then
6: Stop and obtain optimal control zk+1

7: else
8: Return to step 3 and continue iteration
9: end if

10: end procedure

Singular Value Decomposition (SVD), QR Decomposition (QRD), and LU Decom-

position (LUD) are some of the approaches used for linear solvers.

In this thesis, we will focus on developing a linear solver for general use. Direct

methods are preferred so as to enable efficient mapping to FPGAs and special matrix

properties, such as symmetry and positive definite, are not considered. Secondly,

the constraints and A matrix, in the compact QP problem, are assumed to be rep-

resented in a dense matrix data structure and the MPC problems are insufficiently

large to adopt the proposed QP formulation approach [30] with high linear solver

speed requirements, ≥1000 linear systems per second. One aspect of our proposed

research is focused on utilizing an efficient and easy to implement numerical method

for the linear solver. A single right-hand-side (RHS) is assumed and LU Decompo-

sition is preferred as the method can be easily mapped to systolic arrays. To solve

for a system of linear equations of size N , three steps are performed:

1. LU Decomposition A = LU

2. Forward Substitution Lŷ = b̂

3. Backward Substitution Ux̂ = ŷ

The computational complexity for LU Decomposition is O (N3) and requires di-

vision operations. The options for replacing the division operations are COordinate

Nanyang Technological University Singapore

16 2.2. SYSTOLIC ARRAYS

Rotation DIgital Computer (CORDIC) [31], Givens Rotation and Conjugate Gradi-

ent Method to achieve division free operations. In this thesis, floating-point division

is performed and the proposed use of Systolic Array architecture reduces computa-

tional complexity to O (N). In support of our systolic array approach, implementa-

tions of LU-based linear solver will be presented and discussed in Chapter 6.

2.2 Systolic Arrays

Parallel execution of a problem can accelerate scientific computations with applica-

tions ranging from simulations to data mining. The common objective is to reduce

time taken to solve large scientific problems by placing more emphasis on exploiting

multi-processor hardware. If the single processing unit can accomplish the task in

time T then N processing units could ideally accomplish it in time T/N , termed lin-

ear speed-up. But in most cases, the actual speed-up achieved on parallel computers

is considerably smaller than the desired linear speed-up and this can be explained

using Amdahl′s law. Amdahl’s law is often used to predict the theoretical maximum

speedup for program processing using multiple processors. The maximum achiev-

able speedup using N number of processors is 1

(1−P)+(P
N)

, where P is the proportion

of a system or program that can be made parallel. Taxonomies to expose parallel

architectures from different viewpoints have been reported by Flynn and Duncan [5].

Systolic and wavefront arrays are also known as VLSI processor arrays and their

differences are contrasted in Figure 1.1 along with Single-Instruction-Multiple-Data

(SIMD) and Multiple-Instruction-Multiple-Data (MIMD) architectures. Systolic

Arrays (SAs) are generally classified as high-performance, special-purpose VLSI

computer systems that are suitable for specific application requirements that must

balance intensive computations with demanding I/O bandwidths. SAs are organized

as networks comprising a large number of identical, locally connected elementary

Processing Elements (PE). A global clock synchronizes data between the PEs. Data

in SA are rhythmically pulsed from memory through PEs before returning to mem-

Nanyang Technological University Singapore

2.2. SYSTOLIC ARRAYS 17

MEng. Monthly Report Update

Kevin Ong

Reporting Period: 1 May – 30 June 2013

Figure 1.1 Similarities and differences of architectures (SIMD, MIMD, Systolic Arrays and Wavefront Arrays) [48]

A computing network is termed SA provided it exhibits the following

characteristics:

- Network

- Rhythm

- Synchrony

- Modularity

- Regularity

- Locality (Spatial/Temporal)

- Boundary

- Extensibility

- Pipelinebility

Network and rhythm have been mentioned previously. Synchrony refers to the

behavior of data that is rhythmically computed, by global clock, and passed

through the network for execution of instructions and communication purposes.

Modularity refers to the finite/infinite array consisting of modular processing

units. Regularity refers to a homogeneously interconnected modular processing

unit. Spatial locality refers to the local communication between cells. Temporal

locality refers to the signal transmission characteristic of at least one unit time

delay between cells. Boundary processors are the PE that are only allowed to

communicate with the outside world. Pipelinebility is a synonym for data

pipelining where at least one delay element is found or inserted between two

directly connected combinatorial PEs for the purpose of achieving high speed.

b) Modes of Operation

SAs have 3 modes of operations namely rippling, broadcasting and pipelining,

see Figure 1.2. In comparison with rippling, pipelining operation includes

additional delay registers between the combinational configured PEs.

Broadcasting operation involves global data transfer and introduces long delays.

In addition, the restriction to one type of PE in SA yields equal combinational

delay and load balancing throughout the system design.

Figure 2.2: Similarities and differences of architectures (SIMD, MIMD, Systolic Arrays
and Wavefront Arrays) [4] [5]

ory. Hence, only the initial data and final results are transferred between the host

and the systolic array.

A computing network may be considered a SA provided it exhibits the follow-

ing characteristics: Network, Rhythm, Synchrony, Modularity, Regularity, Local-

ity (Spatial/Temporal), Boundary, Extensibility and Pipelinebility; Network and

rhythm have been mentioned previously. Synchrony refers to the behaviour of data

that is rhythmically computed, by global clock, and passed through the network

for execution of instructions and communication purposes. Modularity refers to

the finite/infinite array consisting of modular processing units. Regularity refers

to a homogeneously interconnected modular processing unit. Spatial locality refers

to the local communication between cells. Temporal locality refers to the signal

transmission characteristic of at least one unit time delay between cells. Boundary

processors are the PEs are the only ones allowed to communicate with the outside

world. Pipelinebility is a synonym for data pipelining where at least one delay ele-

ment is found or inserted between two directly connected combinatorial PEs for the

purpose of achieving high speed.

The concept of SAs to achieve data parallelism was introduced by [32] and global

communication was an issue for large hardware designs. [32] noted that mathe-

Nanyang Technological University Singapore

18 2.2. SYSTOLIC ARRAYS

¢ £ ¤ £

¥ £ ¦ £

§ ¨ ©

¢

! " # $

¥

! % %

¥ & ¦

'

&

! ¨

¥ & ¥ &

(

¢ £

¨ %

¢

'

&

! ¨

¥ ¢ ¢

')

¤ £

!

&

! © ! %

¢

'

&

! ¨

¥ ¢ ¢

')

¥ £

#

¢

© ! %

¢

'

&

! ¨

¥ ¢ ¢

'

¢

%

¦ ¦ £ &

¨

¢

% ©

¢

'

&

! ¨

¥

¢ ¢

' (

0 1 2 3 4 5 4 6 7 8 9 @ 9 2 4 8 A B 7 1 1 7 @

C D E D F G H I F P F D E Q R S R H F Q T U E G G E S V G F U W R R T D P W Q W X W D H R E G W E G G E D P W Y T D E H ` F a Y T X W D R T F D E Q P G T Y

c E U I V G F U W R R T D P W Q W X W D H T R T D H W G U F D D W U H W Y H F T H R D W E G W R H D W T P I d F e G R H F H I W D F G H I f W E R H f R F e H I

E D Y ` W R H b g P E T D f H I W R S R H F Q T U E G G E S R Y T h h W G G W Q E H T i W H F H I W D e X d W G E D Y Y T G W U H T F D F h Y E H E h Q F ` R

E D Y H I W D e X d W G F h Y W Q E S W Q W X W D H R E G G E D P W Y T D H I W X b p I W X F R H H S V T U E Q G W V G W R W D H E H T i W F h H I T R

U Q E R R T R F D W F h V F R R T d Q W X E V V T D P R F h H I W X E H G T q a X E H G T q X e Q H T V Q T U E H T F D E Q P F G T H I X r s t b

u v w 7 5 4 6 7 8 9 @ 9 2 4 8 A B 7 1 1 7 @

C D E I W q E P F D E Q R S R H F Q T U E G G E S V G F U W R R T D P W Q W X W D H R E G W E G G E D P W Y T D E H ` F a Y T X W D R T F D E Q P G T Y b p I W

V G F U W R R T D P W Q W X W D H R E G W U F D D W U H W Y ` T H I T H R D W E G W R H D W T P I d F e G R ` I W G W T D H W G a U F D D W U H T F D R I E i W

(a) (b)

(c) (d)

Figure 2.3: (a) Linear (b) Orthogonal (c) Hexagonal (d) Triangular [5]

matical pivoting was more for storage minimization rather than global communi-

cation and subsequently proposed two triangularization concepts, triangularization

with neighbour pivoting and orthogonal triangularization, with an aim of mini-

mizing global communication. Some examples of SA structures are linear arrays,

orthogonal, hexagonal and triangular structures which can be implemented in a

variety of hardware technologies, see Figure 2.3. Despite being proposed three

decades ago, SAs are still an important research area for high performance com-

puting applications [33]. Some applications of SAs include Multiple Input Multiple

Output (MIMO) Software Defined Radio (SDR) [34], Block Matching Motion Es-

timation [35], and QR Decomposition for radar mapping applications [36]. The

homogeneous multiprocessor array permits matrix computations naturally and en-

ables high-level computations to be easily mapped into hardware structures through

regular and reconfigurable pipelined processor cells.

In relation to communication bandwidth and internal storage, three classes of

systolic-type arrays exists, namely systolic cell, pseudo-systolic cell and local-access

Nanyang Technological University Singapore

2.2. SYSTOLIC ARRAYS 19

PU

(a) Systolic

PU

Mem

(b) Pseudo-systolic

PU

Mem

Reg

(c) Local-access

Figure 2.4: Classes of cells in systolic-type arrays

cell. In this thesis, the author assumes off-chip memory degrades the overall system

performance and on-board memory is to be exploited on the resource-constrained

FPGA platform. Hence, the pseudo-systolic cell type of SA is selected, see Fig-

ure 2.4. Readers are referred to [37] for more details of each class of systolic-type

array.

Although SAs are organized as networks comprising of a large number of identical,

locally connected elementary Processing Elements (PE), a global clock is required

to synchronize data between the PEs. Data in the SA is rhythmically pulsed from

memory through PEs before returning to memory. Such synchronous behaviour may

not be needed on all applications and can cost resources. Hence, the use of modern

high-level software tools is proposed to reduce the time-to-market and non-recurring

engineering costs for implementation on low-cost FPGA platforms.

The simple design of the PE suggests that SA design is easily scalable and can

achieve high data throughput. In cases where design size is limited by available

hardware resources, SAs may also be configured to operate as a high performance co-

processor to accelerate numerical calculations and communication with an external

controller is performed through a high speed interconnect bus, see Figure 2.5. A

case in point is where triangular systolic array for the matrix triangularization step

is proposed to reduce computational complexity to O (N). The reader is assumed to

Nanyang Technological University Singapore

20 2.3. SOFTWARE LINEAR SYSTEM SOLVERS
(Draft) Overall System Architecture

D1

D2

P1 P2

P3
D2

LU Decomposition Systolic Array

Instr Stream

Pre-Processing

Block

ROM/RAM

Data banks

(N)

Post-Processing

Block

ROM/RAM

Data banks

(N)

H/W Interface (FPGA)

Figure 2.5: Overall System Architecture

be familiar with matrix decomposition methods and LU decomposition is preferred

as the method is easily mapped to systolic arrays.

2.3 Software Linear System Solvers

Software libraries, such as Basic Linear Algebra Subprograms (BLAS) and Linear

Algebra PACKage (LAPACK), exist to solve systems of linear equations on GPPs

and GPUs. While there are many published research works on BLAS and LAPACK

for FPGAs [38], the libraries are highly customized and require circuit hardware

designers to be in the loop. To realize our research objective of a scalable linear

solver for non-circuit designers, the use of high level synthesis tools, such as Bluespec

and Xilinx System Generator, are highly desirable and are briefly examined in this

chapter. To determine the suitable high-level software environment, a case study

was performed to compare and contrast both synthesis tools and performance results

are discussed in details in Chapter 4.

Nanyang Technological University Singapore

2.3. SOFTWARE LINEAR SYSTEM SOLVERS 21

2.3.1 Bluespec

Bluespec [39] is a state-of-the-art platform tool that is utilized for the purpose of

hardware system design specification, synthesis, modeling and verification [40]. To

date, Bluespec has been used in the area of modeling for software development, mod-

eling for architecture exploration, verification and IP creation. As with other HDLs,

Bluespec designs are modular and each Bluespec module communicates through an

interface, instead of ports. A module is used to represent hardware circuits in Blue-

spec, similar to Verilog module. Each module consists of 3 basic aspects namely

states, rules and interfaces, as shown in Figure 2.6.

Rules

State

Module

Interface

Figure 2.6: Bluespec Design Flow [6]

The states are represented as hardware registers, flip-flops and memories. Rules

are used to execute operation logic to satisfy/modify the state values and each mod-

ule can contain multiple rules. Each interface consists of methods, akin to methods

in object-oriented programming (OOP) languages, and inherits the advantage of

OOP for large system designs. For communication between interfaces, Bluespec has

implicit guards on the methods, which specify when a method is ready for firing.

The language, Bluespec SystemVerilog (BSV), is based on Haskell and the rule-

based approach, known as Guarded Atomic Action, is used to describe hardware

behaviour. BSV programs can be understood in terms of atomic rule firings in

the hardware design and traditional hardware model of finite state machine is used

to implicitly express concurrent operations. In instances where multiple rules are

concurrently executed, the Bluespec compiler is able to generate a combinational

Nanyang Technological University Singapore

22 2.3. SOFTWARE LINEAR SYSTEM SOLVERS

Figure 2.7: Bluespec Software Module [6]

scheduler, which efficiently schedules the rules in each cycle. In the event where

the Bluespec compiler is unable to decide, feedback will be provided to notify and

guide the hardware designer in making better design decisions. For example, if

the Bluespec compiler determines that two rules cannot be concurrently fired and

additional combinational logic is required, the designer will have to explicitly specify

his preference to the compiler. Thereafter, the compiler is able to work through

all rules and apply Boolean optimizations to simplify the hardware design further

resulting in the generation of a complete schedule. The rule-based design is compiled

and translated into RTL implementation, as shown in Figure 2.7. Likewise BSV has

in-built support for importing Verilog IP and C code into BSV designs through the

use of wrappers.

Bluespec is strongly type-checked to reduce the amount of logic bugs, a feature

commonly found in traditional Hardware Descriptive Language (HDL). For eas-

ier understanding of synthesizable hardware, state elements have to be explicitly

Nanyang Technological University Singapore

2.3. SOFTWARE LINEAR SYSTEM SOLVERS 23

created. According to [41], the BSV-coded Verilog can approach the quality of

hand-coded Verilog design as supported by the work described in [42] where a com-

parative evaluation of a Reed-Solomon Decoder was performed between a C-based

design flow and Bluespec. [42] pointed out that the advantage of a C-based syn-

thesis tools compiler decreases as data-dependant control behaviour in the program

increases, leading to inefficient hardware. Even in the hands of an experienced

hardware designer, considerable effort is still required for architecture design explo-

ration. On the other hand, [42] acknowledged that while Bluespec simplifies the

algorithm into relatively simple modular structures, micro-architecture exploration

is still required on a per application basis. Bluespec architectural exploration can

be expected in the proposed research work.

Additional facilities of Bluespec include Bluesim, a native simulator and source-

level debugger, touted to provide 5-50x speed improvements over Verilog simulation

through exploitation of the computation model. A table of comparison between

Bluesim and a commercial RTL simulator is presented in Figure 2.8. Bluesim

has in-built debugging options to enable/disable viewing of scheduling activities

and generates 2 signals, “CAN FIRE rulename” and “WILL FIRE rulename”. The

“CAN FIRE rulename” occurs when the rule predicate (both implicit and explicit)

conditions are all met. The “WILL FIRE rulename” occurs only when the scheduler

allows the rule to fire [54]. Other powerful features include simulating until clock,

single step, examining of signals and so on. Type-checking and schedule analysis

are also available from Bluesim. Bluespec does not constrain user debugging and

simulation to Bluesim. In fact, Bluespec is also able to support 3rd-party EDA sim-

ulators and waveform viewers such as nWave, gtkWave and ModelSim [43] through

generation of a Value Change Dump (vcd) file. When the case-study was performed,

Bluespec does not support any feature to enable automatic conversion of vcd files

to Wave Log Format (wlf) for import into 3rd-party EDA simulators and waveform

viewers. To automate this process, the author created a batch file and integrated

the batch file for execution as a post-compiler command so as to allow non-circuit

Nanyang Technological University Singapore

24 2.3. SOFTWARE LINEAR SYSTEM SOLVERS

8

L11 - 15Copyright © Bluespec Inc. 2005-2008

Bluesim can give you a significant speedup

3.37x126.437.45Mesa

3.13x89.3628.55DES Core

14.2x116.88.24DIV3

1.04x16.3215.69IDCT

10.6x124.211.73FIFO

8.57x417.048.66Wallace
Multiplier

1.83x98.753.98Upsize
Converter

14.6x61.84.23FIR Filter

33.9x2838.37Life Game

7.18x39.75.53Wide GCD

Speedup

(factor) �

Fastest RTL

Simulator

(secs) �
Bluesim

(secs) �

Designs

L11 - 16Copyright © Bluespec Inc. 2005-2008

Bluespec Development Workstation

GUI-based “project management”

� Windows for project file listings, browsing packages, modules,
types, rule schedules, with hyperlinks to jump between
different views

Hyperlinked to standard text editors (emacs, gvim)�

Single-click compile, link, execute

Supports standard Verilog simulators (Modelsim, VCS,
NCSim, iverilog, cver, ...) �

Hyperlinked to standard waveform viewers (Novas,
Modelsim)�

More in Lecture 15.

Figure 2.8: Bluespec Simulation Speed Comparison [6]

designers to verify and display the generated BSV design waveform in ModelSim.

Although the absence of the file conversion feature is minor, it could affect the mass

adoption of Bluespec for non-circuit designers.

In summary, BSV inherits its powerful abstraction features from advanced pro-

gramming languages and offers rich user-defined polymorphic types and overloading,

strong static type-checking, first class parameterization and higher-order program-

ming, recursion and object-oriented (transactional) interfaces.

2.3.2 Xilinx System Generator

Xilinx System Generator (SysGen) for DSP is a system-level modeling tool which of-

fers libraries, containing logic blocksets which are bit-true and cycle-accurate models,

and is offered as a plug-in into MATLAB Simulink tool. With over 90 DSP building

blocks are provided in the Xilinx DSP blockset for Simulink, these blocks leverage

the Xilinx IP core generators to deliver optimized results for the target FPGA de-

vice. All of the downstream FPGA implementation steps, including synthesis and

place and route, are automatically performed and an FPGA programming file is

generated in the end for downloading into the FPGA platform.

Other features of SysGen includes System Resource Estimation to take full advan-

tage of the FPGA resources, Hardware Co-Simulation and accelerated simulation

Nanyang Technological University Singapore

2.3. SOFTWARE LINEAR SYSTEM SOLVERS 25

through hardware–in–the–loop co-simulation, providing many orders of simulation

performance increase. SysGen can also function as a system integration platform for

the design of DSP FPGAs that allows the RTL, Simulink, MATLAB and C/C++

components of a DSP system to come together in a single simulation and imple-

mentation environment. As a result, error-free designs can be quickly prototyped in

MATLAB environment and researchers only need focus on functional verification of

their hardware architecture design.

In this thesis, the proposed SA hardware architecture is data-flow based and

SysGen is the suitable graphical programming environment to help us achieve our

research goals.

Nanyang Technological University Singapore

Chapter 3

Literature Review

In recent years, the increased proliferation of low-cost multi-processor systems has

garnered growing interest from researchers wishing to utilize high performance com-

puting platforms for high bandwidth control applications, such as ships, aerospace,

robotics and automotive [44]. One popular approach is to offload high compu-

tational burdens onto reconfigurable hardware accelerator platforms such as Field

Programmable Gate Arrays (FPGAs). When compared with custom application-

specific integrated circuit (ASIC) designs, FPGAs are a preferred platform choice

as they offer high design flexibility, shorter Time-To-Market (TTM) design cycles

with low upfront non-recurring expenses (NRE). When compared with other popu-

lar high performance computing platforms, [45] has dispelled the common doubt of

FPGA not being up to the task for handling real-time MPC.

In this chapter, the objective is to review the various approaches to realizing fast

linear solvers for general scientific applications on FPGAs. At the same time, we

will also review and present the various approaches to realizing fast linear solvers

for MPC applications across various computing platforms. Finally, the findings are

summarized and the proposed research contribution is briefly mentioned.

Nanyang Technological University Singapore

28 3.1. LINEAR SOLVER

3.1 Linear Solver

3.1.1 Algorithm Mapping using High-Level tools for FPGA

The concept of matrix decomposition, using FPGA technology, for the purpose of

hardware acceleration or application-specific applications is still an active research

area with researchers [46–50] proposing the use of high-level methods to map the LU

Decomposition algorithm onto FPGA architecture. Meanwhile the majority of re-

searchers looked into application-specific architectures to accelerate the LU Decom-

position techniques on FPGA. For example, [46] proposed the FPGA Regular Array

Description language (FRADL) for automatic mapping while [47] demonstrated the

use of Fortran to construct non-pivoted LU Decomposition. [48,49] proposed design

methodologies, such as bijective space-time transformation, to enable mapping of LU

decomposition into linear systolic arrays with no reported implementations. [50,51]

proposed the use of their tool for automatic architecture generation and optimiza-

tion. They used their proposed tool to implement a variety of matrix inversion

solvers using Cholesky, QR, LU. They implemented their design on a Xilinx Virtex-

4 XC4VSX35 FPGA for a 4 x 4 matrix using a 20-bits fixed-point precision and

achieved a design operating frequency of 166MHz with a linear solver performance

of approximately 0.35 million linear systems per second. In addition, [34] imple-

mented their QR Decomposition-based Recursive Least Squares (QRD-RLS) design

on a Xilinx Virtex-4 XC4VLX200 FPGA using floating point precision and reported

a design operating frequency of 115MHz with a linear solver performance of 0.15

million linear systems per second.

3.1.2 LU Decomposition on FPGA

Mathematical pivoting is used in numerical algorithms, such as Gaussian elimination

and LU Decomposition, to ensure numerical stability to the final result obtained. To

do so, tracking of the sorted rows and columns in a matrix is required and moving

Nanyang Technological University Singapore

3.1. LINEAR SOLVER 29

of elements, within the matrix, adds performance overhead to the algorithm. As a

result, the author noted that majority of the research efforts were focused on LU

decomposition without pivoting until 2009. In this section, a brief literature review

of LU Decomposition implementation variants, with and without pivoting, will be

presented.

For implementations of LU Decomposition without pivoting, numerical stability

for simpler design and better performance results is expected. A block LU decom-

position concept was initially conceptualized and proposed by Prasanna [52]. Their

design was implemented using 16-bit precision, on a Virtex 2 FPGA, and reported

faster performance when benchmarked against similar implementations on a Texas

Instruments (TI) DSP and Handel-C based Celoxica DK1. Prasanna’s work was

taken up by other researchers with proposed approaches for enhancing numerical

accuracy, encouraging the use of high-level CAD and IP design tools for solving large

matrix decomposition problems. For example, the largest LU matrix decomposition

design size was 1024 x 1024 [53]. The design in [53] expands Prasanna’s block LU

decomposition numerical arithmetic to handle floating-point numerical calculations

and is scalable for single large and multiple FPGAs. The result is a design which

claims to outperform Prasanna’s work and tuned software implementations including

the ATLAS [54] and MKL [55] libraries on workstations by hiding the memory access

latency behind the arithmetic computations. Similarly, [56] adapts Prasanna’s block

LU decomposition technique to achieve vector-multiplication blocks but no design

synthesis results were reported. [57] and [58] proposed the extensive use of Xilinx’s

PlanAhead tool for efficient mapping of Prasanna’s work onto FPGA. Design syn-

thesis reports a sustained 8.5GFlops/s with 88.82% efficiency on XC5LX330T with

reported operating frequency of 133MHz for solving a 16, 384 x 16, 384 matrix. [59]

adapts Prasanna’s work to solve linear systems of any size up to the capacity of

off-chip system memory while numerical accuracy is handled by Altera’s MegaCore

IP function. Their proposed design claims to allow configuration of the number of

processing elements in the design and benchmarked results shows their architecture

Nanyang Technological University Singapore

30 3.1. LINEAR SOLVER

can outperform a single processor by 2.2x and energy dissipated per computation

factor is 5 times less. [60] proposed an implementation of LU decomposition using

wavefront array with no implementation details.

[61] is the first to introduce a fine-grained pipelined LU decomposition with piv-

oting and exploits fine-grained pipeline parallelism to enable higher performance. A

maximum of 19 PEs could be implemented on an Altera Stratix II EP2S130F1020C5

on a customized board and solved an 800 x 800 matrix in 149.13ms (6.71 linear

systems per second). When compared to single Pentium 4 processor under the LIN-

PACK [62] benchmark, a speedup of up to 6.14x and operating frequency of 96MHz

were observed. On the other hand, three other independent research teams have

proposed and demonstrated the use of unified processor architecture to perform

various matrix decompositions while performance varies according to the number of

PEs. In this context, the PE described is a hardware design component that per-

forms custom data processing but does not exhibit the characteristics of a SA. [63]

appear to be the first effort proposing an array to solve linear systems using LU

decomposition with modified row-based pivoting strategy. The paper claims to be

able to compute the inverse of an NxN square matrix in (5N − 2) steps and 2N

steps when multiple matrix inverses are performed. They claim their architecture

requires just
(
Np+

(
N(N+1)

2

))
PE arrays. Architecture feasibility was simulated in

an Occam 2 system with no reports on hardware utilization. In [64], a linear array

column-first tiled approach for LU and QR decomposition was proposed where data

is loaded from off-chip memory, used for storing of matrix values. Their proposed

design has an estimated sustained performance of approximately 9.8GFlops/s for

LU decomposition with 200MHz operating frequency on XC5VLX330T FPGA. The

same PE could be used to calculate QR decomposition with sustained performance

of approximately 11GFlops/s for large matrices of up to 9000 elements exhibiting

tall and thin characteristic. Similarly, [65] reported implementations of up to 4096

x 4096 and a maximum of 16 LU PEs can be synthesized on XC5VLX330T FPGA

with 180MHz operating frequency using floating point.

Nanyang Technological University Singapore

3.1. LINEAR SOLVER 31

3.1.3 Systolic Array implementations of LU Decomposition

on FPGA

Gentleman and Kung first introduced the concept of Systolic Array (SA) to achieve

data parallelism in [32] but it was clear that global communication would be an

issue for large VLSI array designs. Mathematical pivoting is traditionally used to

ensure an algorithm’s numerical stability but Gentleman established that mathe-

matical pivoting was more for storage minimization rather than global communica-

tion. This important observation led [32] to propose two triangularization concepts,

triangularization with neighbor pivoting and orthogonal triangularization, with an

aim of minimizing global communication. For the reader’s reference, the concept

of triangularization is to reduce matrix problems to solve for a system of linear

equations and is only applicable for direct methods, such as LU Decomposition.

Algorithms performing triangularization step incurs a computational complexity of

O (N3) for general NxN matrix problem. The SA approach is known to reduce such

computational complexity to O (N).

Triangularization with neighbor pivoting was designed to avoid bottlenecking

system performance due to global communication of pivot selection, required in

Gaussian elimination algorithm. On the other hand, orthogonal triangularization

was proposed for QR decomposition by Givens rotation. In the following years,

different approaches using SAs for applications varying from simplifying matrix-

vector/matrix-matrix arithmetic, surface fitting algorithms and matrix inversion

architectures were proposed while others focused on exploiting the inherent paral-

lelism in the LU decomposition algorithm.

The general research direction of some researchers were related to proposing an

appropriate SA architecture to decompose a reasonably large matrix problem, with

reasonable numerical accuracy, in the fastest time possible whilst requiring minimal

FPGA hardware resources. For example, [66] proposed a hybrid systolic array which

integrates a linear array with a 2D array. [67] introduced the concept of semi-systolic

Nanyang Technological University Singapore

32 3.2. LINEAR SOLVERS FOR MPC

array and their largest design is 512 x 512 matrix with reported execution time of

approximately 50ms (20 linear systems per second). [68] proposed a bi-dimensional

linear systolic array which is non-modular and the PEs in their design are problem-

size dependent. Their design performance is 2N (p+ 1) per unit time and has 50%

efficiency. An LU decomposition SA with bounded broadcast was proposed by [69]

and their architecture requires N2

2
PEs. Each PE has 2 MPY-SUB units active on

alternate cycles and claims speedup and efficiency of kN2

(6k+3)
and 2k

(6k+3)
respectively.

Note that only boundary processors have special division operators. A systematic

method for mapping LU decomposition of a matrix onto linear systolic arrays was

proposed by [49] using the bijective Space-Time transformation method but no

hardware synthesis results were presented.

3.2 Linear Solvers for MPC

[27] is the only work, to the author’s knowledge, that performs a comparison study

of linear solvers for MPC applications and they used the Gauss-Jordan elimination

technique to solve for system of linear equations. [19] evaluated the computation

performance, complexity and resource trade–offs between the use of the Interior

Point Method (IPM) and Active Set Method (ASM) for FPGA implementations. [19]

reports that IPM scales better for large problems while ASM is better suited for

small problems and a clear definition of large and small problems is not explicitly

mentioned.

The objective of this section is to provide readers an overview on various ap-

proaches to realize fast MPC Linear Solvers on embedded system platforms. Hence,

a literature review is presented and the section is divided into FPGA-based Lin-

ear Solver and General Processor-based Linear Solver implementations for MPC

applications.

Nanyang Technological University Singapore

3.2. LINEAR SOLVERS FOR MPC 33

3.2.1 General Processor-based Linear Solver for MPC

Some researchers [70–73] have presented implementations of MPC on PLCs able to

solve 10 linear systems per second for MPC problems with prediction and control

horizon of 10 and 3 respectively. Their work suggests that although PLCs may not

be well-suited for fast dynamic processes that require sampling frequencies or linear

solver speed of >10Hz, MPC can still be implemented in PLCs for static or slow

processes.

[74–76] proposed the use of a Microcontroller, as the embedded computing plat-

form, and their key assumption is low power consumption being a priority require-

ment for embedded MPC. No effort was mentioned or demonstrated on how to

exploit the low-power modes on the respective Microcontroller to achieve a low–

power embedded implementation of MPC. A 32–bit fixed-point implementation of

Fast Gradient Method (FGM) targeting an ARM7 processor, with 48MHz clock fre-

quency, was the fastest reported microcontroller implementation [76]. Their linear

solver is able to solve 250 linear systems per second for a horizon length of N = 20

(or 20 x 20).

Recently, GPUs have been exploited for scientific processing applications through

the use of high-level software tools, such as Compute Unified Device Architecture

(CUDA) [77] and Open Computing Language (OpenCL) [78], with C-like program-

ming syntax and compiler. GPUs boast a many core architecture with high memory

bandwidth, making them well suited to address problems that can be expressed as

data-parallel computation [79]. [79] appears to be the first work attempting to inves-

tigate the feasibility of employing GPUs as hardware accelerators for solving typical

QP problems using Interior Point Method (IPM). A comparison of the data-parallel

and problem-parallel approaches on GPU was also investigated for varying sizes of

problems. The study revealed that the performance benefits of GPUs become ap-

parent when several QP problems are solved in parallel on one GPU and each QP

problem size has >100 decision variables. With regards to the GPU performance,

Nanyang Technological University Singapore

34 3.2. LINEAR SOLVERS FOR MPC

the findings by [79] agree with [45]’s statement that theoretical peak performance

of GPUs can only be achieved given sufficient parallelism in the application.

3.2.2 FPGA-based Linear solver Accelerators for MPC

FPGAs were notably the default platform choice due to their re-configurable nature,

allowing researchers a platform to understand the resource and performance trade-

offs for their proposed custom algorithms and hardware architectures. A survey on

the effort in implementation of MPC on FPGAs has been conducted and is broadly

classified into 4 major categories namely Algorithm Optimizations, Comparative

Study of Linear Solvers for Parallel Architectures, Rapid Prototyping of MPC and

Hardware Architectures.

A significant MPC algorithm optimization technique was introduced in [45] uti-

lizing the very efficient and robust Conjugate Gradient Method (CGM) with deep–

pipelining [80] to design a fast Quadratic Programming (QP) Solver. The imple-

mentation of IEEE single precision floating point CGM-based QP Solver reported a

throughput of 35GFLOPS on a high performance XC5VLX330T FPGA, for matrix

size N = 58 [81]. [82] pointed out the weakness of CGM and examines a more general

iterative solver method using the MINRES algorithm. The circuit achieves 95% ef-

ficiency in practice with a sustained performance of 53GFLOPs on a XC5VLX330T

FPGA and the reported performance is superior to any previous work. The al-

ready efficient MINRES performance was further improved by the pre–conditioned

MINRES (PMINRES) method in [83].

[45] surveys the recent developments in parallel computer architectures to high-

light the potential of such architectures for high-speed numerical computation, as

required for on-line optimization of MPC. A comparative study of the popular

Graphics Processor Units (GPUs), FPGAs and AMD Opteron 1220 Microproces-

sor [8] showed FPGAs being up to the task at handling MPC applications with fast

dynamics. [45] has also pointed out that effort is still required to reformulate the

Nanyang Technological University Singapore

3.2. LINEAR SOLVERS FOR MPC 35

MPC problems further in order to obtain a trade-off between the amount of the

parallelism an application requires and the ability to keep the deeply pipelined com-

putational units operating at high efficiency. In addition, [45] have demonstrated

and pointed out that there is no one numerical representation technique that can

run efficiently on all MPC applications. To get the most out of an architecture, [45]

encourages control theorists to work with digital electronics designers and computer

architects to realize a new and exciting area of inter-disciplinary research.

[84] focused more on a development of a GUI Toolbox and rapid prototyping

environment for deployment to various embedded hardware platforms. The authors

of [84] claim their GUI toolbox features a modification of [28]’s QP Solver and report

a 20% performance improvement over a carefully hand-coded implementation of an

optimized QP Solver. In addition, [85] reports on their MPC implementation on

various embedded hardware platforms ranging from microcontrollers, DSP chips and

FPGAs, claiming that they were able to parallelize the MPC’s arithmetic operation

by using 3 floating point units (FPU) to perform matrix and vector operations on

a Xilinx Spartan3 XC3S500E FPGA. Their iterative solver was coded in the C

language and the FPGA-based solver performance is around 1000 linear systems for

a problem size N = 10.

[86] adopted a more general approach to investigate hardware designs to take

advantage of symmetrical and banded matrix structure, as well as methods to op-

timize the RAM use while increasing performance for larger order matrices [86]. A

parameterizable circuit was developed for implementation of matrix-vector multipli-

cations into existing hardware implementations of iterative methods. Results have

demonstrated their proposed banded symmetric matrix using the MINRES solver

with a traditional dot-product circuit provided the majority of the performance.

The scalability and performance of the circuit could be improved through simple

hardware changes to the circuit. While a traditional dot–product approach is unable

to scale beyond a matrix order of 200, the proposed method was able to scale an

order of slightly more than 500 matrix elements for implementations on a Xilinx

Nanyang Technological University Singapore

36 3.2. LINEAR SOLVERS FOR MPC

Virtex-5 LX330T FPGA.

Another approach is direct implementation of the MPC controller on FPGA. [44]

focused on verifying the applicability of the “MPC on a chip′′ idea in [87], [19]

and [44]. [87] and [44] utilized the Handel–C high-level environment to synthesize a

sequentially constrained MPC algorithm to a Celoxica RC200 and RC10 board re-

spectively. Optimization, scheduling and parallelizing of the algorithm’s operation,

using IEEE single precision floating arithmetic, are left to Handel–C. [19] attempts

to parallelize the previous work through ad–hoc programming in Handel–C and re-

ported a 2x improvement in computational performance. [45] contributed similar

effort. [88] compared the trade–offs between iteration count, computational preci-

sion, hardware utilization and execution time in accelerating the QP Solver for many

small linear systems. Empirical results indicate that the 21–bit mantissa performs

better than both double and single precision standard, with little to no penalty in

the worst case. An average speed–up of 26x was reported for 10 x 10 problem.

The work in [89] utilized the ASM method and decoupled the already efficient

Givens rotations for square root and division operations to only require multiplica-

tion and addition operations. Through careful selection of rotation points, Givens

rotation operation can be computed in parallel. The end system design was de-

scribed in VHDL and synthesized on an Altera Stratix EPSL150F115C2 FPGA

with target frequency of 70MHz while occupying a total die area of approximately

5mm2. It is worth noting that a comparison of tuned bit-widths found that a

7–bit mantissa for solving QP problem and 15–bit mantissa for observer calcula-

tion yielded the best performance and precision tradeoff. Similar results were also

observed in [90] with a focus on non-linear MPC and the tradeoffs between data

word size and computation speed versus numerical precision and effectiveness of

the computed control action. Unlike [89], [90] utilized the Householder Reflections

method to exploit inner product calculation and outer product term of applying the

Householder reflection method to the Jacobian Matrix. The simulated results of this

approach found that acceptable results could be obtained with a mantissa of as low

Nanyang Technological University Singapore

3.2. LINEAR SOLVERS FOR MPC 37

as 12–bits. [91] applies the experience learnt from [90] and [89] and applies the Con-

jugate Gradient Method (CGM) for solving the QP using the interior-point method

for ρ = H−1g, the most computationally demanding step. A custom floating point

format, 5 bit exponent and 15bit mantissa, demonstrated stable performance with

the ability to solve QP problems in <30µs, despite the original 200µs limit. The de-

sign was described in VHDL and synthesized on an Altera Stratix EPSL150F115C2

FPGA with no mention of the design operating frequency.

The work in [92] and [93] utilizes the Conjugate Gradient method for matrix

structure and the MINRES method to solve for linear systems. The papers propose

a 2-stage hardware architecture, with the MINRES method as a dedicated parallel

linear solver hardware resource in stage 2 of the architecture. In summary, the result

was a 5x improvement in latency and a 40x improvement in throughout for large

problems. [26] is an extension of the work in [92] and [93]. By entering the design

in VHDL with deep pipelining, higher clock frequency was achieved over previous

implementations and was based on IPM. The efficiency of the implementation re-

sulted in performance figures that are several orders of magnitude larger than the

ones considered in previous implementations. Similar work was also reported in [38]

where a parameterizable FPGA architecture for linear MPC was described and their

main source of acceleration was achieved through a parallel linear solver block. In

addition, a new MPC formulation was presented to exploit the high throughput of

their proposed FPGA architecture.

[94–96] employed the concept of coupling a co-processor to a microprocessor. [94,

95] hardware design involved a custom 16–bit Logarithmic Number System (LNS) for

fast co-processor computation. The Newton’s iteration method was adopted for their

linear solver and hardware design was described in Verilog and targeted a Virtex–IV

ML401 board. In addition, [94] reported their design size was 68% smaller than the

design in [87] with a performance trade-off of 12%, which translates to lower power

consumption. [96]’s work involves attaching a co–processor to a Xilinx 32–bit soft-

core microprocessor (Microblaze). The IPM method was developed in C language

Nanyang Technological University Singapore

38 3.3. SUMMARY

using IEEE single precision floating arithmetic and was synthesized onto a Virtex–

II Pro FPGA. The result was a speed-up of 2.2x performance over a standalone

implementation. [96] also revealed the speed-up was only achievable when the for-

loop coding style had a tall and thin matrix A while the loop–unrolling style had a

short and fat matrix A. Though all results suggest faster hardware computations,

bus arbitration latency is a potential area for future research.

3.3 Summary

A summary of the previous work presented is shown in Table 3.1. From Table 3.1,

highly optimized implementations of MPC linear solvers on FPGAs can be achieved

using various approaches.

One such approach, which is typically reserved for experienced hardware design re-

searchers, involves an embedded controller implementation using low-level language

such as Hardware Descriptive Language (HDL). [26,92,98] proposed the adoption of

primal dual interior-point method for fast computation of quadratic programming

optimization problems. In order to exploit FPGA’s massive parallelism, the authors

resorted to fine-grained programming using HDL. In addition, [26, 45, 86, 92, 93, 98]

investigated methods to take advantage of the structure of MPC problems, zoomed

in to the issues at the memory access level and employs deep pipelining technique to

achieve high performance. [90,94,99] resorted to manual mapping of their embedded

controller design and much attention was paid to optimize physical design layout at

the hardware level for the purpose of achieving application-specific hardware design

that has fast performance, requires little hardware resource and low power consump-

tion. On the other hand, [89, 91, 97] proposed the adoption of primal logarithmic-

barrier interior-point method for solving the optimization problem. In this case,

the authors paid special attention to the customization of floating-point number

representation and various arithmetic operations to satisfy the control requirements

for their flexible beam application. But their work is not as fine-grained as the

Nanyang Technological University Singapore

3.3. SUMMARY 39

T
a
b
le

3
.1
:

S
u

m
m

ar
y

of
p

re
v
io

u
s

w
or

k

R
el

at
ed

W
o
rk

P
la

tf
o
rm

D
es

ig
n

F
re

q
u

en
cy

L
in

ea
r

S
ol

ve
r

S
p

ee
d

R
ep

or
te

d
L

in
ea

rP
ro

gr
am

m
in

g
N

u
m

er
ic

al
N

u
m

er
ic

al
D

ev
ic

e
(M

H
z)

(1
06

ls
p

s)
S

ol
ve

r
S
iz

e
L

an
gu

ag
e

P
re

ci
si

on
M

et
h

o
d

GeneralLinearSolver

[5
0,

5
1
]

X
C

4
V

S
X

35
T

25
3

1.
8

4
V

er
il

og
F

X
P

(2
0,

0)
L

U
[3

4]
X

C
4V

L
X

2
00

T
11

5
0.

13
4

S
y
sG

en
F

L
P

(6
,1

4)
Q

R
D

-R
L

S
[5

7,
5
8
]

X
C

5V
L

X
33

0
T

13
3

8,
50

0
16

,3
84

V
er

il
og

D
ou

b
le

F
L

P
B

lo
ck

-L
U

[5
2]

X
C

2V
15

0
0
T

12
0

N
R

1,
02

4
V

H
D

L
N

R
B

lo
ck

L
U

[5
3]

V
ir

te
x

5
25

0
7,

85
0

1,
02

4
V

er
il

og
S

in
gl

e
F

L
P

B
lo

ck
L

U
[5

9]
E

P
3
S

L
34

0
F

1
76

0
C

3
20

0
40

,0
00

47
,0

00
C

+
V

er
il

og
S

in
gl

e
F

L
P

L
U

[6
1]

E
P

2
S

1
3
0F

10
2
0C

5
96

2,
62

0
80

0
V

er
il

og
S

in
gl

e
F

L
P

L
IN

P
A

C
K

L
U

[6
4]

X
C

5V
L

X
3
30

T
20

0
9,

80
0

N
R

V
H

D
L

D
ou

b
le

F
L

P
T

il
ed

L
U

[6
5]

X
C

5V
L

X
3
30

T
18

0
N

R
4,

09
6

V
er

il
og

S
in

gl
e

F
L

P
F

as
t

G
iv

en
s

R
ot

at
io

n
(F

G
R

)
[6

7]
X

C
2V

5
00

12
9.

53
N

R
51

2
V

H
D

L
N

R
S

tr
as

se
n

MPCLinearSolver

[7
0
–7

3
]

A
ll

en
B

ra
d

le
y

N
R

10
x
10
−
6

10
C

N
R

G
au

ss
ia

n
R

o
ck

w
el

l
P

L
C

E
li

m
in

at
io

n
(G

E
)

[7
5]

S
T

M
32

24
∼

4
.3

x
10
−
6

4
C

S
in

gl
e

F
L

P
G

au
ss

-J
or

d
an

[7
4,

76
]

A
R

M
7

48
2.

5x
10
−
4

20
C

F
X

P
(1

5,
16

)
F

as
t

G
ra

d
ie

n
t

[7
9]

N
V

ID
IA

T
E

S
L

A
S

1
0
70

1,
33

0
N

R
20

C
S

in
gl

e
F

L
P

G
au

ss
-J

or
d

an
[8

1]
X

C
5V

L
X

3
30

T
28

7
35

,0
00

58
V

er
il

og
S

in
gl

e
F

L
P

C
on

ju
ga

te
G

ra
d

ie
n
t

(C
G

)
[8

2
]

X
C

5
V

L
X

3
3
0T

25
0

53
,0

00
14

5
V

er
il

og
S

in
gl

e
F

L
P

M
IN

R
E

S
[8

5
]

X
C

3
S

5
0
0E

50
10
−
3

10
C

+
H

D
L

S
in

gl
e

F
L

P
G

au
ss

-J
or

d
an

[1
9
,4

4]
X

C
2V

30
0
0

25
8
.1

x
10
−
3

10
H

an
d

el
-C

,
S

in
gl

e
F

L
P

G
au

ss
M

A
T

L
A

B
E

li
m

in
at

io
n

[8
9
,9

1]
E

P
S

L
1
50

F
1
1
5C

2
70

3.
3x

10
−
2

12
V

H
D

L
C

u
st

om
F

L
P

C
G

+
G

R
[9

7
]

E
P

S
L

1
5
0F

11
5
C

2
70

7x
10
−
2

16
V

H
D

L
F

L
P

(8
,9

)
C

G
[9

6
]

X
C

2V
1
50

0
20

C
+

V
H

D
L

S
in

gl
e

F
L

P
G

E
[2

6,
92

,9
3]

X
C

V
S

X
47

5
T

15
0

0.
71

15
V

H
D

L
S

in
gl

e
F

L
P

C
G

+
M

IN
R

E
S

[9
4
,9

5]
X

C
4V

L
X

25
25

1
.1

3x
10
−
3

10
V

er
il

og
16

-b
it

L
N

S
N

R

Nanyang Technological University Singapore

40 3.3. SUMMARY

former authors. At a coarse-grained level, [44, 96] reported attempts to parallelize

the MPC algorithm through ad-hoc and systematic programming using high-level

software tools, such as Handel-C and Xilinx EDK. Their works reported up to 2x

computational performance improvement over previously reported implementations.

Based on the information presented, the common observed disadvantage in this ap-

proach is design scalability and parameterization where a digital hardware design

expert requires to be in the loop for any change in requirements, such as problem

size and numerical word length.

Another approach is to consider the use of various numerical methods, such

as Gaussian-Elimination, Givens rotation, QR Decomposition, Conjugate Gradi-

ent Method (CGM). For example, [86] examined the use MINRES algorithm as an

iterative solver for cases where the A matrix is symmetric and not necessarily posi-

tive definite. CGM is employed while QR decomposition and Givens rotation were

used to calculate the Lanczos vectors [86,93]. In addition, the parallel linear solver

in [92] is built upon the former’s work but assumes A matrix is banded, symmet-

ric but indefinite, with both positive and negative eigenvalues. [89, 91, 97] proposed

CGM for use in their primal logarithmic-barrier interior point method to solve the

optimization problem. Lastly, [96] employs Gaussian Elimination method and illus-

trated the performance difference readers can exploit for special matrix structures,

tall-thin and short-fat A matrix. Based on the information presented, majority of

the mentioned approaches exploit special properties of the A matrix in order to

achieve fast MPC with deliberate attempts to avoid the use of division operation.

From the attempts described, a scalable hardware design using high-level tools to

map LU decomposition SA architecture onto FPGAs remains an open research issue.

To reduce the entry barrier and development time for implementing SA on FPGA,

the high-level tool approach is deemed highly desirable by end-users. Although [50]

developed their customized S&E tool for automatic architecture generation and opti-

mization, end users are still expected to possess specialized HDL knowledge in order

to design hardware with their tool. A benchmark of their high-level tool’s generated

Nanyang Technological University Singapore

3.3. SUMMARY 41

output design with commercial software, such as Altera and Xilinx, are also absent.

From literature, the use of SysGen for automatic architecture generation of param-

eterizable SA for LU decomposition is largely unexploited. In addition, no effort to

implement mathematical pivoting more efficiently in hardware was observed.

In this thesis, the use of high-level software tools to overcome this expertise gap

is proposed to assist non–circuit designers in rapidly prototyping a scalable and

parameterizable linear solver which can be applied to other scientific applications.

Secondly, the systolic array approach is proposed to enable efficient mapping of the

linear solver onto FPGA hardware and computational complexity (for matrix de-

composition step) is reduced from O (N3) to O (N) due to parallelism. In addition,

structural regularity of the systolic array architecture will provide researchers the

ability to rapidly prototype a linear solver for varying sizes of N . Thirdly, a pa-

rameterizable triangular SA architecture approach to design, implement and validate

using SysGen is proposed. Hence, non–circuit designers only need work at the archi-

tecture level with a design that has user configurable numerical word length. More

importantly, a hardware design expert is not required to be in the loop. Fourthly,

an initial prototype architecture is designed to perform LU decomposition for 3

x 3 problem before design scaling up to larger problem sizes for proof-of-concept

purposes using SysGen.

The key research contribution is the exploitation of architecture parallelism, idle

sequential cycles and omission of redundant arithmetic operations to achieve a novel

systolic array hardware design which requires up to 50% less hardware resources

when compared to similar work [51, 63]. Unlike most of the work reported, our

proposed design architecture is able to achieve fast linear solver speeds and data

throughput without side stepping the computationally expensive division operations.

For the reader’s reference, approximately 7 thousand linear systems was the fastest

reported linear solver speed achieved in MPC applications [97] given a problem size

of N = 16 with dense matrix structure.

Nanyang Technological University Singapore

Chapter 4

Case Study: High-Level Software

Tool Selection

One of the objectives for carrying out the proposed research work is to understand

and examine the hardware design decision high–level software tools make, in par-

ticular Bluespec and Xilinx SysGen. In this chapter, the Bluespec design rules will

be exploited to generate a scalable yet optimized hardware architecture design.

From Algorithm 1, step 3 of the QP algorithm is computationally intensive where

performance is dependent on the speed of the linear solver, essentially performance

of the matrix–vector multiplication operation. If the hardware architecture is fixed,

performance of the optimization solver will be affected when the matrices, to be

multiplied, are of different sizes. Hence, a scalable linear solver with predictable

performance should be investigated. Most hardware design optimization is assumed

to be handled by the high–level software tool compiler, Bluespec and Xilinx SysGen

respectively. Thereafter, the generated HDL design can be synthesized onto FPGA

using synthesis tools such as Xilinx Synthesis Tool (XST) or Altera Synthesis Tool

(AST). The results and design experience gained from both experiments, especially

Bluespec’s polymorphic feature, enable us to make better–informed design choices

when describing the scalable optimization solver in high-level software tools. The

Nanyang Technological University Singapore

44

option to re–use some of the existing modules/components, developed from both ex-

periments, will help to decrease the development time needed for future researchers

to implement the scalable optimization solvers.

This experiment was setup to compare and contrast the resource and performance

trade-off between the Bluespec and Xilinx Sysgen IP Block implementation. The

various Finite Impulse Response (FIR) Xilinx IP cores used in the design are:

1. Xilinx N–tap FIR Compiler

2. Xilinx MAC FIR Filter

(a) Xilinx N–tap MAC FIR Filter

(b) Xilinx 2N–tap MAC FIR Filter

The FIR filter design consists of a low-pass filter with coefficient weight of 0.8.

Corresponding FIR filter coefficients were generated using MATLAB up to 512th

order. The filter coefficients are in single precision format and were normalized

up to 8 decimal places. All datapath size and data formats were standardized to

fixed-point precision of Q(16,16), 16 integer and 16 binary points. All design files

were synthesized for Virtex-6 XC6VLX315T FPGA hardware with speed grade “–3”

selected and the balanced synthesis strategy was adopted for all synthesis results.

In the experiments conducted, the generated FIR filter design is put through XST

with the purpose of understanding the advantages and disadvantages of Bluespec

over traditional methods of hardware design. Likewise, the experimental results

from the high-level tool implementation will contrast the performance and resource

trade-off. The results obtained help us gain insights in creating an appropriate

methodology, enabling non–circuit designers to effectively map their control algo-

rithms, MPC in this case, onto any FPGAs. The mapping feature will be manifested

in the form of an assessment process to determine and recommend the appropriate

QP solver, based on the given control problem’s size and constraints. The design

experience gained from the investigation of Bluespecs polymorphism feature can be

Nanyang Technological University Singapore

4.1. DIRECT-FORM FIR FILTER - BLUESPEC 45

applied to the design of polymorphic QP solver(s) that is scalable and boasts rapid

implementation.

4.1 Direct-form FIR Filter - Bluespec

In this section, a polymorphic direct–form FIR filter hardware design will be imple-

mented as an example to evaluate the ease of defining parallelism using both the

manual definition and Bluespec′s static elaboration method for various orders of an

FIR filter. The polymorphic feature is achieved using Bluespec′s static elaboration

method which simplifies the task of scheduling and parallelizing an N–tap FIR filter

design to be as simple as modifying the values of N when instantiating. Unlike

Bluespec, the traditional HDL approach would instead use “genvar” statements to

generate structures and is coupled with manual effort to pipeline and debug for func-

tional correctness and to identify race conditions – a time-consuming process. For

benchmarking purposes, the hardware resource utilization and performance timing

of a Bluespec described polymorphic direct–form FIR filter being compared against

a similar design using MATLAB and is reported in the results section.

* * * * *

+

R0 R1 R2 R3

C0 C1 C2 C3 C4

Figure 4.1: Example of a 4–tap FIR Filter

An FIR filter is a type of digital filter which operates on discrete-time signals and

its simple implementation enables it to be commonly used in Digital Signal Process-

ing (DSP) applications. The structure of a typical FIR filter is made up of simple

Nanyang Technological University Singapore

46 4.1. DIRECT-FORM FIR FILTER - BLUESPEC

component blocks such as multipliers, adders and delays, in the form of hardware

registers, to create the filter’s output. An illustration of a 4–tap FIR filter is shown

in Figure 3.7. The frequency at which the FIR filter attenuates is determined by

the FIR Filter’s constant coefficients while the quality of the filter’s response can

be modified by increasing the number of taps, for a specific frequency response. It

is straightforward to manually declare all the components for a small design system

but the tasks become challenging when the size and complexity of the system design

increases. When system performance constraints for a relatively large system are

not achieved, techniques such as pipelining and deep pipelining are employed and

further complicate the debugging process. This is where Bluespec′s powerful static

elaboration allows researchers/engineers to generate a range of different hardware

implementations from the same source code at no cost. Bluespec′s static elaboration

method is required for IP core creation, for use in the later experiments.

To illustrate the parameterization capabilities of Bluespec, the amount of effort

required for each method, manual declaration and static elaboration, will be quanti-

fied by the amount of time taken to modify the code in order to achieve the desired

design size. A brief walk through of the respective coding methods will be performed

for understanding. Lastly, the synthesis results for each method will be analyzed

and discussed in the subsequent sub-sections.

4.1.1 Bluespec Manual Declaration

Figure 4.2 illustrates a code excerpt of a combinational-pipelined 8–tap FIR Fil-

ter design, module name is “mkFIRFilter′′, described using BSV. Inclusion of ex-

ternal libraries and declaration files, such as filter coefficients, are easily achieved

using Bluespecs import function. The instantiation of the external modules into

the mkFIRFilter module is the same as type assignment descriptions when writing

traditional HDLs. The logical bulk of mkFIRFilter contains a description of FIFO

buffers, registers, accumulator register and other action assignment declarations.

Nanyang Technological University Singapore

4.1. DIRECT-FORM FIR FILTER - BLUESPEC 47

The modification effort required can be quantified as (3N + 1) for size N of the FIR

Filter – Manual declaration of N number of registers, N number of register assign-

ments and (N+1) register assignments in the accumulator. The manual approach

is prone to human–error and is only suitable for small problems of N in systems

with low or no complexity. The built–in BlueSim simulator was also instrumental

during the debugging process in identifying human errors such as incorrect register

assignments.

P:\bluespec_workspace\lab1\audio\fir\fir with non static elaboration\FIRFilter.bsv Thursday, December 12, 2013 8:38 AM

import FIFO::*;

import FixedPoint::*; // Part of Lab1 MIT - library from Bluespec Part 4.1-4.2

import AudioProcessorTypes::*;

import FilterCoefficients::*; // Part of Lab1 MIT - library from Bluespec Part 4.1-4.2

module mkFIRFilter (AudioProcessor);

FIFO#(Sample) infifo <- mkFIFO();

FIFO#(Sample) outfifo <- mkFIFO();

// 8 Registers will be Instantiated to implement the 2 mkFIFO modules Part 4.1-4.2

Reg#(Sample) r0 <- mkReg(0);

Reg#(Sample) r1 <- mkReg(0);

Reg#(Sample) r2 <- mkReg(0);

Reg#(Sample) r3 <- mkReg(0);

Reg#(Sample) r4 <- mkReg(0);

Reg#(Sample) r5 <- mkReg(0);

Reg#(Sample) r6 <- mkReg(0);

Reg#(Sample) r7 <- mkReg(0);

rule process (True);

Sample sample = infifo.first();

// Simplest way to declare N registers to use

r0 <= sample;

r1 <= r0;

r2 <= r1;

r3 <= r2;

r4 <= r3;

r5 <= r4;

r6 <= r5;

r7 <= r6;

// fromInt convert data from type Sample to type FixedPoint#(16,16) Part 4.1-4.2

FixedPoint#(16,16) accumulate =

c[0] * fromInt(sample)

+ c[1] * fromInt(r0)

+ c[2] * fromInt(r1)

+ c[3] * fromInt(r2)

+ c[4] * fromInt(r3)

+ c[5] * fromInt(r4)

+ c[6] * fromInt(r5)

+ c[7] * fromInt(r6)

+ c[8] * fromInt(r7);

// fxptGetInt convert FixedPoint#(16,16) back to Sample Part 4.1-4.2

Sample sample_out = fxptGetInt(accumulate);

outfifo.enq(sample_out); // Place sample on outgoing FIFO Part 4.1-4.2

infifo.deq; // Removes input sample from the input FIFO Part 4.1-4.2

-1-Figure 4.2: BSV Code for 8-tap FIR Filter using Manual Declaration

Although the process of manual declaration of an N–tap FIR filter was fairly

straightforward, the process of modifying and debugging existing code became cum-

bersome enough to restrict the manual implementation method to 64-taps. For

example, filter effort required for 64-tap FIR design is ∼ 192 minutes.

From Figure 4.3, the inefficient manual method illustrates that the exponential

Nanyang Technological University Singapore

48 4.1. DIRECT-FORM FIR FILTER - BLUESPEC

increase in resource consumed leads to a linear decrease in hardware performance –

For a 64–tap FIR filter design, the simulated performance was 22.1MHz. Despite the

less than stellar performance for a 64th order FIR filter, it is interesting to note that

the synthesis design required 187 DSP48E1 cores/slices, the highest value observed

across all experiments. A similar design using Bluespecs static elaboration method

required 106 DSP48E1 cores/slices. For increasing order of the filter, the DSP48E1

slices/cores almost increased linearly with the exception for the 32nd order FIR

Filter that saw a decrease from 57 to 25.

4.1.2 Bluespec Static Elaboration

The same FIR Filter BSV module was modified to be polymorphic and the first step

was to modify the mkFIRFilter module interface to accept argument inputs that

defines the filter size and the filter coefficients automatically, akin to modifying C

code type function to accept input arguments. Next, the corresponding values of

multipliers and registers, to be instantiated, are modified to correspond according

to the input argument variable, tnp1.

In this experiment, a pipelined multiplier is implemented to improve the overall

system throughput. The static elaboration method utilizes loop unrolling method

and is able to automatically derive the required numbers of pipelined multipliers

from the for loop statement, as shown in Figure 4.3. In contrast with the manual

method of declaring combinational multiplier, the intuitive Bluespec compiler au-

tomatically unrolls a vector of multipliers, for values of N, time–saving technique.

The same method was applied to the instantiation of registers required to hold the

filter coefficients and the accumulation operation results.

The nature of the pipelined multiplier necessitates the need to invoke Bluespec

Action operations – put data into the input buffer, in 1 clock cycle, and retrieve

the multiplier’s answer from the output buffer in another clock cycle; The multiplier

module is assumed to take 1 clock cycle for multiplication operation. Therefore, it

Nanyang Technological University Singapore

4.1. DIRECT-FORM FIR FILTER - BLUESPEC 49

C:\Users\shong6\Dropbox\Personal Backup\Thesis\Kevin\images\bsv8tapfirfilter(reconstruct in dec 2013).bsv Thursday, December 12, 2013 9:26 AM

import FIFO::*;

import FixedPoint::*; // Part of Lab1 MIT - library from Bluespec Part 4.1-4.2

import Vector::*; // Stupid MIT Tutorial did not mention about including the vector library

comment dtd 7-Dec

import AudioProcessorTypes::*;

import FilterCoefficients::*; // Part of Lab1 MIT - library from Bluespec Part 4.1-4.2

import Multiplier::*; // Part of Lab1 MIT - library from Bluespec Part 4.1-4.2

typedef 8 Data_len;

Integer data_len=valueof(Data_len);

typedef 9 Num_mpys;

Integer num_mpys=valueof(Num_mpys);

module mkFIRFilter(Vector#(tnp1, FixedPoint#(16,16)) coeffs, AudioProcessor ifc); // 21 Apr :

Soln for lab2 Problem 5

Integer numtaps=valueof(TSub#(tnp1,1)); //21 Apr : TSub performs subtraction of two numeric

types (i.e numtaps = 8)

Integer numpys=valueof(tnp1);

Vector#(tnp1, Multiplier) v_multiplier <- replicateM(mkMultiplier());

Vector#(tnp1, Reg#(Sample)) r <- replicateM(mkReg(0));

rule putdata (True);

Sample sample = infifo.first(); // Declared outside the rule on 03apr2012

infifo.deq; // Removes input sample from the input FIFO Part 4.1-4.2

// Static elaboration method to declare N registers for BlueSpec to figure out

for (Integer i = 0; i < numtaps; i = i + 1) begin

if (i == 0)

r[i] <= sample;

else

r[i+1] <= r[i];

end

for (Integer i = 0; i < num_mpys; i = i + 1) //9 MPYs

begin

if (i == 0)

v_multiplier[i].putOperands(coeffs[i], sample); // 21 Apr : Change c[i] to

coeffs[i] based on vectorsize tnp1

else

v_multiplier[i].putOperands(coeffs[i], r[i-1]); // 21 Apr : Change c[i] to

coeffs[i]

end

endrule

rule getdata (True); //(step < 'h8000);

Vector#(tnp1, FixedPoint#(16,16)) ans; // Declare a vector - works! 6Apr12

for (Integer i = 0; i < num_mpys; i = i + 1)

begin

ans[i] <- v_multiplier[i].getResult();

-1-

Figure 4.3: BSV Code for 8-tap FIR Filter using Static Elaboration

is only appropriate to split the main processing rule into 2 smaller rules, namely

“put data′′ and “get data′′. This highlights the advantage of Bluespec where the

splitting of rules enable the researcher/designer to concentrate on the main func-

tionalities of each rule and leave Bluespec to figure out and schedule the respective

logical blocks without user intervention. A case in point is the effort required by

the researcher/designer for this experiment. The designer only needs to specify the

values of N and Bluespec will intuitively figure out the resultant hardware design.

In the event of race conditions, Bluespec compiler will either try to resolve such con-

flicts or provide clues for user to zoom into the particular code to fix. The built–in

BlueSim simulation tool is also available as a debug console to help users to verify

the functional correctness.

Nanyang Technological University Singapore

50 4.2. DIRECT-FORM FIR FILTER - MATLAB XILINX SYSGEN

When this experiment was performed for values of N, the effort and time required

to modify existing code was no more than the time needed to change for values of

N. Such productivity enabled rapid implementation of FIR Filters up to 512–taps.

It was noted that the time taken for Bluespec Compiler to elaborate the design and

generate the corresponding Verilog output files was observed to take 15 minutes

for 128th order design and about 1 hour for 256–tap design. During the design

elaboration step for ≥128–taps, the compiler options had to be tweaked to override

the default safety limit of 200k steps in order for the required Verilog design files

to be generated. By extrapolating the previous steps required, a large buffer size

of 2 billion steps had been set to synthesize the 512–tap FIR Filter design. The

settings for the static elaboration steps will be investigated to resolve the need for

such defining such large step buffers and reduce the time needed to synthesize the

hardware design file as part of the future work.

4.2 Direct-form FIR Filter - MATLAB Xilinx Sys-

Gen

4.2.1 MATLAB FIR Compiler

Design of the FIR Filter was performed using MATLAB′s FDATool, which enables

the digital filter designer to specify the response-type, filter order, frequency spec-

ifications and the weights, as shown in Figure 4.4. In this experiment, a low-pass

direct-form FIR filter was selected with 0.8 as the weight coefficient, for correspond-

ing N–taps. The filter′s output was verified using Simulink′s Spectrum Scope block

upon software simulation.

To instantiate the design onto an FPGA, the Xilinx version of the Simulink FDA-

Tool must be included in the simulation and this is where elements of the software

and hardware co–design come into effect. The FPGA boundaries are denoted by

Nanyang Technological University Singapore

4.2. DIRECT-FORM FIR FILTER - MATLAB XILINX SYSGEN 51

Figure 4.4: MATLAB Simulink FDATool Filter Design Tool

the Xilinx “Gateway In” and “Gateway Out” blocks while the FIR Filter design

elements to be synthesized onto the FPGA are is illustrated in Figure 4.5. The

task of the “Gateway In” block is to convert a floating-point input to a fixed–point

format, in this case Q(16,16) format. The task for the “Gateway Out” block is to

convert the FPGAs output back to double precision floating point. In this experi-

ment, fixed-point Q(16,16) was chosen to enable a fair comparison with Bluespec’s

design implementation and the same FIR filter coefficient dataset, from Bluespec′s

example of an 8-tap FIR, with a range of between -0.8 to 0.8. To generate filter

coefficients for up to 512-tap, Simulink FDATool was used and the same data range

constraints, from -0.8 to 0.8, was specified to avoid the numerical underflow and

overflow issues for both BlueSpec and SysGen designs. An error rate comparison

was performed in MATLAB on both the SyGen and Bluespec results and the largest

error deviation was found to be 0.01643.

The “FIR Compiler” Simulink IP block was included to translate the FIR filter

design, specified in the Xilinx FDATool, for synthesis onto any FPGA platform. The

filter coefficients are generated and saved as a look–up–table onto the FPGA plat-

form’s on-board memory, reducing unnecessary time to compute the corresponding

Nanyang Technological University Singapore

52 4.2. DIRECT-FORM FIR FILTER - MATLAB XILINX SYSGEN

Figure 4.5: N-tap FIR Filter with Simulink FDATool Filter

filter coefficients online. For the purpose of a fair and accurate benchmark, the FIR

Filter design has been pipelined at both the input and output of the “FIR Compiler”

IP block. A capture register serves as a buffer to capture streaming data from the

“FIR Compiler” IP block before new data can be typecast to an appropriate for-

mat, for display in Simulink Spectrum Scope tool block. To ensure a fair comparison

with Bluespec generated design, all datapath format were verified to the Q(16,16)

format. Finally, the System Generator token block was invoked to target the FIR

Filter design onto a Xilinx XC6V315T FPGA hardware.

4.2.2 MATLAB MAC FIR Filter

Unlike the “FIR Compiler block”, the designer only needs to modify Xilinx System

Generators MAC FIR Filter IP block for a given design size, as shown in Figure 4.6.

Then provide the coefficient values and specify the values of N to generate the

desired MAC FIR Filter.

In this experiment, 2 MAC Filter designs were utilized, namely the N -tap and the

2N -tap MAC FIR Filters. Regardless of the size of N or data throughput require-

ments, a compact hardware architecture, shown in Figure 4.7, is highly desirable

for a MAC Filter design. The filter coefficient ROM obtains its data from a gen-

Nanyang Technological University Singapore

4.2. DIRECT-FORM FIR FILTER - MATLAB XILINX SYSGEN 53

Figure 4.6: Simulink code for N-tap FIR Filter using Xilinx FIR Compiler 6.1 IP Block

erated data array containing data for memory, counter and down-sampling block

parameters. Consequently, the model requires no modification to accommodate a

change in the impulse response [29]. The hardware architecture of the 2N -tap was

a straightforward inclusion of an additional N-tap filter and a “Pre-adder” IP block

in an attempt to improve the system’s overall throughput, see Figure 4.8.

Figure 4.7: N-tap MAC Filter IP Block compact hardware architecture

The default FPGA boundaries are specified; input signal to the MAC FIR filter is

Nanyang Technological University Singapore

54 4.3. RESULTS

Figure 4.8: 2N-tap MAC Filter IP Block compact hardware architecture

from a sine wave generator while the output data is displayed using the scope block.

The invoked “System Generator” token block will target the FIR Filter design onto

a Xilinx XC6V315T FPGA hardware.

4.3 Results

4.3.1 Bluespec

From Figure 4.9a, the slice resource requirement has an exponential tendency. The

slice resource trade–off was observed to be at least 2x more while the number of

DSP48E1 cores was half of what is required for a similar order FIR design, using

the manual elaboration method. Figure 4.9b also clearly illustrates a performance

Nanyang Technological University Singapore

4.3. RESULTS 55

improvement between 2 to 4 times over the manual elaboration method for similar

orders of FIR filter. Despite implementing pipelined FIR filter designs for both

design approaches, the presented results clearly indicate the scalability and perfor-

mance advantage of Bluespec′s static elaboration method. For example, the trade-off

point for manual elaboration is at 16–taps and 128–taps for static elaboration ap-

proach. As a result, the static elaboration based approach enabled a 512–tap FIR

filter design to be synthesized which required 546 DSP48E1 cores in order to achieve

a design clock frequency of 58.92MHz. Lastly, intentional effort is required to de-

clare design pipelining for the manual elaboration method while close to little or no

effort is required for the static elaboration method.

4.3.2 Xilinx FIR Filter Compiler

FPGA resource requirement has an exponential tendency with a 50% decrease in per-

formance from 2–tap to 512–taps design. For example, a 512–tap FIR filter required

935 slices and 87 DSP48E1 slices in order to design clock frequency of 267.45MHz.

When comparing the performance results for 512–tap FIR filter design, Xilinx’s FIR

Compiler method was at least 4x faster than both Bluespec implementations, see

Figure 4.10. Similarly, the FPGA resources required was up to 86% lesser than

a similar filter design described using Bluespec static elaboration method. Unlike

Bluespec, the FIR Filter Compiler design is inherently pipelined and no user inter-

vention is required.

4.3.3 Xilinx MAC FIR Filter

Both MAC-based FIR Filter designs are inherently pipelined to exploit the built-in

hardware resources of the DSP48 blocks.

For N–tap MAC–based FIR design, FPGA resource requirement was observed to

decrease linearly while performance decreased linearly up to 512–tap. Overall, per-

Nanyang Technological University Singapore

56 4.3. RESULTS

(a) Manual Elaboration

(b) Static Elaboration

Figure 4.9: Bluespec Resource and Performance Trade–off for N–taps FIR Filter Design

formance decreased 46% from 2–tap to 512–taps design while the increase in resource

requirements varied between 2–4x, see Figure 4.11. As expected, the resource re-

quirements of the DSP48E1s remained constant across all N–tap FIR filter designs.

The 2N–tap design implementation demonstrated similar resource and performance

trends with the number of DSP48E1 remaining constantly at 2. Heavy exploitation

Nanyang Technological University Singapore

4.4. SUMMARY 57

Figure 4.10: Resource and Performance Trade–off for N–taps FIR Filter Design using
Xilinx FIR Compiler 6.1 IP Block

and dependence on DSP48E1 block limits the use of MAC FIR Filter IP blocks to

FPGAs with embedded DSP48 blocks.

It was interesting to note that the 2N–tap design yielded an average performance

improvement of approximately 11% and requires approximately 25% more FPGA

hardware resources when compared against the N–tap design. The benefits of the

extra DSP48E1 block in the 2N–tap design becomes advantageous for an FIR filter

design ≥256–tap.

Lastly, we observed a sweet spot for the 2N–tap hardware design where it appears

to be efficiently mapped onto the FPGA platform. For 64–tap and 256–tap FIR Fil-

ter designs, both designs incurred additional FPGA slice resource of approximately

8% with reported performance improvement of up to 16%.

4.4 Summary

The results suggest that Bluespec approach for mapping algorithms to hardware

architecture is more flexible and FPGA platform neutral. Although the generated

Nanyang Technological University Singapore

58 4.4. SUMMARY

(a) N–tap MAC Filter

(b) 2N–tap MAC Filter

Figure 4.11: Xilinx FIR Resource and Performance Trade–off for N–tap and 2N–tap
MAC–based FIR Filter Design

Nanyang Technological University Singapore

4.4. SUMMARY 59

hardware architecture is relatively scalable, both hardware resource utilization and

performance scales in an unpredictable manner. From this case study, we had also

found that the learning curve is much steeper than what is published and signifi-

cant effort is required to achieve the good results reported. Although the Bluespec

debugging environment supports 3rd party tools, such as ModelSim, a significant

amount of setup effort and time was required. Moreover, debugging of signal lines

required some amount of guesswork to verify the functional correctness of the FIR

Filter hardware design.

Unlike Bluespec, the learning curve for SysGen was less steep and the provided

hardware libraries enabled the FIR Filter design to be well-suited for the target

FPGA platform. Design parameters, such as design bit-width, number of taps and

frequency, of the FIR Filter design were labeled clearly and quick to configure. In

addition, the Xilinx”s WaveformViewer block proved to be easy to use and useful as

it enabled us to rapidly debug and validate the output results for the prototype FIR

Filter designs. The MATLAB Simulink environment enable us to rapidly prototype

the FIR Filter design graphically, prototype a scalable hardware architecture in a

predictable manner and the corresponding data-flow of the hardware architecture

design simplifies the debugging process. From this case study, we can conclude that

SysGen is more suitable in helping us achieve our research objective – a suitable

programming environment which enables domain experts or non-circuit designers to

only work at the architecture level.

Nanyang Technological University Singapore

Chapter 5

Proposed Hardware Solver

Architecture

In this chapter, we start by introducing the conventional structure of Triangular Sys-

tolic Array (TSA) hardware architecture and the basic Processing Elements (PEs).

Secondly, we introduce our proposed TSA hardware architecture and use an ex-

ample to illustrate how LU Decomposition can be performed using the proposed

TSA. Thirdly, design details for our proposed TSA is described through the PEs.

Fourthly, related work adopting a similar approach is briefly reviewed. Next, formu-

lation of the latency estimation method for the proposed hardware design for both

LU solver and linear solver is presented. Lastly, the key research contributions are

highlighted.

5.1 TSA Hardware Building Blocks

Consider the TSA in Figure 5.1a to perform LU Decomposition on matrix A (see

equation 5.1), where N = 3, and is hereby termed LU-TSA. Values of the A matrix

are streamed into the TSA from the top, instruction sets are streamed in from the

left and calculated values of L and U matrix are streamed out to the right of TSA,

Nanyang Technological University Singapore

62 5.1. TSA HARDWARE BUILDING BLOCKS

through the last PE (i.e. D3). Notice that the column-based values of the A matrix

are fed into each column of PEs in a synchronous, delayed and orderly manner.

TSA contains two types of PEs, internal and boundary. Boundary PEs (i.e D1

to D3) are designed to perform divide operations only and internal PEs (i.e P1

to P3) perform multiply-add-substract arithmetic operations. As this TSA design

is universal to various matrix decomposition algorithms, PE-D3 may be required

to perform divider operations while others requires simple multiply-add-subtract

arithmetic operations.

D1

D2

P1

P3

P2

D3

(a) Existing

D1

D2

P1

P3

P2
ldcomcomlp

A32

A22

A12

0

A31

A21

A11

A33

A23

A13

0

0

(b) Proposed

Figure 5.1: Comparison of Triangular Systolic Array Architecture

TSA is usually proposed to reduce computational complexity of the matrix tri-

angularization step, LU Decomposition in this thesis, to O (N). Conventional TSA

hardware architecture consists of 2 PEs, namely Divider (Div) and Multiply-and-

Subtract (Mult/Sub) PEs, see Figure 5.2. The PEs are typically named after the

arithmetic operation the PE performs. Conventional TSA designs require N(N+1)
2

PEs and the values of L and U matrix are produced after 2N time-steps. Careful

examination and mapping of computational operations for the LU Decomposition

algorithm lead us to propose a TSA design which requires a total of
[
N(N+1)

2
− 1
]

PEs, see Figure 5.2.

From the implementation perspective, the hardware saving of 1 Divider PE is

relatively significant as dividers are resource expensive to implement and require

Nanyang Technological University Singapore

5.2. EXAMPLE: LU-TSA DATA OPERATION WHERE N=3 63

Figure 5.2: Comparison of Basic TSA Design and Components

much longer computational latency when compared to other PEs. The proposed

divider hardware saving is trade-off at the expense of one additional time-step,

needed for P3 PE to compute the correct value of U33 which would have otherwise

been computed by D3, see Figure 5.1b. Existing TSA designs stream the values of

L and U matrix out from D3, Figure 5.1a. But in our proposed design, respective

values of L and U matrix are now streamed out from the last column of PEs,

see Figure 5.1b. In the next section, we will use an example to illustrate the LU

Decomposition operation on our proposed TSA design.

5.2 Example: LU-TSA Data Operation where N=3

In this example, data operations of our proposed LU-TSA design is illustrated in

time-steps (t). Readers may assume a problem size of N = 3, where data is aligned

beforehand and streamed into the respective PEs. For simplicity, the reader may

assume all horizontal communication lines between PEs transport both instructions

and data information while the vertical communication lines transport only data.

Values of the A matrix are streamed into the SA in a column-based manner. For

example, column 1 of matrix A is streamed into D1–PE; column 2 is streamed into

P1–PE; column 3 is streamed into P2–PE.

Nanyang Technological University Singapore

64 5.2. EXAMPLE: LU-TSA DATA OPERATION WHERE N=3

-1

0

-2

2

4

3

6

3

1

D2

P1

P3

P2
ldcomcomlp

(a) t = 1

-1

02

3

6

3

4/1

D2

-2

P3

P2

ldcom

ld

comlp

(b) t = 2

-1

3

6

2/1

D2

0-(4*-2)

P3

3
ld

ld

comlp

com

com

(c) t = 3

-0.75-

(0.375*-

6)

comlp com

(d) t = 7

Figure 5.3: Example TSA DataFlow for 3 x 3 LU Decomposition at different time-steps

A =


1 −2 3

4 0 6

2 −1 3

 b =


1

−2

−1

 (5.1)

At t = 1 (Figure 5.3a), instruction ’ld’ informs D1 PE to perform a ’load’ operation

for data A11, A11 is coefficient required for division operations at later time-steps. At

t = 2 (Figure 5.3b), instruction ’com’ informs D1 PE to perform a division operation

on A21(i.e A21 ÷ A11) and value L21 is obtained. At the same time, ’ld’ instruction

is received by P1 PE and data A12 is stored. Readers may notice black boxes

along the diagonal line connecting D1 and D2 PEs which denotes the presence of a

unit delay element for instruction information. At t = 3 (Figure 5.3c), instruction

’comlp’ informs D1 to perform a division operation (i.e A31÷A11) while instruction

’com’ informs P1 to perform a multiply-subtract operation, calculating L31 and U22

Nanyang Technological University Singapore

5.2. EXAMPLE: LU-TSA DATA OPERATION WHERE N=3 65

Figure 5.4: 8 x 8 TSA Design for LU Decomposition

respectively. The process is repeated in a synchronous manner across all the PEs

in TSA to calculate all values of L and U matrix, except U33, until t = 7. At t = 7

(Figure 5.3d), instruction ’comlp’ informs P3 to re-use data values of L32 and U23

for multiplication and subtraction. Thereafter, the resultant value is subtracted

from the intermediate value of U33 and the correct value of U33 is calculated as 1.5.

Based on the command instructions, the calculated values of L and U matrix can

be deterministically output from last column of PEs, see Table 5.1. On the other

hand, total number of time-steps required to decompose a 3 x 3 problem is termed

as the block latency and can be easily formulated as 2N + 1, where N=matrix size.

Table 5.1: Order of calculated values of L and U matrix output
for 3x3 TSA

Command
Signal Line 1 2 3

Row1
D L21 L31

X U23 U22

Row2
D L32

X U33

To illustrate the scalability and regularity of TSA design, we can consider a [8x8]

design, see Figure 5.4. By utilizing the proposed PE Resource estimation
[
N(N−1)

2

]
and TSA block latency formula [2N + 1], 35 PEs (7 Div and 28 MultSubAdd) are

required with a block latency of 17 time-steps, see Figure 5.4.

Nanyang Technological University Singapore

66 5.3. PROCESSING ELEMENTS (PE) FOR LU-TSA

5.3 Processing Elements (PE) for LU-TSA

5.3.1 Divider PE

Existing work reviewed either implements custom hardware divider circuits or sub-

stitutes hardware division operations through the use Givens Rotation and CORDIC.

To achieve our research objective, we propose the use of Divider IP cores for imple-

mentation on any FPGA platform.

The proposed TSA design requires N − 1 Divider PEs for problem size N . Each

Divider PE is designed with five inputs/outputs (I/Os); two inputs and three outputs

with the exception of the [N − 1]th Divider PE which has two outputs instead, see

Figure 5.5. The divider PE consists of three major components: Control Unit, Local

Memory Storage and Hardware Divider.

Div PE Internal Logic

c’ = c;

if (c==ld) mem=x;

if (c==com) d=(x/mem);

if (c==comlp) d=(x/mem);

c

c’

d

x

D1:N-1

c’

c

d/

Control Unit

x

mem

‘0’

c'

c'

Local

Memory

Storage

c

c’

dDN

x

Figure 5.5: Divider PE

Instruction commands are streamed into and out of the Divider PE at each time-

step. Similarly, the denominator and numerator values, required for the division

operation, are streamed into the Divider PE via input x sequentially. The Control

Unit operates as a state machine. Based on the incoming instruction command

Nanyang Technological University Singapore

5.3. PROCESSING ELEMENTS (PE) FOR LU-TSA 67

Figure 5.6: State Diagram for Div PE

received, the Control Unit outputs a series of commands to the other components

within the Divider PE, such as toggling of multiplexer inputs or storing of values

into local memory.

The state machine logic for the Divider PE is shown in Figure 5.6 and is illus-

trated using an example. Assume instruction load (cmd=1), is detected, a control

signal will be transmitted to the local memory storage block to save the incoming

value x, at memory address 1, for use at a different state. The same control signal

informs the hardware divider to remain in idle or standby mode. On the other hand,

instruction com (cmd=2) is detected, the Control Unit outputs a different control

signal which informs the hardware divider to perform a division operation and utilize

the incoming x value as the numerator. Similarly, the local memory storage receives

a request to output the previously stored data as the denominator value for division

operation by the hardware divider. The hardware divider performs the division op-

eration and outputs a value, as output signal d, at the next time-step. Similarly,

the received instruction command is output via signal c’. Lastly, instruction comlp

(cmd=3) is detected and the Control Unit repeats the same operation where com

instruction is detected. This is because instruction comlp has only specific effect on

Nanyang Technological University Singapore

68 5.3. PROCESSING ELEMENTS (PE) FOR LU-TSA

P1:N-1

c c’

d’d

x

x’

Mult/Sub PE Internal Logic

c’ = c; d’ = d

if (c==ld) mem=x;

if (c==com) x’=x-(d*mem);

if (c==comlp) x’=x-(d*mem);

c c'

d d'

X

Control Unit

‘MAC’

d

x

x'

mem

‘0’

Local

Memory

Storage

Figure 5.7: Multiply-Subtract (MS) PE

the modified multiply-subtract PE for the purpose of performing the loop function.

At the same time, the local memory storage is pipelined and has a latency of 2 clock

cycles.

5.3.2 Multiply-Subtract (MS) PE

The proposed TSA design requires
[
N(N+1)

2
− 1
]

MS PEs for problem size N . Each

MS PE is designed with six inputs/outputs (I/Os), three inputs and outputs re-

spectively, see Figure 5.7. The MS PE consists of three major components: Control

Unit, Local Memory Storage and Hardware Multiply-Add-Subtract (MAC).

Similar to the Divider PE, instruction commands are streamed into and out of

the MS PE from and out to neighboring PEs, at each time-step. Based on the

incoming instruction command received, the Control Unit outputs a series of com-

mands to the other components within the MS PE. For example, the load (cmd=1)

instruction informs the local memory storage block to save the incoming value x,

at a designated memory address, for use at a later time. On the other hand, if

the com (cmd=2) instruction is received, the Control Unit informs the MAC unit

Nanyang Technological University Singapore

5.3. PROCESSING ELEMENTS (PE) FOR LU-TSA 69

Figure 5.8: State Diagram for Multiply-Subtract PE

to perform a multiply-and-subtract operation while utilizing the values of x,d,mem.

The calculated value is output via signal line x’ for transmission to the adjacent PE

block. The values of c and d are pipelined and concurrently forwarded from the

input signal to the output signal lines c’ and d’. Lastly, instruction comlp (cmd=3)

is detected and the Control Unit repeats the same operation where com instruction

is detected. The state machine logic for the Control Unit within the MS PE is

illustrated in Figure 5.8.

Previous work reports custom arithmetic hardware circuits for implementation.

To achieve our research objective, exploitation of on-board DSP48 cores is proposed

to perform multiply-add-subtract arithmetic operations. The DSP48 core is inter-

nally pipelined and depending on the arithmetic operation performed, latency for

MS PE ranges between 7–9 time-steps. Hence, the number of DSP48 cores and MS

PE enables end users or researchers to perform quick assessment if their intended

hardware design will be able to fit on a targeted FPGA platform, for a given problem

size.

Nanyang Technological University Singapore

70 5.3. PROCESSING ELEMENTS (PE) FOR LU-TSA

5.3.3 Modified Multiply-Subtract (MMS) PE

PN

c c’

d’d

x

Mult/Sub/Loop PE Internal Logic

c’ = c; d’ = d

if (c==ld) mem=x;

if (c==com) x’=x-(d*mem), d’=x’;

if (c==comlp) x’=x’-(d*mem), d’=x’;

c c'

d
d'

X

Control Unit

‘MAC’

d

x

mem

‘0’
x'd

Local

Memory

Storage

Figure 5.9: Modified Multiply-Subtract (MMS) PE

The MMS PE can be considered the terminating block for the entire TSA de-

sign and the main components of the MMS PE are inherited from MS PE. The

key difference lies in the inclusion of three additional multiplexers, increasing to a

3-input multiplexer for memory storage output signal line and the operational state

logic within the Control Unit in order to perform a loop function, see Figure 5.9.

For example, when instruction com (cmd=2) is detected, the MAC unit performs

the multiply-subtract arithmetic operation. At the same time, the additional multi-

plexer in MMS PE is triggered to output values from x′ input signal line. Meanwhile,

additional multiplexers, placed at the input signal lines (d, x) to the MAC unit, will

take the previous output value and route it back into the other signal input port

with a delay of one time-step. Just to be clear, one input port for each of the three

additional multiplexers are pipelined to re-use data that was output from the pre-

vious time-step. In the next time-step, the compl (cmd=3) instruction is detected

and the Control Unit of MMS PE interprets that a loopback operation should be

performed. Hence, the input multiplexers now output the previously output values

of d and x into the input signal lines d, x of the MAC unit to perform the multiply-

Nanyang Technological University Singapore

5.4. TRIANGULAR SYSTOLIC ARRAY (TSA) LINEAR SOLVER 71

Figure 5.10: State Diagram for Modified-Multiply-Subtract PE

subtract arithmetic operation. The MMS PE Control Unit’s operational logic is

further illustrated in the form of state logic diagram, see Figure 5.10.

5.4 Triangular Systolic Array (TSA) Linear Solver

In addition to performing matrix decomposition using the LU method, both forward

and back substitution steps are required to solve for a system of linear equations.

The theoretical computational time required for the substitution steps is 2N2 time–

steps and mainly consists of multiply-subtract and division operations. In [100], a

linear solver design to solve a system of linear equations was discussed. Their design

consists of a similar TSA design for orthogonal triangulation of a matrix using QR

factorization while a triangular linear system is used to perform back substitution,

see Figure 5.11b. Similarly, [63] proposed a linear solver for LU decomposition and

forward substitution. Their design utilizes conventional TSA design for orthogonal

triangulation of a matrix while a 2-dimensional (2D) rectangular SA is utilized for

forward substitution, see Figure 5.11a.

Nanyang Technological University Singapore

72 5.4. TRIANGULAR SYSTOLIC ARRAY (TSA) LINEAR SOLVER

(a) Wan’s Solver [63] (b) Hu’s Solver [100]

Figure 5.11: Existing Linear Solver designs using Systolic Arrays

To solve for a system of linear equations, [63] proposed that the back substitution

step can be performed by reusing the TSA and 2D SA. The main advantage of

using [63]’s design is that their design takes 6N + 2 time-steps to compute the LU

decomposition and forward substitution but the main disadvantage is that total

latency is almost twice as long, 12N + 4 time-steps, due to back substitution step.

On the other hand, [100] did not present hardware nor performance values for their

design. But the structural regularity of SA enabled the authors to estimate design

latency for [100] and the results are presented in Table 5.2. Moreover, both SA-

based linear solver designs by [63, 100] may not be possible to implement on a

resource-constrained FPGA platform. For example, we can deduce from Table 5.2

that [63] design is highly unlikely to scale to N = 16 as the design requires additional

N2 PEs. [34] reports an FPGA implementation based on the design mentioned

in [100] and was only able to scale up to N = 10 with estimates of up to N = 12.

For any basis of comparison with similar work in the MPC community, the linear

solver has to be at least N = 16 and is the main reason for choosing [97] for

benchmarking purposes. In this thesis, the proposed linear solver design draws

inspiration from both [63,100] work and propose techniques to overcomes limitations

Nanyang Technological University Singapore

5.5. MAIN CONTRIBUTIONS 73

of the mentioned designs by exploiting idle sequential steps and removing redundant

arithmetic operations to both the forward and substitution steps.

The reader is reminded that to solve for a system of linear equations of size N,

LU decomposition, forward substitution and back substitution steps are performed.

In the forward substitution step, N time-steps can be saved if one selects data

value of ’1’ as the diagonal pivot value in the L matrix. This assumption is key to

ensuring that time-consuming division operation does not require to be performed

during this forward substitution step. Division and multiply-subtract arithmetic

operations are performed for the back substitution step and is required to solve

for values of x̂ = U−1ŷ, where U is a matrix of [NxN] dimensions and ŷ is a an

[Nx1]vector. In order for division operations to occur in the back substitution step,

values of ŷ requires to be available. This suggests that backward substitution step

is sequentially performed after forward substitution and no further parallelism is

possible. But close observation of both substitution steps enabled the introduction

of an ingeniously simple method to introduce parallelism in the substitution step,

which was previously not possible or is strongly dependent on the software compiler’s

ability to parallelize the substitution steps.

5.5 Main Contributions

5.5.1 Exploitation of Serialized LU Decomposition

In this thesis, we propose that the diagonal division operations of the U matrix can

be performed independent of the back substitution steps by means of the recipro-

cal operation. We are suggesting that reciprocal operation on diagonal U matrix

be performed simultaneously during the forward substitution step. Hence, only

the multiply and subtract operations should be performed during the actual back

substitution step.

To illustrate, consider the values of matrix A defined in equation 5.1 which can

Nanyang Technological University Singapore

74 5.5. MAIN CONTRIBUTIONS

be decomposed into L and U matrices respectively by LU decomposition method,

equation 5.2. While the forward substitution step is performed to solve for Lŷ = b̂,

the reciprocal arithmetic operation can be concurrently performed on the diagonal

values of the U matrix. Thereafter, the calculated reciprocal values are stored back

into the U matrix and is termed Uint, equation 5.3.

L =


1 0 0

4 1 0

2 0.375 1

 U =


1 −2 3

0 8 −6

0 0 1.5

 (5.2)

Uint =


1 −2 3

0 0.125 −6

0 0 0.67

 (5.3)

Urot180 =


0.67 0 0

−6 0.125 0

3 −2 1

 (5.4)

As a result of using the proposed method, the time-consuming division operation

is partially replaced by the reciprocal operation whose latency can be hidden well-

within forward substitution step and saves N time-steps, for problem sizes as small as

N = 4. Lastly, the multiply-subtract arithmetic operations in the back substitution

step is in fact a mirror image of the arithmetic operations in the forward substi-

tution step. A 180 degree rotation of equation 5.3 enables the multiply-subtract

operations to map perfectly onto each other, equation 5.4, and enables re-use of

existing hardware resources.

The substitution step in both [63, 100] is implemented by either attaching a 1D

SA or 2D SA, external to existing TSA design. The proposed hardware architecture

requires a 1D SA to be integrated into existing TSA design architecture, allowing

hardware design re-use at the expense of increased PE logic density and is only

applicable for the last column of PEs. When compared to [63, 100] our proposed

Nanyang Technological University Singapore

5.5. MAIN CONTRIBUTIONS 75

Table 5.2: Latency and PE Comparison with Similar Work

Proposed Hu’s Solver Wan’s Solver
Linear Solver [100] [63]

Latency (time-steps)
(non-pipelined) 4N+2 NR 12N+4

(pipelined) 7N2 + 56N − 38 NR 4M(3N-1)

of PEs N(N+1)

2
− 1 N(N+1)

2
+N N(N+1)

2
+N2

linear solver requires ≥2N fewer time-steps and N2 − 1 fewer PE resources, see

Table 5.2. Although the pipelined implementation is slower than similar work, it

is a fair trade-off between performance and hardware resource utilization at the

expense of requiring up to ∼50% fewer PE resources than similar work. As a result,

larger linear solver problem sizes of N>12, which were previously not possible, can

now be implemented on a resource-constrained FPGA platform. We wish to point

out that no latency value (time-step) was reported by [100] and is denoted as NR

in Table 5.2.

5.5.2 Data Throughput

TSA’s natural ability to process new data at every time-step enables high data

throughput. Consider the [3x3] example which implements a signed 18-bit fixed-

point data precision. The theoretical LU solver performance can be formulated as

fmax

N
LU problems/second, assuming new LU problem is introduced every N clock

cycles, where N corresponds to the size of the matrix. Often, one unit time-step does

not correspond to 1 clock cycle. This is because the actual time taken to perform

division operations is usually much longer than simple arithmetic operations, so the

block latency is multiple cycles.

In our design, the Divider block is pipelined with a design latency of 38 clock

Nanyang Technological University Singapore

76 5.5. MAIN CONTRIBUTIONS

cycles while the Multiply-Subtract-Add block requires between 7 to 9 clock cycles,

depending on the instruction set issued. Hence, the updated latency estimation is

45N and the sustained LU solver performance is reformulated as:

LU-TSA rate = fmax

45N
LU problems/second.

5.5.3 Speedup

SA Speedup is defined as the ratio of SA processing time (T) and single processor’s

processing time (Ts) of a given algorithm and can be formulated as S = Ts

T
[5]. Here,

a larger speedup indicates the amount of parallelism inherent in the algorithm’s de-

sign. A case in point is when we contrast our LU-TSA architecture with Gaussian

Elimination algorithm implemented on a 32-bit Microblaze soft-core microprocessor

running on a 100MHz Virtex II FPGA platform [96]. Design time-steps will be used

as the basis of comparison to give readers an estimate on how well our hardware

architecture design scales in terms of performance. In [96], their stand-alone Microb-

laze implementation reports 36N+M [122 + 64 (N − 1)] time-steps to compute and

MxN problem, where M and N represents the number of rows and columns of the

matrix respectively. In this thesis, we assume M = N and their design latency can

be further simplified to 64N2 + 94N time-steps. Hence, our proposed architecture

offers a speedup of one order of magnitude over [96].

5.5.4 Proposed TSA Linear Solver Architecture

Design architecture of the proposed TSA Linear Solver draws some inspiration from

Gentleman’s work, see Figure 5.11b. The proposed design is essentially an integra-

tion of a 1D SA into the last column of the TSA to overcome design limitations

of Gentleman’s work and is suitable for implementation of the proposed enhanced

Linear Solver algorithm at the expense of a small increase in design complexity for

the last column of PEs.

Nanyang Technological University Singapore

5.5. MAIN CONTRIBUTIONS 77

Abstract Diagram TSA Linear Solver (Simplified)

Figure 5.12: Simplified System Architecture for proposed TSA Linear Solver

The Data Router is denoted as a diagonally striped rectangular PE block in

Figure 5.12. The block is responsible for routing data from its input data channels

and corresponding data is selectively output on various output data channel lines. To

side-step the introduction of slow combinational logic into existing TSA architecture,

data and instruction set is now streamed out from the Data Arbiter PE Module,

chequered PE block in Figure 5.12, into the input of the Data Router module of row

1, with both input and output pins pipelined. Assuming the data received needs to

be forwarded to the Data Router PE in row 2, the incoming data will be delayed for

a few time-steps so as to maintain data synchronization across all the PEs in the last

column, readers are referred to signal L′ in Figure 5.13. Hence, the characteristics

of SA, such as design regularity, locality and rhythmic data communication, are not

violated.

Within the Data Router PE, a small design consisting of multiplexers, compara-

tors, Block RAM (BRAM) and delay elements are only required while the state

machine controller logic manages the logical switching operations to ensure that the

corresponding data is output on the correct data output line, see ′Control Unit′ in

Figure 5.13. As previously mentioned, the time-steps required practically is usually

>1 and the BRAMs are utilized as temporary memory storage elements to hold

Nanyang Technological University Singapore

78 5.5. MAIN CONTRIBUTIONS

Figure 5.13: Data Router PE in proposed TSA Linear Solver

data elements for a finite time-step before the data is clocked out and new data is

stored in the BRAM. In each Data Router PE, three memory elements or BRAMs

are required to store all necessary data elements on each data output line and the

regularity of this design enables the number of BRAM hardware resources to be

quickly estimated for various problem sizes of N .

The Data Arbiter is denoted as a chequered PE block in Figure 5.12 and aligns

its input data before forwarding to the aligned data to the MS PE, last column

of the TSA architecture via the corresponding Data Router PEs, for the purpose

of computing the L matrix, forward substitution step. In applying the proposed

serialized algorithm exploitation method, the same process can be applied to com-

pute the U Matrix, back substitution step, with only minor modifications to the

state machine controller are required. For the MS PEs in the last column, the state

machine controller’s logic states requires to be upgraded to process and discern the

operational states required for the forward and back substitution steps.

The lightly shaded PE in Figure 5.12 refers to the Multiply-Subtract Forward

Substitution PE. This PE block is similar to the proposed Multiply-Subtract PE

blocks with additional state logic, see Figure 5.14, to perform the forward and back-

ward substitution operations, required to solve a system of linear equations using LU

Nanyang Technological University Singapore

5.5. MAIN CONTRIBUTIONS 79

Figure 5.14: State Diagram for Multiply-Subtract Forward Substitution PE in proposed
TSA Linear Solver

Decomposition. Although we proposed the idea that backward substitution opera-

tions can be directly mapped onto forward substitution, we wish to point out that

subtle arithmetic operation differences exist. Abstractly, these differences are han-

dled by the introducing additional control states to the Control Unit, states 5–10,

and upgrading the DSP48 data input multiplexers to 4-input from 3-input. States 5

to 7 are for forward substitution while states 8 to 10 are for backward substitution.

As a result of our innovation, larger linear solver problem sizes of N>12, which

were previously not possible, can now be implemented on a resource-constrained

FPGA platform and the pipelined linear solver performance can be formulated as:

Linear Solver performance = fmax

7N2+56N−38 linear equations/second

Nanyang Technological University Singapore

Chapter 6

Implementation Setup and Results

In this chapter, hardware resource and performance results for the proposed TSA-

based solvers will be presented and contrasted against similar work.

6.1 System Setup

The proposed LU-TSA, Figure 6.1, and linear solver, Figure 6.2, designs were im-

plemented using SysGen [23] software environment targeting the mid-range Xilinx

Virtex 6 FPGA (XC6VLX240T) for the purpose of design verification. Numerical

accuracy is strongly dependent on the control application’s requirements and we

chose to adopt the numerical precision in [97] for benchmarking purposes. Use of

a floating-point number format heavily impacts performance and consumes large

amounts of hardware resources. Hence, our proposed design implements signed

fixed-point number format with 9 integer bits and 8 fractional bits with numerical

precision of approximately 2 × 10−3, similar to that reported in [97]. Unlike [97],

our design is word length and matrix size parametrisable at the PE level within the

SA architecture.

Instead of developing a customized fixed-point divider, Xilinx’s Floating-Point

Divider IP core is used in conjunction with conversion blocks for switching between

Nanyang Technological University Singapore

82 6.1. SYSTEM SETUP

F
ig
u
re

6
.1
:

L
U

-T
S

A
H

ard
w

are
A

rch
itectu

re

Nanyang Technological University Singapore

6.1. SYSTEM SETUP 83

F
ig
u
re

6
.2
:

P
ro

p
os

ed
L

in
ea

r
S

ol
ve

r
A

rc
h

it
ec

tu
re

Nanyang Technological University Singapore

84 6.1. SYSTEM SETUP

Figure 6.3: Internal logical blocks for Divider PE

fixed-point and floating-point. Tests revealed that the proposed divider is able to

accept new data at every clock cycle and has a fixed data latency. Careful exploita-

tion of this knowledge and idle sequential cycles, within the back substitution step,

enables a saving of N time-steps. A single port RAM is configured to store the

denominator data value, required for division operations after the numerator data

becomes available. To manage the various operational states within the Divider PE,

a state machine controller is programmed using MATLAB code and is incorporated

as an M-code block in SysGen, see Figure 6.3.

In SysGen, three different DSP48 blocks may be used to instantiate the on-board

DSP resources. The DSP48 Macro block is selected as it provides an abstract

interface to DSP resources, enables ease of use, code readability and portability

across various FPGA platforms. For the Multiply-Subtract PE block, the DSP48

macro block is also exploited to function as an instruction-based processor to perform

user defined arithmetic operations and is set for automatic pipelining. The macro

block allow designers to configure design latency and specify user defined arithmetic

instructions for the DSP resource to execute. For example, assume the DSP48E1

is instantiated on the Virtex 6 FPGA platform. The DSP48E1s have 3 inputs

(A,B,C) and 1 output each. At t = 1, instruction code ’1’ is issued and DSP48E1

performs A × B arithmetic operation. At t = 2, instruction code ’2’ is issued

and DSP48E1 performs C − (A×B) arithmetic operation simultaneously. Given a

Nanyang Technological University Singapore

6.2. RESULTS AND DISCUSSION 85

Figure 6.4: Internal logical blocks for Multiply-Subtract PE

pipelined implementation, a minimum latency of 4 clock cycles is required for the

DSP48E1 to complete the required arithmetic operations. Similar to the Divider

PE, a single port RAM is required and configured to store temporary variables for

multiply and subtract operations at a later time–step to calculate the intermediate

or final values of the L and U matrices. The key difference between the multiply–

subtract, see Figure 6.4, and multiply–subtract–loop PE is the requirement for the

latter to calculate the value of UNN . To achieve the loop function, an additional

multiplexer, Mux3, is connected to input C of the DSP48 macro block while the

second input of Mux3 is connected to the output of the DSP48 macro block with a

delay of one time–step.

6.2 Results and Discussion

6.2.1 LU-TSA

From Table 6.1, the block latency formula has an average and maximum estima-

tion error of approximately 1.3% and 1.9% respectively. Compared with [51], our

LU-TSA solver latency is approximately 7% faster and solver throughput is approx-

Nanyang Technological University Singapore

86 6.2. RESULTS AND DISCUSSION

Table 6.1: LU-TSA Performance & Resource Benchmarking

LU TSA LU TSA Custom LU HW
(4x4) (16x16) (4x4)

[51]

P
er

fo
rm

an
ce Word length Hybrid(18,9) Hybrid(18,9) FXP(20,0)

Latency(clock cycles) 134 675 142
Clock Frequency(MHz) ∼508 ∼476 253

LU Solver Speed ∼3.8 ∼0.71 1.8
(Mlsps)

R
es

ou
rc

e

Slices 935 8,287 709
RAM18E1 9 135 1

DSP48E1/DSP48 6 120 4

F
P

G
A

Device Type XC6VLX240T XC6VLX240T XC4VSX35T

imately 2.1x faster for a problem size of N = 4, see Table 6.1. A trade-off exists as

LU-TSA consumes approximately 1.5x more hardware resources with an exception

of BRAMs. From the results presented and structural regularity of LU-TSA solver,

we can estimate that N = 64 LU-TSA design can be implemented on a Virtex 6

XC6VSX475T while N = 128 can be implemented on a Virtex 7 XC7V2000T.

6.2.2 Linear Solver

The proposed TSA-based linear solver requires N(N+1)
2
−1 PE resources. Compared

to [51] in Table 6.2, our design is 2.3x faster and approximately 5% smaller than the

custom linear solver reported in [51] with an exception of BRAM and DSP block

usage.

Similarly, in comparison with similar work by [63], our proposed design requires

2N fewer clock cycles and N2 − 1 fewer PE resources. Our design is one order

of magnitude smaller in size and is estimated to provide resource savings of up to

Nanyang Technological University Singapore

6.2. RESULTS AND DISCUSSION 87

Table 6.2: Linear Solver Performance & Hardware Resource Benchmarking

Linear Solver Linear Solver Custom HW MINRES
(4x4) (16x16) (4x4) (16x16)

[51] [101]

P
er

fo
rm

an
ce Word length Hybrid(18,9) Hybrid(18,9) FXP(20,0) Floating-Point

Latency(clock cycles) 304 2,650 473 374
Clock Frequency(MHz) ∼247 ∼198 166 ∼250

Linear Solver Speed ∼0.82 ∼0.08 ∼0.35 ∼0.04 to 0.68
(Mlsps)

R
es

ou
rc

e

Slices 1,933 15,622 2,025 ∼12,500
BRAM/RAM18E1 17 167 1 ∼37
DSP48E1/DSP48 6 120 12 ∼40

F
P

G
A

Device Type XC6VLX240T XC6VLX240T XC4VSX35T XC5LX330T

50% for large sizes of N . In [63] and [51], N = 10 was the largest problem size

that could be implemented on FPGA. By contrast, our linear solver can at least

implement a design size of N = 16 on the smallest Virtex 6 (XC6VLX75T). Based

on the results in Table 6.2 and structural regularity of our proposed design, we can

confidently estimate our linear solver design can be implemented for up to N = 32

on XC6VSX475T and N = 64 on Virtex 7 XC7V2000T respectively. In retrospect,

approximately 7 thousand linear systems per second was the fastest reported linear

solver speed achieved in MPC applications in [97] given a problem size of N = 16.

When compared with our SA-based linear solver, our approach is approximately

12x faster and we estimate that our hybrid arithmetic implementation, floating-

point and fixed-point, requires lesser hardware resources than the floating-point

implementation in [97].

Reported work in [98] is built upon [101]’s parallel linear solver. [101] proposed an

iterative floating-point linear solver to solve a system of linear equations with dense

data type and the maximum iteration count to reach a solution is N. On the other

hand, our proposed linear solver utilizes both floating-point and fixed-point(18,9) for

Nanyang Technological University Singapore

88 6.2. RESULTS AND DISCUSSION

dense data type. For N = 16, our novel TSA architecture design is up to 2x faster for

their worst case scenario, see Table 6.2. But our design requires approximately 25%

more hardware resources than [101]’s design with an exception of BRAMs and DSP

blocks. To achieve such high performance, [101] employs manual deep-pipelining and

symmetry of the A matrix is exploited. Their dense linear solver is able to handle

matrix order of up to N = 145 while our design is estimated up to N = 64. Such

large matrix implementation is possible due to extensive re-use of floating-point

square root and division operators. However, we did not implement such design

optimization strategy to avoid disrupting the structural regularity as it may conflict

with the parametrisable nature and operations of our proposed TSA-based linear

solver. In addition, such design optimizations would increase the design complexity

of the Control Unit module, within the respective PEs, and increases the chances of

requiring an experienced hardware designer to construct our proposed linear solver.

The effects of design complexity trade-off can be considered as part of future work.

6.2.3 Performance and Resource Scalability

For the purpose of comparison with similar work, the solvers were implemented

for a problem size of up to N = 16. To obtain an estimate for problem sizes up to

N = 128, the Power Regression Model method was used and the results were plotted

using Microsoft Excel. To explain, the trend-lines for FPGA Hardware Slices and

hardware design frequency were plotted against varying matrix sizes, Figures 6.5

and Figures 6.6 respectively. The corresponding graph equations are derived and

the hardware slices and design frequency were estimated for matrix problem size

from N = 32 to N = 128. Thereafter, the estimated results were consolidated,

together with existing data, into a single graph for the purpose of illustrating the

trade-off between hardware performance and resource across different problem sizes,

shown in Figures 6.7 and 6.8. In both figures, the solid lines refers to actual data

points while the dotted lines are results estimaed using the Power Regression Model.

From Figures 6.7 and 6.8, the solver design trade-off appears to be consistent for

Nanyang Technological University Singapore

6.2. RESULTS AND DISCUSSION 89

problem size of N>64.

Figure 6.5: Regression Model Results for Proposed TSA-based Linear Solver (Matrix
Size vs Slices)

Figure 6.6: Regression Model Results for Proposed TSA-based Linear Solver (Matrix
Size vs Fmax)

As previously mentioned, structural regularity of TSA enables a scalable hardware

architecture design with deterministic hardware resources. For example, to scale

Nanyang Technological University Singapore

90 6.2. RESULTS AND DISCUSSION

Figure 6.7: Hardware Performance and Resource Trade-Off for LU-TSA

Figure 6.8: Hardware Performance and Resource Trade-Off for Proposed TSA-based
Linear Solver

from a 4 x 4 to 8 x 8, users can quickly determine the number and additional

quantity of PEs to be included in the design using the following formula:

• TSA:
[
N(N+1)

2
− 1
]

(see Chapter 5)

Nanyang Technological University Singapore

6.2. RESULTS AND DISCUSSION 91

• Data Router: N − 1

• Data Arbiter: 1

Once the values of N = 3 and N = 8 are substituted into the formula, the required

number of PEs and the PE types can be quickly determined by users. Hence, the

designer only need instantiate the respective PE types. Figure 6.9 shows the number

of PEs required for TSA design where N = 8 and the number of PEs for N = 3 is

within the shaded area in Figure 6.9. The same concept is also applicable to the

proposed TSA linear solver architecture.

Figure 6.9: Design Scalability Example for TSA from N = 3 to N = 8

6.2.4 Summary

We would like to point out that majority of existing hardware solver design are point

based solutions or application-specific, i.e they have been designed for one specific

set of design parameters. Hence, a digital circuit designer is required if the design

needs to be modified. On the other hand, our proposed TSA-based approach has

structural regularity and scales easily according to the design problem size without

Nanyang Technological University Singapore

92 6.2. RESULTS AND DISCUSSION

the need for digital circuit designers. As a result, non-circuit designer can utilize fast

LU solver or Linear Solver for their scientific application and only need focus on the

architecture level. As previously explained, our proposed solvers (LU and Linear)

are at least a few orders of magnitude faster than similar work whilst requiring up

to 50% less hardware resources for the same problem size.

From the power consumption perspective, actual processing utilization for our

TSA-based SA design maybe comparable to a 1D SA design. Our proposed TSA-

based Linear Solver can also exhibit 1D SA like power consumption through the use

of clock-gating on FPGAs, which can turn on and off PEs according to their usage.

Nanyang Technological University Singapore

Chapter 7

Conclusion

A systolic array based linear solver has been presented and implemented on an

FPGA platform. Unlike previously reported work, the proposed design architecture

does not side-step the computationally expensive floating-point division operations

yet requires 2N less time-steps. We have also explained and demonstrated that care-

ful exploitation of idle sequential cycles, floating-point divider block and omission

of redundant arithmetic operations enabled the novel properties of the proposed

systolic array based linear solver. Our proposed linear solver has a throughput of

approximately 1 million linear systems for matrices of size N = 4 and approximately

82 thousand linear systems for matrices of size N = 16 respectively. In comparison

with similar work, the proposed design offers up to a 12x improvement in speed

whilst requiring up to 50% less hardware resources. As a result, the proposed linear

solver design can be implemented for up to N = 64 on the largest Virtex 7 FPGA,

which was previously not possible. Despite knowledge of the design trade-off, fur-

ther investigation is required to validate the linear assumptions for problem sizes of

N ≥ 32. In addition, claims of our proposed Linear Solver exhibiting 1D Systolic

Array like power consumption requires validation and is also part of the future work.

The key advantage of our design approach is that it empowers a non-circuit de-

signer to utilize a fast LU solver or Linear Solver for their scientific application and

Nanyang Technological University Singapore

94

they only need to focus on the architecture level. The ease of designing a scalable

linear solver using systolic array approach has been demonstrated, prototyped and

validated using Xilinx System Generator software tool. Due to the limited time,

design automation for generation of the linear solver design, in accordance to user-

defined problem size (N), was not investigated and will be included as future work.

The proposed systolic array design did not exploit special properties of the A ma-

trix, such as symmetry, banded and sparse data, and this will be left as future work.

Secondly, we intend to increase the number of design parameterization options as

our current linear solver is only word length parameterizable with possible design

automation of existing linear solver design based on user-defined problem size pa-

rameter. Fourthly, hardware constraints of FPGA resources limits the problem size

our linear solver is able to achieve and we plan to look into alternative ways to de-

compose large problem sizes (i.e ≥ 128) into smaller problem sizes with multiplexed

MPC as a potential candidate.

The design of the Data Arbiter and Data Router are currently external to the

last column of PEs. Part of the future work can include the design integration and

refinements into the last column of Mult-Sub/Modified-Mult-Sub PEs to further

reduce the non-circuit designer′s developmental efforts. In addition, internal test

result indicates that there is still room for performance improvement for the Data

Arbiter and Data Router PEs and this will also be left as future work.

In this thesis, we assumed the SysGen generated linear solver design is efficient

with little or no translation overhead. In future, we plan to quantify this transla-

tion overhead by design comparison with a hand-coded HDL implementation. In

addition, although our proposed Hybrid, fixed-point and floating-point, numerical

word-length precision have been adopted we did not highlight the benefits and mo-

tivation for such an adoption. In future, we plan to conduct a performance and

hardware resource trade-off comparison between fixed-point versus Hybrid versus

floating-point.

Nanyang Technological University Singapore

95

Lastly, we would like to reminder readers that the proposed compact scalable

systolic array architecture is not constrained to MPC applications and can be applied

to general scientific computing problems where a system of linear equations requires

to be solved.

Nanyang Technological University Singapore

Bibliography

[1] T. J. Todman, G. A. Constantinides, S. J. Wilton, O. Mencer, W. Luk, and
P. Y. Cheung, “Reconfigurable computing: architectures and design methods,”
IEE Proceedings-Computers and Digital Techniques, vol. 152, no. 2, pp. 193–
207, 2005.

[2] J. M. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for reconfigurable
computing: A survey,” ACM Computing Surveys (CSUR), vol. 42, no. 4, p. 13,
2010.

[3] P. Orukpe, “Basics of model predictive control,” Imperial College, London,
2005.

[4] S. Y. Kung, “VLSI array processors,” Englewood Cliffs, NJ, Prentice Hall,
1988, 685 p. Research supported by the Semiconductor Research Corp., SDIO,
NSF, and US Navy., vol. 1, 1988.

[5] Z. Matej, “Systolic Parallel Processing Notes,” https://ldos.fe.uni-
lj.si/slo/03 Lectures/, retrieved online on 25/03/2013, 2011.

[6] B. Inc., “Bluespec Training Slides,” http://bluespec.com/forum/download.php
?id=106, retrieved online on 11-Feb-2012, 2011.

[7] Intel, “Intel i7-3960X Extreme Processor,” http://www.intel.com/content/
www/us/en/proce ssors/core/core-i7ee-processor.html, retrieved online on 14-
Jan-2012, 2012.

[8] AMD, “AMD Processors,” http://www.amd.com, retrieved online on 14-Jan-
2012, 2012.

[9] D. Boland and G. A. Constantinides, “Automated precision analysis: A poly-
nomial algebraic approach,” in Field-Programmable Custom Computing Ma-
chines (FCCM), 2010 18th IEEE Annual International Symposium on. IEEE,
2010, pp. 157–164.

[10] Xilinx, “Xilinx Zynq-7000 Manual,” http://www.xilinx.com/products/silicon-
devices/epp/zumq-7000/index.htm, retrieved online on 29/12/2011, 2011.

Nanyang Technological University Singapore

98 Bibliography

[11] M. Wirthlin, D. Poznanovic, P. Sundararajan, A. Coppola, D. Pellerin, W. Na-
jjar, R. Bruce, M. Babst, O. Pritchard, P. Palazzari et al., “OpenFPGA Core-
Lib core library interoperability effort,” Parallel Computing, vol. 34, no. 4, pp.
231–244, 2008.

[12] National Instruments, “NI LabVIEW FPGA,” http://www.ni.com/fpga/, re-
trieved online on 11-Feb-2012, 2002.

[13] Mentor Graphics, “Handel-C Synthesis Methodology,” http://
www.mentor.com/products/fpga/handel-c/, retrieved online on 14-Jan-2012,
2012.

[14] Impulse Accelerated Technologies, “ImpulseC Software,” http://www. im-
pulseaccelerated.com/, retrieved online on 14-Jan-2012, 2012.

[15] Xilinx, “Xilinx EDK Platform,” www.xilinx.com/tools/platform.htm, retrieved
online on 14-Jan-2012, 2012.

[16] Xilinx and Mathworks, “MATLAB Simulink HDL Coder,”
http://www.mathworks.com/products/slhdlcoder/, retrieved online on 14-Jan-
2012, 2012.

[17] Synopsys, “Synopsys Synphony Model Compiler,”
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx,
retrieved online on 01/08/2014, 2014.

[18] Xilinx, “Vivado,” http://www.xilinx.com/products/design-
tools/vivado/integration/esl-design/, retrieved online on 01/08/2014,
2014.

[19] K.-V. Ling, B. F. Wu, and J. Maciejowski, “Embedded model predictive con-
trol (MPC) using a FPGA,” in Proc. 17th IFAC World Congress, 2008, pp.
15 250–15 255.

[20] Xilinx, “Xilinx CORE Generator System,” http://www.xilinx.com/tools/ core-
gen.htm, retrieved online on 20-Mar-2014, 2014.

[21] Altera, “Altera MegaCore Functions,” http://www.altera.com/products/ip/
design/ipm-design.html, retrieved online on 20-Mar-2014, 2014.

[22] OpenCores, “OpenCores,” http://opencores.org/, retrieved online on 14-Jan-
2012, 2012.

[23] Xilinx, System Generator for DSP User Guide UG640 (v 14.3). Xilinx, 2012.

[24] Altera, “Altera DSP Builder,” http://www.altera.com/products/software
/products/dsp/dsp-builder.html, retrieved online on 14-Jan-2012, 2012.

Nanyang Technological University Singapore

Bibliography 99

[25] Ong, Kevin SH, Suhaib A. Fahmy, and Keck-Voon Ling, “A Scalable and
Compact Systolic Architecture for Linear Solvers,” Poster in Proceedings of the
IEEE International Conference on Application-specific Systems, Architectures
and Processors (ASAP), Zurich, Switzerland, June 2014, pp. 186–187.

[26] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “An FPGA implemen-
tation of a sparse quadratic programming solver for constrained predictive
control,” in Proceedings of the 19th ACM/SIGDA international symposium
on Field programmable gate arrays. ACM, 2011, pp. 209–218.

[27] M. S. Lau, S. P. Yue, K. V. Ling, and J. Maciejowski, “A comparison of interior
point and active set methods for FPGA implementation of model predictive
control,” in Proc. European Control Conference, 2009, pp. 156–160.

[28] S. J. Wright, “Applying new optimization algorithms to model predictive con-
trol,” in AIChE Symposium Series, vol. 93, no. 316. Citeseer, 1997, pp.
147–155.

[29] J. Maciejowski, “Predictive control with constraints,” Harlow, England: Pear-
son Education, 2002.

[30] S. J. Wright, “Interior point methods for optimal control of discrete time
systems,” Journal of Optimization Theory and Applications, vol. 77, no. 1,
pp. 161–187, 1993.

[31] J. E. Volder, “The CORDIC trigonometric computing technique,” Electronic
Computers, IRE Transactions on, no. 3, pp. 330–334, 1959.

[32] W. M. Gentleman and H. Kung, “Matrix triangularization by systolic arrays,”
in 25th Annual Technical Symposium. International Society for Optics and
Photonics, 1982, pp. 19–26.

[33] R. Woods, J. McAllister, G. Lightbody, and Y. Yi, FPGA-based Implementa-
tion of Signal Processing Systems. Wiley Online Library, 2008.

[34] M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implementation of matrix
inversion using QRD-RLS algorithm,” in Proceedings of the 39th Asilomar
Conference on Signals, Systems and Computers, 2005, pp. 1625–1629.

[35] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, “Survey
on block matching motion estimation algorithms and architectures with new
results,” Journal of VLSI signal processing systems for signal, image and video
technology, vol. 42, no. 3, pp. 297–320, 2006.

[36] X. Wang and M. Leeser, “A truly two-dimensional systolic array FPGA imple-
mentation of QR decomposition,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 9, no. 1, p. 3, 2009.

Nanyang Technological University Singapore

100 Bibliography

[37] J. Moreno and T. Lang, Matrix Computations on Systolic-Type Arrays.
Springer, 1992, vol. 174.

[38] S. Kestur, J. D. Davis, and O. Williams, “BLAS Comparison on FPGA, CPU
and GPU,” in VLSI (ISVLSI), 2010 IEEE Computer Society Annual Sympo-
sium on. IEEE, 2010, pp. 288–293.

[39] Bluespec Inc., “Bluespec SystemVerilog Language,” http://www.bluespec.com,
retrieved online on 29/12/2011, 2011.

[40] R. S. Nikhil et al., “What is Bluespec?” ACM SIGDA Newsletter, vol. 39,
no. 1, pp. 1–1, 2009.

[41] C. C. Lin, “Implementation of H. 264 Decoder in Bluespec SystemVerilog,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2007.

[42] A. Agarwal, M. C. Ng et al., “A Comparative Evaluation of High-Level Hard-
ware Synthesis Using Reed–Solomon Decoder,” Embedded Systems Letters,
IEEE, vol. 2, no. 3, pp. 72–76, 2010.

[43] Altera, “ModelSim-Altera Software,” http://www.altera.com/products/software/
quartus-ii/modelsim/qts-modelsim-index.html, retrieved online on 14-Jan-
2012, 2012.

[44] K. V. Ling, S. P. Yue, and J. Maciejowski, “An FPGA Implementation of
Model Predictive Control,” In Proc. American Control Conference, pp. 1930–
1935, 2006.

[45] G. A. Constantinides, “Tutorial paper: Parallel architectures for model pre-
dictive control,” in Proceedings of the European Control Conference, Budapest,
2009, pp. 138–143.

[46] W. P. Marnane, C. Jordan, and F. O’Reilly, “Compiling regular arrays onto
FPGAs,” in Field-Programmable Logic and Applications. Springer, 1995, pp.
178–187.

[47] S. Stark and A. N. Beris, “LU decomposition optimized for a parallel computer
with a hierarchical distributed memory,” Parallel computing, vol. 18, no. 9,
pp. 959–971, 1992.

[48] M. C. Chen, “Placement and interconnection of systolic processing elements:
A new LU-decomposition algorithm,” in Proc. IEEE Int. Conf. on Computer
Design (ICCD86), 1986, pp. 275–281.

[49] M. Mosleh, S. Setayeshi, and M. Kheyrandish, “Presenting a Systematic
Method for LU Decomposition of a Matrix with Linear Systolic Arrays,” in Ad-
vanced Computer Theory and Engineering, 2008. ICACTE’08. International
Conference on. IEEE, 2008, pp. 123–127.

Nanyang Technological University Singapore

Bibliography 101

[50] A. Irturk, J. Matai, J. Oberg, J. Su, and R. Kastner, “Simulate and eliminate:
A top-to-bottom design methodology for automatic generation of application
specific architectures,” Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on, vol. 30, no. 8, pp. 1173–1183, 2011.

[51] A. U. Irturk, “GUSTO: General architecture design Utility and Synthesis Tool
for Optimization,” Doctoral thesis, University Of California, San Diego, 2009.

[52] S. Choi and V. K. Prasanna, “Time and energy efficient matrix factorization
using FPGAs,” in Field Programmable Logic and Application. Springer, 2003,
pp. 507–519.

[53] M. K. Jaiswal and N. Chandrachoodan, “FPGA-based high-performance and
scalable block LU decomposition architecture,” Computers, IEEE Transac-
tions on, vol. 61, no. 1, pp. 60–72, 2012.

[54] A. C. R.Clint Whaley, “Automatically Tuned Linear Algebra Software (AT-
LAS),” http://math-atlas.sourceforge.net/, retrieved online on 25/03/2014,
2011.

[55] Intel Corporation, “Math Kernel Library (MKL),”
http://software.intel.com/en-us/intel-mkl, retrieved online on 25/03/2014,
2011.

[56] B. Fang, S. Chen, and X. Wei, “Single-precision LU decomposition based
on FPGA compared with CPU,” in Computational Problem-Solving (ICCP),
2012 International Conference on. IEEE, 2012, pp. 302–305.

[57] G. Wu, Y. Dou, J. Sun, and G. D. Peterson, “A high performance and mem-
ory efficient LU decomposer on FPGAs,” Computers, IEEE Transactions on,
vol. 61, no. 3, pp. 366–378, 2012.

[58] G. Wu, Y. Dou, and G. D. Peterson, “Blocking LU decomposition for FP-
GAs,” in Field-Programmable Custom Computing Machines (FCCM), 2010
18th IEEE Annual International Symposium on. IEEE, 2010, pp. 109–112.

[59] W. Zhang, V. Betz, and J. Rose, “Portable and scalable FPGA-based accel-
eration of a direct linear system solver,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 5, no. 1, p. 6, 2012.

[60] J. Humberto and G. Romero, “A comparative study of two wavefront imple-
mentations of a LU solver algorithm,” in CONPAR 90VAPP IV. Springer,
1990, pp. 672–681.

[61] G. Wu, Y. Dou, Y. Lei, J. Zhou, M. Wang, and J. Jiang, “A fine-grained
pipelined implementation of the LINPACK benchmark on FPGAs,” in Field
Programmable Custom Computing Machines, 2009. FCCM’09. 17th IEEE
Symposium on. IEEE, 2009, pp. 183–190.

Nanyang Technological University Singapore

102 Bibliography

[62] J. J. Dongarra, “The linpack benchmark: An explanation,” in Supercomputing.
Springer, 1988, pp. 456–474.

[63] C. Wan, “Systolic algorithms and applications,” Doctoral thesis, University
of Loughborough University, 1996.

[64] Y.-G. Tai, C.-T. Dan Lo, and K. Psarris, “Scalable matrix decompositions
with multiple cores on FPGAs,” Microprocessors and Microsystems, 2012.

[65] Y. Dou, J. Zhou, G.-M. Wu, J.-F. Jiang, Y.-W. Lei, and S.-C. Ni, “A uni-
fied co-processor architecture for matrix decomposition,” Journal of Computer
Science and Technology, vol. 25, no. 4, pp. 874–885, 2010.

[66] M. Zubair and B. Madan, “Efficient systolic structures for LU decomposi-
tion and system of linear equations,” Circuits, Systems and Signal Processing,
vol. 7, no. 2, pp. 275–287, 1988.

[67] I. Bravo, P. Jimenez, M. Mazo, J. L. Lazaro, J. J. de las Heras, and A. Gardel,
“Different proposals to matrix multiplication based on FPGAs,” in Industrial
Electronics, 2007. ISIE 2007. IEEE International Symposium on. IEEE,
2007, pp. 1709–1714.

[68] E. Casseau and D. Degrugillier, “A linear systolic array for LU decomposi-
tion,” in VLSI Design, 1994., Proceedings of the Seventh International Con-
ference on. IEEE, 1994, pp. 353–358.

[69] D. Kim and S. V. Rajopadhye, “An improved systolic architecture for LU
decomposition,” in Application-specific Systems, Architectures and Processors,
2006. ASAP’06. International Conference on. IEEE, 2006, pp. 231–238.

[70] G. Valencia-Palomo, K. Hilton, and J. Rossiter, “Predictive control implemen-
tation in a PLC using the IEC 1131.3 programming standard,” in Proceedings
of The European Control Conference 2009, 2008, pp. 23–26.

[71] G. Valencia-Palomo and J. Rossiter, “Programmable logic controller imple-
mentation of an auto-tuned predictive control based on minimal plant infor-
mation,” ISA transactions, vol. 50, no. 1, pp. 92–100, 2011.

[72] A. Syaichu-Rohman and R. Sirius, “Model predictive control implementation
on a programmable logic controller for DC motor speed control,” in Electri-
cal Engineering and Informatics (ICEEI), 2011 International Conference on.
IEEE, 2011, pp. 1–4.

[73] M. Mrosko and E. Miklovičová, “Real-time implementation of predictive con-
trol using programmable logic controllers,” International Journal of Systems
Applications, Engineering & Development Issue 1, vol. 6, 2012.

Nanyang Technological University Singapore

Bibliography 103

[74] L. G. Bleris and M. V. Kothare, “Real-time implementation of model predic-
tive control,” in American Control Conference, 2005. Proceedings of the 2005.
IEEE, 2005, pp. 4166–4171.

[75] A. K. Abbes, F. Bouani, and M. Ksouri, “A microcontroller implementation of
constrained model predictive control,” IJ Electr. Electron. Eng, vol. 5, no. 3,
pp. 199–206, 2006.

[76] P. Zometa, M. Kogel, T. Faulwasser, and R. Findeisen, “Implementation as-
pects of model predictive control for embedded systems,” in American Control
Conference (ACC), 2012. IEEE, 2012, pp. 1205–1210.

[77] NVIDIA, “Compute Unified Device Architecture (CUDA) Parallel Computing
Platform,” http://www.nvidia.com, retrieved online on 25/03/2014, 2014.

[78] T. K. Group, “OpenCL,” https://www.khronos.org/opencl/, retrieved online
on 25/03/2014, 2014.

[79] Y. Huang, K. V. Ling, and S. See, “Solving Quadratic Programming Problems
On Graphics Processing Unit,” ASEAN Engineering Journal 2011, vol. 1,
no. 2.

[80] K. Turkington, G. A. Constantinides, K. Masselos, and P. Y. Cheung, “Outer
loop pipelining for application specific datapaths in FPGAs,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 10, pp. 1268–
1280, 2008.

[81] A. R. Lopes and G. A. Constantinides, “A high throughput FPGA-based float-
ing point conjugate gradient implementation,” in Reconfigurable Computing:
Architectures, Tools and Applications. Springer, 2008, pp. 75–86.

[82] D. Boland and G. A. Constantinides, “An FPGA-based implementation of the
MINRES algorithm,” in Field Programmable Logic and Applications, 2008.
FPL 2008. International Conference on. IEEE, 2008, pp. 379–384.

[83] A. Shahzad, E. C. Kerrigan, and G. A. Constantinides, “Preconditioners for
inexact interior point methods for predictive control,” in American Control
Conference (ACC), 2010. IEEE, 2010, pp. 5714–5719.

[84] J. Currie and D. I. Wilson, “A Model Predictive Control toolbox intended for
rapid prototyping,” in 16th Electronics New Zealand Conference (ENZCon
2009), 2009, pp. 7–12.

[85] J. Currie and D. Wilson, “Lightweight model predictive control intended for
embedded applications,” in The 9th International Symposium on Dynamics
and Control of Process Systems, Leuven, Belgium, 2010.

Nanyang Technological University Singapore

104 Bibliography

[86] D. Boland and G. A. Constantinides, “Optimizing memory bandwidth use
and performance for matrix-vector multiplication in iterative methods,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 4,
no. 3, p. 22, 2011.

[87] M. He and K. V. Ling, “Model predictive control on a chip,” in Control and
Automation, 2005. ICCA’05. International Conference on, vol. 1. IEEE,
2005, pp. 528–532.

[88] G. M. de Matos and H. C. Neto, “On reconfigurable architectures for effi-
cient matrix inversion,” in Field Programmable Logic and Applications, 2006.
FPL’06. International Conference on. IEEE, 2006, pp. 1–6.

[89] A. Wills, G. Knagge, and B. Ninness, “Fast linear model predictive control
via custom integrated circuit architecture,” Control Systems Technology, IEEE
Transactions on, vol. 20, no. 1, pp. 59–71, 2012.

[90] G. Knagge, A. Wills, A. Mills, and B. Ninness, “ASIC and FPGA imple-
mentation strategies for model predictive control,” in Proc. European Control
Conference, 2009.

[91] A. Wills, A. Mills, and B. Ninness, “FPGA Implementation of an Interior-
Point Solution for Linear Model Predictive Control,” in Preprints of the 18th
IFAC World Congress, Milano, Italy, 2011, pp. 14 527–14 532.

[92] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “FPGA implementa-
tion of an interior point solver for linear model predictive control,” in Field-
Programmable Technology (FPT), 2010 International Conference on. IEEE,
2010, pp. 316–319.

[93] A. R. Lopes, A. Shahzad, G. A. Constantinides, and E. C. Kerrigan, “More
flops or more precision? Accuracy parameterizable linear equation solvers
for model predictive control,” in Field Programmable Custom Computing Ma-
chines, 2009. FCCM’09. 17th IEEE Symposium on. IEEE, 2009, pp. 209–216.

[94] P. D. Vouzis, L. G. Bleris, M. G. Arnold, and M. V. Kothare, “A custom-
made algorithm-specific processor for model predictive control,” in Industrial
Electronics, 2006 IEEE International Symposium on, vol. 1. IEEE, 2006, pp.
228–233.

[95] L. G. Bleris, P. D. Vouzis, M. G. Arnold, and M. V. Kothare, “A co-processor
FPGA platform for the implementation of real-time model predictive control,”
in American Control Conference, 2006. IEEE, 2006, pp. 6–pp.

[96] K. S. L. Christopher, “Solving Interior Point Method on FPGA,” Masters
thesis, Nanyang Technological University Singapore, 2009.

Nanyang Technological University Singapore

Bibliography 105

[97] A. Mills, A. Wills, S. Weller, and B. Ninness, “Implementation of linear model
predictive control using a field-programmable gate array,” IET control theory
& applications, vol. 6, no. 8, pp. 1042–1054, 2012.

[98] J. Jerez, K.-V. Ling, G. Constantinides, and E. Kerrigan, “Model predictive
control for deeply pipelined field-programmable gate array implementation:
algorithms and circuitry,” Control Theory & Applications, IET, vol. 6, no. 8,
pp. 1029–1041, 2012.

[99] L. G. Bleris, M. V. Kothare, J. Garcia, and M. G. Arnold, “Embedded model
predictive control for system-on-a-chip applications,” Proceedings of the 7th
IFAC Symposium on Dynamics and Control of Process Systems (DYCOPS-
7), 2004.

[100] Y. H. Hu and S.-Y. Kung, “Systolic arrays,” in Handbook of Signal Processing
Systems. Springer, 2013, pp. 1111–1143.

[101] D. Boland and G. A. Constantinides, “Optimizing memory bandwidth use
and performance for matrix-vector multiplication in iterative methods,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 4,
no. 3, p. 22, 2011.

Nanyang Technological University Singapore

