
NANYANG TECHNOLOGICAL UNIVERSITY

Architecture Centric Coarse-Grained

FPGA Overlays

Abhishek Kumar Jain

School of Computer Science and Engineering

A thesis submitted to Nanyang Technological University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

January 2017

THESIS ABSTRACT

Architecture Centric Coarse-Grained FPGA Overlays

by

Abhishek Kumar Jain
Doctor of Philosophy

School of Computer Science and Engineering

Nanyang Technological University, Singapore

Coarse-grained FPGA overlays have emerged as one possible solution to make

FPGAs more accessible to application developers who are accustomed to software

API abstractions and fast development cycles. Existing overlay architectures of-

fer a number of advantages for general purpose hardware acceleration because of

software-like programmability, fast compilation, application portability, and im-

proved design productivity, but at the cost of area and performance overheads

due to limited consideration for the underlying FPGA architecture. This the-

sis explores coarse grained overlays designed using the flexible DSP48E1 primi-

tive on Xilinx FPGAs, allowing pipelined execution of compute kernels at signif-

icantly higher throughput. We first evaluate an open source overlay architecture,

DySER, mapped on the Xilinx Zynq device and show that DySER suffers from

a significant area and performance overhead due to limited consideration for the

underlying FPGA architecture. Next, we design and implement a more FPGA

targeted overlay architecture that maximizes the peak performance and reduces

the interconnect area overhead through the use of an array of DSP block based

fully pipelined functional units and an island-style coarse-grained routing net-

work. As the interconnect of the island-style overlay is still excessive, we next

explore novel interconnect architectures to further reduce the interconnect area.

We next develop DeCO, a cone shaped cluster of FUs, which shows 87% savings

in LUT requirements compared to our island-style overlay, for a set of compute

kernels. Our experimental evaluation shows that the proposed overlays exhibit

frequencies close to the DSP theoretical limit and achieve high performance with

significantly reduced area overheads. We also present a methodology for compiling

high level language (C/OpenCL) descriptions of compute kernels onto DSP block

based coarse-grained overlays. Our mapping flow provides a rapid, vendor inde-

pendent mapping to the overlay, raising the abstraction level while also reducing

compilation time significantly, hence addressing the design productivity issue.

Acknowledgements

First and foremost, I take this opportunity to thank my supervisor Associate

Professor Douglas Leslie Maskell for giving me the opportunity to work in the

area of reconfigurable computing, and then, expertly guiding me through this

journey. His enthusiastic support and strong encouragement helped me carry out

my research with composure and confidence. He has been appreciative of my ideas

and encouraged critical thinking and creative writing, which have helped me to

improve my skills. I would have not been able to complete my research work

successfully without his support and directions.

I would also like to thank Associate Professor Suhaib A Fahmy, my co-supervisor,

for his professional guidance, continuous support, effective suggestions, construc-

tive criticism and timely help. He has been ever generous in taking out time to help

me correct my mistakes and improve my technical writing. My grateful thanks are

also extended to Dr. Kyle Rupnow for his constructive criticism, encouragement

and endless support. I appreciate the suggestions of my mentors and especially

the time they have taken to help me correct my mistakes and improve my writing

skills.

I would also like to express appreciation for my friends and colleagues at Hardware

and Embedded Systems Lab (HESL), especially Ronak Bajaj, Shreejith Shanker,

Vipin Kizheppat, Abhishek Ambede, Sumedh Dhabu, Rakesh Varier, Sanjeev Ku-

mar Das, Liwei Yang, Xiangwei Li, Vikram Shenoy Handiru, Supriya Sathya-

narayana, Kratika Garg, Saru Vig and Tushar Chouhan for their invaluable sup-

port and encouragement. I am also thankful to our laboratory executive, Chua

Ngee Tat, for his priceless technical assistance.

Finally, I am indebted to my family and my parents for their prayers and encour-

agement. I thank them for their understanding and their efforts to support me in

pursuing higher studies.

v

Contents

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . 6

1.2 Objectives . 7

1.3 Contributions . 8

1.4 Thesis Organization . 10

1.5 Publications . 11

2 Background and Literature Review 13

2.1 FPGAs in Heterogeneous Computing Platforms 14

2.1.1 Raising the Level of Programming Abstraction 17

2.1.2 Communication Interfaces and Runtime Management 19

2.2 Key Barriers to Mainstream Use of FPGAs 21

2.3 Coarse-Grained Reconfigurable Architectures 24

2.4 Coarse-Grained FPGA Overlays . 27

2.5 Time-multiplexed Coarse-Grained Overlays 31

2.5.1 Nearest-neighbor Style Interconnect Based 32

2.5.2 Customized Topology Based 34

2.6 Spatially-configured Coarse-Grained Overlays 36

2.6.1 Nearest-neighbor Style Interconnect Based 37

2.6.2 Island Style Interconnect Based 40

2.7 Summary . 47

3 Adapting the DySER Architecture as an FPGA Overlay 49

3.1 Introduction . 49

3.2 The DySER Architecture . 51

3.2.1 DySER Switch . 51

3.2.2 DySER Functional Unit . 52

3.3 DSP Block Based DySER (DSP-DySER) 54

3.3.1 DSP48E1 Based Functional Unit 55

3.3.2 Analysis of Performance Improvement 56

3.4 Scalability Analysis . 59

3.5 Area Overhead Quantification . 62

3.6 Summary . 65

vii

viii CONTENTS

4 Throughput Oriented FPGA Overlays Using DSP Blocks 67

4.1 Introduction . 67

4.2 DSP Block Based Island-Style Overlay (DISO) 70

4.2.1 Island-style Interconnect Architecture 71

4.2.2 DSP Block Based Functional Unit 71

4.2.3 Architectural Optimization and Design Issues 72

4.2.4 Mapping to the FPGA Fabric and Resource Usage 74

4.3 Analysis of Compute Kernels . 78

4.4 Dual-DSP Block Based Island-Style Overlay (Dual-DISO) 84

4.4.1 Dual-DSP Block Based Functional Unit 85

4.4.2 Resource Usage when Mapped to the FPGA Fabric 86

4.4.3 Discussion . 89

4.5 Evaluating Kernel Mapping . 91

4.5.1 DISO . 92

4.5.2 Dual-DISO . 97

4.6 Summary . 99

5 Low Overhead Interconnect for DSP Block Based Overlays 103

5.1 Introduction . 103

5.2 Interconnect Architecture Analysis 105

5.2.1 Programmability Overhead Modeling 107

5.2.2 Set-specific Overlay Design 108

5.3 The DeCO Architecture . 111

5.3.1 The 32-bit Architecture . 111

5.3.2 The 16-bit Architecture . 114

5.4 Experimental Evaluation . 116

5.4.1 Overlay Comparison and Analysis for Benchmark Set 119

5.4.2 Mapping Additional Compute Kernels on to the DeCO . . . 121

5.5 Summary . 122

6 Mapping Tool for Compiling Kernels onto Overlays 125

6.1 Introduction . 125

6.2 Compiling Kernels to the Overlays 129

6.2.1 DFG Extraction From a Kernel Description 130

6.2.2 DFG Mapping onto the Overlay 133

6.2.2.1 DFG to FU-aware DFG Transformation 133

6.2.2.2 Resource-aware FU Netlist Generation From FU-
aware DFG . 135

6.2.2.3 Placement and Routing of the FU Netlist to the
Overlay . 138

6.2.2.4 Latency Balancing 139

6.2.2.5 Configuration Generation 141

6.3 Experiments . 141

6.4 Summary . 144

CONTENTS ix

7 Conclusions and Future Research Directions 147

7.1 Summary of Contributions . 148

7.1.1 Adapting the DySER Architecture as an FPGA Overlay . . 148

7.1.2 Throughput Oriented FPGA Overlays Using DSP Blocks . . 149

7.1.3 Low Overhead Interconnect for DSP Block Based Overlays . 150

7.1.4 Mapping Tool for Compiling Kernels onto Overlays 151

7.2 Future Research Directions . 152

7.2.1 Using DSP Blocks for Building Time-multiplexed Overlays . 152

7.2.2 Interfacing Overlays to a Host Processor 154

7.2.3 OpenCL Driver and Runtime for Overlays 154

Bibliography 157

List of Figures

2.1 Different levels of coupling for reconfigurable fabric in a heteroge-
neous platform. 15

2.2 Placement and routing on (a) fine-grained (b) coarse-grained archi-
tecture. 24

2.3 Coarse-grained FPGA overlay architecture. 28

2.4 Categorization of coarse-grained FPGA overlays. 31

2.5 Datapath merging for QUKU overlay generation. 38

2.6 Internal architecture of the DSP block. 45

3.1 DySER architecture. 52

3.2 Functional unit architecture. 53

3.3 Mapping of kernels on DySER architecture. 54

3.4 Physical mapping of the functional unit on FPGA. 55

3.5 DSP48E1 based functional unit architecture. 56

3.6 Physical mapping of the enhanced functional unit on FPGA. 57

3.7 Physical mapping of the DSP-DySER tile on FPGA. 58

3.8 % Resource usage of Zynq-7020 for 16-bit DySER. 60

4.1 Overlay architecture. 70

4.2 Functional unit architecture. 72

4.3 Resource usage and frequency of DISO architecture on the Zynq. . . 77

4.4 DSP48E1 aware DFG generation. 82

4.5 I/O scalability analysis. 83

4.6 DSP scalability analysis (4N architecture). 83

4.7 DSP scalability analysis (8N architecture). 83

4.8 Architecture of Dual-DSP block based functional unit. 86

4.9 Zynq-7020 CW2-4N-2D Dual-DISO overlay scalability results. . . . 88

4.10 Zynq-7020 CW4-4N-2D Dual-DISO overlay scalability results. . . . 88

4.11 Physical mapping of Dual-DISO overlay on Zynq fabric. 90

4.12 Comparison of interconnect area overhead. 91

4.13 The number of tiles required for the kernels in table 4.4. 92

4.14 Comparison of overlay resources required for the benchmark set. . . 93

4.15 Benchmark set-I mapped on DISO-I. 94

4.16 Benchmark set-II mapped on DISO-II. 94

4.17 Normalized throughput of DISO overlay implementations over Vi-
vado HLS implementations. 97

xi

xii LIST OF FIGURES

4.18 The performance comparisons of the CW2-4N-2D overlay and Vi-
vado HLS implementations. 98

5.1 Block diagram of linear dataflow overlay. 106

5.2 Applied transformations including graph balancing and DSP aware
node merging. 109

5.3 Design of the optimized cone. 110

5.4 Mapping of kmeans on DISO vs DeCO. 111

5.5 The 32-bit functional unit and interconnect switch. 113

5.6 The 16-bit functional unit and interconnect switch. 114

5.7 Micro-architectural design of the 16-bit cluster consisting of four
functional units and two delay lines. 115

5.8 Mapping of DeCO on Zynq. 117

5.9 Comparison of overlay resources required for the benchmark set. . . 119

6.1 Mapping flow. 134

6.2 FU aware mapping, placement and routing on overlay. 136

6.3 An example of resource-aware replication of an FU-aware DFG. . . 137

6.4 Overlay resource graph corresponding to Figure 6.2(d). 140

6.5 Comparison of PAR times (in seconds). 142

6.6 Effect of Chebyshev kernel replication on PAR time 143

6.7 Architecture, implemented on the Zynq, consisting of an overlay
whose size and FU type can be exposed by OpenCL runtime. 143

6.8 Performance scaling by the compiler using overlay size information
provided by the OpenCL runtime. 144

7.1 C code section for the ‘gradient’ benchmark 153

7.2 DFG for the ‘gradient’ benchmark 153

List of Tables

3.1 Benchmark characteristics . 53

3.2 DSP48E1 configuration for each operation 57

3.3 Resource usage for 16-bit DSP-DySER on Zynq-7020 59

3.4 Quantitative comparison of overlays 61

3.5 Experimental results for the Vivado-HLS implementations of the
benchmark set . 62

3.6 Determining MOPS/eSlice for the Vivado-HLS implementations of
the benchmark set . 64

4.1 FPGA resource usage for DISO overlay components having CW=2
and CW=4 . 74

4.2 FPGA resource usage for DISO overlays with CW=2 76

4.3 FPGA resource usage for DISO overlays with CW=4 76

4.4 The characteristics of the benchmarks 79

4.5 Kernel benchmarks . 80

4.6 Linear algebra kernels . 81

4.7 FPGA resource usage for Dual-DISO overlay components 87

4.8 Quantitative comparison of overlays 90

4.9 Experimental results for DISO implementations of the benchmark set 94

4.10 Code used for generating RTL using Vivado HLS for chebyshev . . . 95

4.11 Determining MOPS/eSlice for the Vivado-HLS implementations of
the benchmark set . 96

5.1 DFG characteristics of benchmark set 109

5.2 Quantitative comparison of DeCO with other overlays 118

5.3 Experimental results for the comparison of different implementations120

5.4 Experimental results for mapping benchmarks 122

6.1 Code descriptions for DFG extraction from C 131

6.2 Code descriptions for DFG extraction from OpenCL 132

6.3 Compute kernel DFG description 133

6.4 FU-aware DFG description for single-DSP FU 135

6.5 FU Netlist . 137

6.6 Architecture description of the overlay 139

xiii

List of Abbreviations

ALAP As Late As Possible

ALM Adaptive Logic Module

ALU Arithmetic and Logic Unit

ALUT Adaptive Look Up Table

API Application Programming Interface

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

CB Connection Box

CBCR Connection Box Configuration Register

CGRA Coarse Grained Reconfigurable Architecture

CLB Configurable Logic Block

CPU Central Processing Unit

CU Compute Unit

CW Channel Width

DeCO DSP enabled Cone-shaped Overlay

DF Data Forwarding

DFG Data Flow Graph

DISO DSP block based Island-Style Overlay

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processing

Dual-DISO Dual-DSP block based Island-Style Overlay

DySER Dynamically Specialized Execution Resources

FF Flip Flop

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array

FPU Floating Point Unit

xv

xvi LIST OF ABBREVIATIONS

FU Functional Unit

FUCR Functional Unit Configuration Register

GOPS Giga Operations Per Second

GPP General Purpose Processor

GPU Graphics Processing Unit

GUI Graphical User Interface

HDL Hardware Description Language

HLL High Level Language

HLS High Level Synthesis

IF Intermediate Fabric

II Initiation Interval

ILP Integer Linear Programming

IoT Internet of Things

JIT Just In Time

LUT Look Up Table

MIMD Multiple Instruction, Multiple Data

MOPS Million Operations Per Second

MPPA Massively Parallel Processor Array

NN Nearest Neighbor

NRE Non Recurring Engineering

OS Operating System

PAR Placement And Routing

PE Processing Element

POB Programmability Overhead per Bit

PR Partial Reconfiguration

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SB Switch Box

SBCR Switch Box Configuration Register

SC Spatially Configured

SIMD Single Instruction, Multiple Data

SoC System on Chip

SoPC System on Programmable Chip

SRL Shift Register LUT

TM Time Multiplexed

VLIW Very Long Instruction Word

VPR Versatile Place and Route

1
Introduction

With the advancements in technology, parallel processing platforms such as graph-

ics processing units (GPUs) [1, 2] and massively parallel processor arrays (MP-

PAs) [3, 4, 5, 6] are gaining popularity for accelerated execution of compute-

intensive applications. However these platforms are unable to meet the ever in-

creasing demand for computing power within a tight power budget. The perfor-

mance gains achieved by adding more cores inside a computing platform come at

the cost of rapidly scaling complexities to the inter-core communication, memory

coherency and, most importantly, the power consumption. Application specific ac-

celerators used to be preferred due to area, speed and energy efficiency [7, 8] and

were deployed as an Application Specific Integrated Circuit (ASIC) block alongside

a general purpose processor (GPP) [9, 10]. However, developing dedicated ASIC

accelerators has become less practical due to the long turnaround time and high

1

2 1 Introduction

cost associated with ASIC development. Field Programmable Gate Arrays (FP-

GAs), which allow the implementation to be modified post-deployment [11, 12, 13],

are now more commonly used for rapid-prototyping of application specific acceler-

ators. Some of the key advantages of FPGAs over other available platforms include

reprogrammability compared to ASICs, lower power consumption than multicore

processors and GPUs, real-time execution, and most importantly, the high spa-

tial parallelism which can be used to significantly accelerate compute-intensive

algorithms [14]. For more than a decade, researchers have shown that FPGAs

can accelerate a wide variety of applications, in some cases by several orders of

magnitude compared to state-of-the-art GPPs [15, 16, 17, 18, 19].

The gap between FPGAs and ASICs is shrinking with each new generation of

FPGAs [16] due to advancements in process technologies, evolutions in the FPGA

architecture, and the rising cost and complexity of ASIC design. As a result, FP-

GAs are now used for implementing large complex circuits, and are being deployed

in production systems, replacing ASICs in areas like networking, where algorithms

and protocols change quickly making them less feasible for ASIC implementa-

tion [20, 21]. The high non-recurring engineering (NRE) costs, high manufacturing

costs, and long design time for ASICs are also motivating designers to use more

FPGAs, for which the turn-around time is much reduced. The geometric growth

in the logic density in FPGAs and the inclusion of coarse grained hard macros,

such as Block RAMs and digital signal processing (DSP) Blocks [22], now makes

FPGA a viable alternative to ASIC implementations for many compute-intensive

circuits [23, 24, 25, 26, 27, 28].

This rapidly increasing logic density and the more capable hard resources in mod-

ern FPGA devices should make them more widely deployable. However, FPGAs

remain constrained within specialist application domains, such as digital signal

processing and communications. This is because accelerator design is a complex

process, requiring low-level hardware device expertise and specialist knowledge of

both hardware and software systems, resulting in major design productivity issues.

High level synthesis (HLS) [29, 30, 31, 32, 33] has been proposed to address the

1 Introduction 3

design productivity issue and has helped to simplify accelerator design by rais-

ing the level of programming abstraction from RTL to high level languages, such

as C/C++/OpenCL. These tools allow the functionality of an accelerator to be

described at a higher level to reduce developer effort, enable design portability, en-

able rapid design space exploration, thus improving productivity, verifiability, and

flexibility. Even though HLS tools have improved in efficiency, allowing designers

to focus on high level functionality instead of low-level implementation details, the

prohibitive compilation times (specifically the place and route times in the back-

end flow) have largely been ignored and are now a major productivity bottleneck

that prevents designers from using mainstream design and debug methodologies

based on rapid compilation. As such, HLS techniques are generally limited to

static reconfigurable systems [34].

Another major stumbling block is the lack of a suitable abstraction at the hard-

ware computing level, to eliminate the reliance on platform-specific detail, as has

been achieved with server and desktop virtualization [35, 36, 37]. A key exam-

ple of virtualization in a modern paradigm is cloud computing [38], where virtual

resources are available on demand, with runtime mapping to physical systems

abstracted from the user. So far, virtualization has focused primarily on conven-

tional processor-based computing systems where high level management of com-

puting tasks is supported by having a number of abstraction layers at different

abstraction levels. However there is no agreed upon abstraction for FPGA fabrics.

One of the major benefits of FPGA as a rapidly reconfigurable hardware accelera-

tor is to utilize the ability to partially and dynamically reconfigure the functionality

of the FPGA fabric. Initial implementations of dynamic reconfiguration [39, 40]

required the reconfiguration of the complete hardware fabric. This resulted in sig-

nificant configuration overhead, which severely limited its usefulness. Xilinx then

introduced the concept of dynamic partial reconfiguration (DPR) which reduced

the configuration time by allowing a smaller region of the fabric to be dynamically

reconfigured at runtime. The concept of DPR on FPGA is to use it as a virtual

hardware element, implementing applications which are larger than the available

4 1 Introduction

hardware resources. While DPR significantly improved reconfiguration perfor-

mance [41], the efficiency of the traditional design approach for DPR is heavily

impacted by how a design is partitioned and floorplanned [42, 43], tasks that re-

quire FPGA expertise. Furthermore, the commonly used configuration mechanism

is highly sub-optimal in terms of throughput [44]. Unfortunately, the potential to

use dynamic reconfiguration to adapt FPGA operation to changing application

requirements has been hampered by slow reconfiguration times, poor CAD tool

support, and large configuration file sizes, making dynamic reconfiguration difficult

and inefficient.

In an accelerator context, this concept of being able to modify the behaviour

at runtime by swapping in and out different accelerators and reusing the FPGA

resources for multiple tasks [45, 46, 47, 48, 49, 50] is an advantage. A large

application may need to be decomposed into several smaller hardware tasks, each

of which is mapped to a temporal FPGA partition [51, 52] and executed in a time

multiplexed manner under the control of an operating system (OS) which normally

runs on a host processor [51, 52, 53, 54, 55]. While such ideas have been explored

in the past, modern hybrid FPGAs are the first commercial platforms to enable

this move to a more software oriented view. The combination of a GPP tightly

coupled with high performance reconfigurable FPGA fabric, referred to as system

on programmable chip (SoPC) [56], represents a possible solution to both high-end

server-based computing [57, 58, 59] (where the performance curve of traditional

server processors has begun to plateau) and high performance front-end processing

for applications in the Internet-of-Things (IoT) domain (where performance and

power are critical). A recent example of this from the server domain is Microsoft’s

Catapult, which is a server augmented with FPGAs to accelerate the Bing search

engine [59]. The age old quest of building a computing platform [60] which can

allow hardware resources to be tailored at runtime to perform a specific task in

an efficient manner is now becoming part of the mainstream narrative.

However, despite the many accelerator success stories, there is a growing need

to make FPGA hardware resources in a heterogeneous platform more accessible

to application developers who are accustomed to software API abstractions and

1 Introduction 5

fast development cycles [61]. The lack of platform abstraction and application

portability prevents design reuse and adoption of these platforms for mainstream

computing. Hence there is a need to relook at how to exploit the key advan-

tages of the FPGA resources while abstracting implementation details within a

software-centric processor-based system to achieve improved design productivity

beyond what is achievable using HLS Tools. One possible solution is to treat the

execution and management of software and hardware tasks in the same way, using

an OS such that the hardware fabric is viewed as just another software-managed

task [62, 63]. This enables more shared use, while ensuring better isolation and

predictability. This run-time management, including FPGA configuration and in-

terprocess data communication, was recently demonstrated for the Linux OS [62]

using a coarse grained FPGA overlay. The use of an overlay, a programmable

coarse-grained hardware abstraction layer on top of the FPGA, resulted in better

application management, and has the potential for allowing portability across de-

vices, software-like programmability through mapping from high-level descriptions,

better design reuse, fast compilation by avoiding the complex FPGA implemen-

tation flow, and hence, improved design productivity. Another main advantage is

rapid reconfiguration since the overlay architectures have a smaller configuration

data size due to the coarse granularity.

Coarse-grained overlays have developed from ASIC-based coarse-grained reconfig-

urable architectures (CGRAs) [64, 65, 66, 51, 67, 68] in both the architectural

choices and execution style. The key features that enabled CGRAs to address sig-

nal processing and high performance computing problems more efficiently include:

energy efficiency, the ease of programming and application mapping [69, 70, 71],

fast compilation and reconfiguration. CGRAs have not been successfully adopted

as general purpose accelerators and instead are mainly seen as a component in

SoCs for efficiently implementing a specific range of DSP functions as part of a

larger system. This is because these functional units (FUs) are often too applica-

tion specific making it difficult to find a particular configuration that suits a wide

range of applications for the approach to be viable as a stand-alone product.

6 1 Introduction

On the other hand, coarse-grained FPGA overlays are basically pre-implemented

programmable components built on top of the FPGA hardware resources and

can take many forms, including, soft-core processors, an array of programmable

ALUs/processors [72], networks etc. Generally, these overlays consist of a reg-

ular arrangement of coarse grained routing and compute resources and in many

cases an array of programmable FUs interconnected using a programmable inter-

connect architecture, similar to CGRA. The concept of a coarse-grained overlay

is to use the FPGA as a programmable accelerator, instead of just as a hard-

wired application specific accelerator. Coarse-grained overlays also attempt to

replace the accelerator design problem with a problem of programming an array

of ALUs/processors.

1.1 Motivation

Even though research into FPGA overlay architectures has increased over the

last decade, the field is still in its infancy with only a relatively few overlay ar-

chitectures demonstrated in prototype form [63, 73, 74]. Area and performance

overheads have, however, prevented the realistic use of most of the overlays in

practical FPGA-based systems. One of the reasons for this poor performance is

that overlays are typically designed without serious consideration of the underlying

FPGA architecture.

Embedded hard macros such as DSP blocks have been added to FPGAs in recent

years. By building often used functions into optimised compact primitives, area,

performance, and power advantages are achieved over equivalent “soft” imple-

mentations in the logic fabric. Many existing overlay architectures [63, 73, 74, 75]

do not specifically use these macros, except insofar as they are inferred by the

synthesis tools. However, it is well known that inference of hard macros by syn-

thesis tools does not result in optimal throughput [76]. This thesis explores how

the Xilinx DSP48E1 primitive can be used, at near to its theoretical limits, as a

1 Introduction 7

programmable processing element (PE) to build efficient overlay architectures for

pipelined execution of compute kernels.

For FPGA overlays to play a full-featured role alongside general purpose proces-

sors, it is essential that their key advantages be available in an abstracted manner

that enables scaling, and makes them accessible to a wider audience. Our work

explores how area and performance efficient overlays and automated mapping tech-

niques can be used to improve design productivity. This is done by abstracting

the complexity away from the designer, enabling overlay architectures to be ex-

ploited as a programmable accelerator alongside general purpose processors, within

a software-centric runtime framework. This new design methodology approaches

the fabric from the perspective of software-managed hardware tasks, enabling more

shared use, while ensuring high performance and improved design productivity.

In this work, we aim to investigate novel techniques to design area and perfor-

mance efficient FUs and interconnect architectures leading to high performance

coarse-grained overlays. This will require the development of various types of

coarse-grained overlays and automated mapping techniques. We have identified

several challenges associated with the development of high performance FPGA

overlays which can only be overcome by thorough investigation of associated over-

heads (mainly area and performance overheads) and efficient automated mapping

techniques. We will then see how we can expose and effectively exploit the mas-

sively parallel architecture provided by the programmable overlay built on top of

the FPGA fabric.

1.2 Objectives

The high level objective of this thesis is to develop area and performance efficient

FPGA overlays to be deployed in a heterogeneous computing platform as a high

performance programmable accelerator which can allow rapid compilation and

fast context switching while improving accelerator design productivity. The main

objectives are as follows:

8 1 Introduction

• Classify FPGA overlays (existing in the literature) based on their architec-

ture and execution style and identify performance metrics.

• Evaluate open source FPGA overlays in terms of area and performance over-

heads and develop techniques to improve the performance metrics.

• Demonstrate how the Xilinx DSP48E1 primitive can be used, at near to

its theoretical limits, as a programmable PE to build an efficient overlay

architecture for pipelined execution of compute kernels.

• Design a flexible and scalable interconnect architecture for an array of DSP

block based fully pipelined FUs and evaluate the area overheads of the in-

terconnect on a commercial FPGA device.

• Explore the possibility of developing larger, more efficient, overlays using

multiple DSP blocks within each FU, maximising utilisation by mapping

multiple instances of kernels simultaneously onto the overlay to exploit kernel

level parallelism.

• Develop novel interconnect architectures for exploring area overheads versus

flexibility trade-offs, while still allowing maximum kernel throughput.

• Develop methodologies for fast compilation of high level language (HLL)

description of compute kernels onto developed overlays to raise the level of

programming abstraction and improving design productivity.

Since the focus of the thesis is to improve the performance of the overlays while

reducing the area overheads, the scope of this thesis does not include issues such

as the design of high speed communication interfaces for the overlays.

1.3 Contributions

The main contributions of this thesis are novel architectures and tools with focus

on developing area and performance efficient overlays while reducing interconnect

area overheads and improving peak performance. The contributions are as follows:

1 Introduction 9

• Design and implementation of an improved FU architecture using the flexi-

bility of the DSP48E1 primitive which results in a 2.5 times frequency im-

provement and 25% area reduction compared to the original FU architecture.

Our adapted version of a 6x6 16-bit DySER was implemented on a Xilinx

Zynq by using a DSP block as the compute logic, referred to as DSP-DySER,

providing a peak performance of 6.3 GOPS with an interconnect area over-

head of 7.6K LUTs/GOPS.

• Design and implementation of a more FPGA targeted overlay architecture

that maximizes the peak performance and reduces the interconnect area

overhead. This is achieved through the use of an array of DSP block based

fully pipelined FUs and an island-style coarse-grained routing network, re-

sulting in a peak performance of 65 GOPS (10x better than DSP-DySER)

with an interconnect area overhead of 430 LUTs/GOPS (18x better than

DSP-DySER).

• Experiments to explore the possibility of developing larger, more efficient,

overlays using multiple DSP blocks within each FU, maximising utilisation

by mapping multiple instances of kernels simultaneously onto the overlay

to exploit kernel level parallelism. By utilizing two DSP blocks within each

FU, we show a significant improvement in achievable overlay size and overlay

utilisation, with a reduction of almost 70% in the overlay tile requirement

compared to existing overlay architectures, an operating frequency in excess

of 300 MHz, and a peak performance of 115 GOPS with an interconnect area

overhead of 320 LUTs/GOPS.

• DeCO, a cone shaped cluster of FUs utilizing a simple linear interconnect

which reduces the area overheads for implementing compute kernels ex-

tracted from compute-intensive applications represented as directed acyclic

dataflow graphs, while still allowing high data throughput. The proposed

overlay exhibits an achievable frequency of 395 MHz, close to the DSP theo-

retical limit on the Xilinx Zynq, achieving a peak performance of 260 GOPS

with an interconnect area overhead of just 60 LUTs/GOPS.

10 1 Introduction

• A methodology for compiling high level language (C/OpenCL) descriptions

of compute kernels onto DSP block based coarse-grained overlays, rather

than directly to the FPGA fabric. Our mapping flow provides a rapid,

vendor independent mapping to the overlay, raising the abstraction level

while also reducing compile times significantly, hence addressing the design

productivity issue.

1.4 Thesis Organization

The thesis is organised as follows. Chapter 2 discusses programmable accelerators

such as GPUs, MPPAs and FPGAs, followed by a detailed description of FPGA

hardware abstraction in the context of reconfigurable computing and research

performed in academia and industry on abstraction techniques for reconfigurable

computing. It then reviews various architectures and tools proposed in the area

of FPGA Overlays by presenting a classification based on the architecture and

execution style of overlays. Chapter 3 presentes the evaluation of an open source

overlay architecture, DySER, mapped on the Xilinx Zynq device and shows that

DySER suffers from a significant area and performance overhead due to the lim-

ited consideration for the underlying FPGA architecture. Chapter 4 presents a

more FPGA targeted overlay architecture that maximizes the peak performance

and reduces the interconnect area overhead through the use of an array of DSP

block based fully pipelined FUs and an island-style coarse-grained routing net-

work. Chapter 5 presents DeCO, a cone shaped cluster of FUs utilizing a simple

linear interconnect, to reduce the area overheads for implementing compute ker-

nels extracted from compute-intensive applications represented as directed acyclic

dataflow graphs, while still allowing high data throughput. Chapter 6 presents a

methodology for compiling high level language (C/OpenCL) descriptions of com-

pute kernels onto DSP block based coarse-grained overlays, rather than directly

to the FPGA fabric. Finally chapter 7 concludes our contributions and outlines

future research directions.

1 Introduction 11

1.5 Publications

The work presented in this thesis serves as a basis for manuscripts that have been

published in peer-reviewed journals and conference proceedings.

• A. K. Jain, X.Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER

Architecture with DSP Blocks as an Overlay for the Xilinx Zynq, in ACM

SIGARCH Computer Architecture News (CAN), vol. 43, no. 4, pp. 28-33,

September 2015. [77]

• A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient Overlay Architecture

Based on DSP Blocks, in Proceedings of the IEEE International Symposium

on Field Programmable Custom Computing Machines (FCCM), Vancouver,

Canada, May 2015. [78]

• A. K. Jain, D. L. Maskell, and S. A. Fahmy. Throughput Oriented FPGA

Overlays Using DSP Blocks, in Proceedings of the Design, Automation and

Test in Europe Conference (DATE), Dresden, Germany, March 2016. [79]

• A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. DeCO: A

DSP Block Based FPGA Accelerator Overlay With Low Overhead Intercon-

nect, in Proceedings of the IEEE International Symposium on Field Pro-

grammable Custom Computing Machines (FCCM), Washington DC, USA,

May 2016. [80]

• A. K. Jain, D. L. Maskell, and S. A. Fahmy. Are Coarse-Grained Overlays

Ready for General Purpose Application Acceleration on FPGAs?, in Pro-

ceedings of the IEEE International Conference on Pervasive Intelligence and

Computing, Auckland, New Zealand, August 2016. [81]

• X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy. An Area-Efficient FPGA

Overlay using DSP Block based Time-multiplexed Functional Units, in Pro-

ceedings of the Second International Workshop on Overlay Architectures for

FPGAs (OLAF), Monterey, CA, USA, Feb 2016. [82]

12 1 Introduction

• K. D. Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell. Microkernel

Hypervisor for a Hybrid ARM-FPGA Platform, in Proceedings of the IEEE

International Conference on Application-specific Systems, Architectures and

Processors (ASAP), Washington, DC, June 2013, pp. 219-226. [83]

• A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell. Virtualized

Execution and Management of Hardware Tasks on a Hybrid ARM-FPGA

Platform, in Journal of Signal Processing Systems (JSPS), vol. 77, no. 1-2,

pp. 6176, October 2014, Springer. [84]

2
Background and Literature Review

In this chapter, we first discuss the role of FPGAs in heterogeneous computing

platforms followed by FPGA-based accelerator design process. We then discuss

several efforts from academia and industry to simplify the accelerator design pro-

cess, specifically by raising the level of programming abstraction and by providing

efficient communication interfaces and runtime management techniques for FPGA-

based accelerators. We then discuss some of the key barriers to mainstream use of

FPGAs as a rapidly reconfigurable accelerator, mainly reconfiguration latency and

fine granularity. Finally, we discuss about coarse-grained reconfigurable devices

and coarse-grained FPGA overlays.

13

14 2 Background and Literature Review

2.1 FPGAs in Heterogeneous Computing Plat-

forms

Traditional homogeneous computing platforms perform all their computations us-

ing general purpose processors that typically follow a Von Neumann organisation.

Hence, they spend most of the time on non-computational tasks (handling data

movements, fetching and decoding instructions), with significant power spent on

non-computational units [85]. As technology limits have prevented further in-

creases in clock frequency, the performance gains achieved by adding more cores

come at the cost of rapidly scaling complexity in inter-core communication, mem-

ory coherency and, hence, power consumption. The strong need for increased com-

putational performance and energy efficiency has led to the use of heterogeneous

computing platforms that combine traditional CPUs with additional compute ar-

chitectures better able to accelerate computationally intensive tasks [86]. Exam-

ples are to use GPUs, MPPAs, floating-point units (FPUs), and cryptographic-

processing units as co-processors to the host processor. These co-processing com-

ponents usually incorporate specialized processing capabilities to handle particular

tasks. Complex functionality is also sacrificed, disabling their ability to run op-

erating systems, and they are typically managed by traditional CPUs to offload

compute-intensive parts of applications.

The use of accelerator architectures in heterogeneous computing platforms offers

a promising path towards improved performance and energy efficiency. One class

of solution includes programmable accelerators such as GPUs and MPPAs. Ap-

plications on MPPAs [3, 4, 5, 6] can achieve better energy efficiency relative to

conventional processors and GPUs. Another class of solution dedicates highly ef-

ficient custom-designed application-specific accelerator for computing tasks. This

approach was preferable due to area, speed, and energy efficiency [7, 8] and these

were deployed as ASIC blocks alongside a GPP [9, 10]. However, developing dedi-

cated ASIC accelerators has become less practical due to the long turnaround time

and high cost associated with ASIC development, as well as the rapidly evolving

application space requiring flexibility.

2 Background and Literature Review 15

FPGAs, which allow the hosted accelerator to be modified post-deployment [11,

12, 13], are now more commonly used for rapid-prototyping of application specific

accelerators in heterogeneous computing platforms. FPGAs offer significant ad-

vantages in terms of sharing hardware between distinct isolated tasks, under tight

time constraints. Historically, reconfigurable resources available in FPGA fabrics

have been used to build high performance accelerators in specific domains, such as

communications and signal processing. These application domains have driven the

development of reconfigurable resources, from relatively simple modules to highly

parametrizable and configurable subsystems. While FPGAs started out as a ma-

trix of programmable processing elements, called configurable logic blocks (CLBs)

connected by programmable interconnect to configurable I/O, they have evolved

to also include a variety of processing macros, such as reconfigurable embedded

memories and DSP blocks to improve the efficiency of FPGA based accelerators.

One major concern in using FPGAs or FPGA-like reconfigurable fabrics within a

heterogeneous computing platform is data transfer bandwidth. The efficiency of

data transport depends on the level (rank) of coupling between the processor and

the reconfigurable fabric as discussed in [19] and shown in Figure 2.1.

Figure 2.1: Different levels of coupling for reconfigurable fabric in a heterogeneous
platform.

CHIMEARA [87] is an example of rank one coupling in which the reconfigurable

fabric is integrated within the processor micro-architecture. Garp [69] is an exam-

ples of rank two coupling in which the reconfigurable fabric acts as a co-processor

16 2 Background and Literature Review

which is able to perform computations without intervention of the main proces-

sor. PCI-PipeRench [88] is an example of rank three coupling, similar to multi-

processor systems, where the reconfigurable fabric is not connected directly with

the Cache. Finally Virtual Wires [89] is an example of rank four coupling in which

emulation is the main purpose. Efficient integration of the reconfigurable fabric to

the processor (lower the rank of the coupling) allows more frequent use due to low

latency and high bandwidth data transport. To address possible bottleneck prob-

lems, particularly in providing high bandwidth transfers between the CPU and the

commercial FPGA fabrics, a number of vendor specific systems with integrated

hard processors [56] have been proposed, referred to as hybrid FPGA platforms.

Such approaches mean FPGAs can be used in a much wider range of applica-

tions. However, in order to make better use of FPGA resources, virtualization is

an important issue to address.

In order to virtualize FPGA resources in hybrid FPGA platforms, it is necessary to

first understand how an application is typically implemented. The process starts

with deciding which parts should execute on the processor and the FPGA. This

is called hardware-software partitioning. The part that executes on the FPGA is

referred to as the hardware task and the one that executes on the processor is

the software task. The software task is then described in a high level language

(HLL) such as, C/C++ and the hardware task in a hardware description lan-

guage (HDL) like Verilog or VHDL. After compiling the software and hardware

tasks the software machine code must be loaded into processor memory and the

hardware configuration bitstream must be loaded into the configuration memory

of the FPGA. The configuration memory controls the low level features of the

FPGA fabric, determining the logic contents of the LUTs, how primitives are con-

nected, and which features are used. Within the software code, specific calls must

be made to the interfaces that couple the hardware portion with the processor.

And the hardware system must understand how to communicate using the same

protocol. Both data transfer and control occur over this hardware-software inter-

face. As more and more complex systems are being implemented on reconfigurable

2 Background and Literature Review 17

hardware, a significant amount of research effort is being focused on the following

aspects:

• How to abstract FPGA resources so that users do not need to deal with low

level details.

• How to describe hardware tasks at a higher level of abstraction to improve

design and verification.

• How to manage multiple tasks running simultaneously contending for access

to FPGA resources.

In order to answer these research questions and to develop a virtualized platform

framework, researchers are exploring the following key components:

• Abstracted computation and communication architectures that support time

multiplexing of hardware and fast context switching so that resources can

be shared.

• Tools that support the fast compilation of a high-level description of an

application onto hardware to support programming abstraction.

• Runtime systems which support task management in an isolated manner to

support management abstraction.

2.1.1 Raising the Level of Programming Abstraction

Virtualization of FPGA resources in hybrid FPGA platforms is motivated by the

fact that there is a dramatic growth in the functionality and performance of these

platforms. The rich functionality of these modern platforms, together with the

integration of reconfigurable logic, is creating a demand for efficient use of recon-

figurable hardware by employing virtualization techniques. However, the use of

FPGAs in modern platforms remains constrained within specialist application do-

mains, such as digital signal processing and communications. FPGA accelerators

are normally designed at a low level of abstraction (typically RTL) in order to

18 2 Background and Literature Review

obtain an efficient implementation, and this can consume more time and make

reuse difficult when compared to a similar software design. To build an FPGA

accelerator, designers typically start by manually converting the compute kernel

into an fully pipelined datapath, specified using a hardware description language

(HDL) such as Verilog or VHDL. The designer must specify the detailed structure

of the datapath and must also define control for reading inputs from memories

into buffers, stalling the datapath when buffers are full or empty, writing outputs

to memory, and so on. This description is at the level of individual bits and clock

cycles.

For a typical FPGA device, a fully pipelined datapath implementing just several

lines of C code may require 2–3 orders of magnitude more lines of HDL code, but

can achieve significantly better performance by pipelining and exploiting paral-

lelism. However this performance comes at the cost of significant design effort.

Hence accelerator design is a complex process, requiring low-level hardware de-

vice expertise and specialist knowledge of both hardware and software systems,

resulting in major design productivity issues. HLS tools [29, 30, 31, 32, 33] have

helped simplify accelerator design by raising the level of programming abstrac-

tion from RTL to high level languages, such as C or C++. These tools allow the

functionality of an accelerator to be described at a higher level to reduce devel-

oper effort, enable design portability, and enable rapid design space exploration,

thereby improving productivity, verifiability, and flexibility.

Raising the level of programming abstraction reduces the amount of information

required to describe the functionality of an accelerator, typically with a marginal

area and performance cost. For example, Bluespec [90] abstracts interface meth-

ods for control and concurrency, although it still describes cycle-level behavior of

resources. Higher level tools use languages such as C or C++ where timing is no

longer explicit. Vivado HLS is a commercial HLS tool, from Xilinx, which is nor-

mally used to generate application specific IP from algorithmic C specifications.

It not only generates RTL code but also provides an environment for automated

functional verification. It allows rapid design space exploration by rapidly gener-

ating different designs for different design choices.

2 Background and Literature Review 19

LegUp is an open source academic HLS framework (built on top of LLVM compiler

infrastructure) which can identify parts of the application suitable for running on

FPGA hardware from a high level description (C) and then generate RTL for

them. The LegUp framework consists of an HLS tool flow, a MIPS processor,

a hardware profiler, an environment for automated functional verification and

some benchmarks. It doesn’t support recursion, dynamic memory, or floating

point arithmetic. It uses as soon as possible (ASAP) scheduling and weighted

bipartite matching for binding. ROCCC is a C to synthesizable VHDL compiler,

developed at the University of California, Riverside, and specifically focused on

FPGA based code acceleration from a subset of the C language. In order to make

use of generated hardware, this compiler exports C functions which can be included

in application program. These C functions handle all communications with the

generated hardware.

2.1.2 Communication Interfaces and Runtime Management

Some of the latest HLS tools, such as Xilinx SDSoC, abstract away the details of

communication between the accelerator and the host processor by automatically

generating system level hardware and software drivers. Xillybus is another solu-

tion for data transport between processor and the accelerator which can be used to

abstract the communication interface. It is designed to work with a number of in-

terfaces: the PCIe interface (in a typical x86 based system) and the AXI interface

(in an ARM based system), as the underlying transport mechanism by provid-

ing Standard FIFOs as interfaces to the application logic. Each FIFO stream

is mapped to a device file by Xillybus driver. It provides most of the necessary

communication interfaces such as memory mapped to stream interface, memory

mapped to memory mapped interface and memory mapped register interface.

SIRC [91] was proposed as an open source abstract interface (a software API and

hardware interface) for communication between host processor and the FPGA

accelerator. It works on basic principle of hardware-software communication which

is as follow: first SW sends data to local buffer in FPGA and triggers the user

20 2 Background and Literature Review

logic to get this data from local buffer and put it in another local buffer after

processing. After finishing its processing user logic will notify the SW to get the

processed data from local buffers. SIRC uses Ethernet to communicate between

a Windows based workstation and Xilinx FPGA board. User does not need the

knowledge of communication protocol, OS or proprietary drivers. RIFFA was

proposed as an open source reusable framework to integrate FPGA based IP cores

with the host processor over PCIe interface [92]. This framework requires a PCIe

bus enabled workstation and a FPGA board with a PCIe peripheral. On the SW

side, it provides a PCIe Linux device driver and SW libraries and on the FPGA

side, PCIe endpoint translates requests, coming from the host processor, to PLB

requests via address translation.

CoRAM was proposed as a data-transport mechanism using a shared and scalable

memory architecture[93]. It assumes that the FPGA is connected directly to L2

cache or memory interconnects via memory interfaces at the boundaries of the

recongurable fabric. The requirement for using CoRAM architecture is that user

logic is not allowed to access off-chip I/O pins and memory interfaces in order to

provide application portability. Application can only interact with the external en-

vironment through a collection of specialized distributed SRAMs called CoRAMs

that provide on-chip storage for application data. Control thread (a state machine)

is used to inform user logic when the data within specific CoRAMs are ready to

be accessed through locally addressed SRAM interfaces. Control thread can be

expressed in a high level language such as C which can be translated to a state

machine to provide high level of management abstraction or it can be compiled

and executed on multithreaded processing core. In short control thread can be

soft or hard. In order to evaluate a hypothetical FPGA with CoRAM architec-

ture support, authors have used a cycle accurate software simulator written in

bluspec system verilog (BSV). LEAP[94] (logic-based environment for application

programming) scratchpad was proposed as an automatic memory management

system to make reconfigurable memory hierarchy invisible which is very similar to

the concept of CoRAM. Both of these projects share the objective of providing a

2 Background and Literature Review 21

standard memory abstraction by virtualizing the FPGA memory and I/O inter-

faces. LEAP abstracts away the details of memory management by exporting a

set of interfaces to local client address spaces.

A number of researchers have focused on providing operating system (OS) support

for FPGA hardware so as to provide a simple programming model to the user

and effective run-time scheduling of hardware and software tasks [45, 53, 95, 55].

Several operating systems have been developed for FPGA hardware [53, 96, 45,

97, 54, 98, 99, 100, 101, 102]. Several Linux extensions have also been proposed to

support FPGA hardware [54, 99, 102, 100]. ReconOS [99] provides an execution

environment by extending a multi-threaded programming model from software

to reconfigurable hardware. RAMPSoCVM [102] provides runtime support and

hardware virtualization for the MPSoC through APIs added to Embedded Linux

to provide a standard message passing interface.

Even though efforts, such as Xilinx SDSoC, SIRC, RIFFA, Xillybus, CoRAM,

LEAP and ReconOS, have abstracted the communication interfaces and memory

management, allowing designers to focus on high level functionality instead of low-

level implementation details, the prohibitive compilation times (specifically the

place and route times in the backend flow for generating the FPGA implementation

of the accelerator) have largely been ignored. Place and route time is now a major

productivity bottleneck that prevents designers from using mainstream design and

debug methodologies based on rapid compilation. As such, most of the existing

techniques are generally limited to static reconfigurable systems [34].

2.2 Key Barriers to Mainstream Use of FPGAs

To better understand why FPGA devices have not achieved mainstream adoption

as a rapidly reconfigurable hardware accelerator among the wider computing com-

munity, we must first understand how FPGAs differ from alternative solutions,

specifically traditional GPPs. The most fundamental difference relates to how an

application is mapped to the these platforms. A GPP provides functionality to

22 2 Background and Literature Review

execute a compute kernel as a list of sequential instructions, whereas an FPGA ar-

chitecture implements compute kernels by mapping them to fine grained resources,

such as configurable logic blocks, and medium grained hard DSP blocks, Block

RAMs, etc. These resources are interconnected via a fine-grained programmable

island-style routing network to create a specialized datapath which implements

the compute kernel. By exploiting parallelism in the algorithm, significant perfor-

mance gains are possible. The following describes the key barriers to mainstream

use of FPGAs for hardware acceleration.

The FPGA fabric, being programmable, is able to adapt to changing processing

requirements, thus better utilising FPGA resources, while providing a more soft-

ware centric approach to hardware design. This allows software applications to

be profiled and partitioned, with the resulting hardware accelerator running on

the FPGA fabric and the remaining software running on the GPP, with significant

performance improvements. These accelerators can also be rapidly reconfigured by

utilizing the ability to partially and dynamically reconfigure the functionality of the

FPGA fabric. However, despite the popularity and inherent capability of FPGAs

for partial reconfiguration, this feature is not well supported by FPGA vendors

and is hampered by slow reconfiguration times, poor CAD tool support, and large

configuration file sizes. These issues make dynamic reconfiguration difficult and

inefficient, resulting in most FPGAs being used with just a single configuration.

Initial implementations of dynamic reconfiguration [39, 40] required the reconfig-

uration of the whole hardware fabric. This resulted in significant configuration

overhead, which severely limited its usefulness. Xilinx introduced the concept of

dynamic partial reconfiguration (DPR) which reduced configuration time by allow-

ing a smaller region of the fabric to be dynamically reconfigured at runtime. The

concept of DPR on FPGA is one way of virtualizing hardware to allow implemen-

tiation of applications that are larger than the FPGA. DPR significantly improved

reconfiguration performance [41], however the efficiency of the traditional design

approach for DPR is heavily impacted by how a design is partitioned and floor-

planned [42], tasks that require FPGA expertise. Furthermore, the commonly

used configuration mechanism is highly sub-optimal in terms of throughput [44].

2 Background and Literature Review 23

Despite numerous efforts in reducing reconfiguration times and improving CAD

tool support for dynamic reconfiguration of FPGA fabric [103, 104], the imple-

mentation of rapidly reconfigurable hardware accelerators is still difficult.

In addition, a design for a reconfigurable device does not necessarily port well

to the next hardware generation, making reconfigurable systems more difficult to

work with. The designer must make a number of decisions, such as how to best

fit the application to the device, including the datapath structure and the amount

of parallelism. Applications are normally optimized for a specific target device,

and are unable to execute on a smaller device or cannot take full advantage of the

additional resources on a larger device. Once the designer has a working design

it must be implemented on the FPGA. The FPGA tool flow typically takes an

RTL description of the design and first performs technology mapping to convert it

into the fine-grained device resources, followed by placement and routing (PAR).

Due to the fine granularity of the FPGA resources, this process is complex and

for large designs results in very lengthy place and route times.

The complexity in the FPGA tool flow due to the use of fine-grained FPGA re-

sources can be easily demonstrated by an example. Figure 2.2(a) shows the placed

and routed design of a simple 4 input 16-bit adder. Here, the FPGA design tools

divide the design into basic circuit elements and map them to the fine-grained con-

figurable logic blocks (CLBs). On the other hand, Figure 2.2(b) shows the placed

and routed design of the same application on a coarse-grained architecture where

compute blocks (or functional units (FU)) and interconnect have a 16-bit width,

compared to single-bit tracks in the fine-grained FPGA implementation. It is clear

that the PAR complexity is significantly reduced by using coarse-grained architec-

tures, thus reducing compilation time. Another benefit of using a coarse-grained

architecture is the reduced configuration data size and hence reduced reconfigura-

tion latency which can allow faster context switching.

Because of this apparent advantage, researchers have explored a number of ASIC

implementations of coarse-grained reconfigurable architectures (CGRAs) [105, 106,

24 2 Background and Literature Review

Figure 2.2: Placement and routing on (a) fine-grained (b) coarse-grained architec-
ture.

107, 69, 64, 65, 66, 51, 70, 67, 68, 71]. Some key features that enabled these archi-

tectures to address signal processing and high performance computing problems

more efficiently include: energy efficiency, ease of programming, fast compilation

and reconfiguration. A review of these architectures is given in the next section.

2.3 Coarse-Grained Reconfigurable Architectures

The Rapid [65] architecture was designed to implement computation-intensive and

highly regular systolic streaming applications using an array of computing cells,

where each cell consists of an multiplier, two ALUs, six general purpose regis-

ters and three small local memories. Performance of Rapid was measured as 1.6

GOPS, where an operation was a single MAC operation. Key features are small

local memory, word based interconnect, NN inter-cell communication, suitability

for deep pipelines, streaming FIFO based communication between external mem-

ory and array, custom array generation, static control and wide micro-instruction

based dynamic control, Simulated annealing based placement and Pathfinder based

routing. Automatic creation of custom arrays was explored using the Rapid frame-

work in [108] by developing algorithms for reducing area overhead in custom array

generation.

2 Background and Literature Review 25

Morphosys[66] was proposed as a coarse-grain, integrated reconfigurable SoC tar-

geted at high throughput applications such as multimedia and image processing. It

consists of a processing unit called Tiny RISC processor core, a reconfigurable cell

array (8×8 array), context memory, frame buffer and a DMA controller. The Tiny

RISC processor core has an extended instruction set for effectively controlling the

array operations. Key features are context memory, multi-context support, DMA

support, streaming data buffers, hierarchical bus network, 2D mesh of functional

units. Morphosys design flow is supported through a GUI called mView that takes

user input for each application. mView generates assembly code for the array and

has several built in features that allow visualization of array execution, intercon-

nect usage patterns for different applications, and single-step simulation runs with

backward, forward and continuous execution.

REMARC was proposed for multimedia applications and consists of a MIPS ISA

based core and an 8×8 reconfigurable logic array[109]. Each processing element

of the array consists of a 16-bit processor and execution of each processor was

controlled by instructions stored in small local instruction memory. Programming

abstraction was supported using REMARC assemblers. Authors explored this

coarse grained array with VLIW control for multimedia applications using devel-

oped simulator and showed that it can be more compact than an FPGA accelerator

achieving comparable performance.

Virtual Mobile Engine (VME) was proposed as a dynamically reconfigurable ar-

chitecture deployed in consumer electronic products, Sony PSP and network walk-

man, for low power and programmability [110].

The concept of virtual embedded blocks (VEBs)[111] was proposed as a model to

explore hard logic integration in an FPGA array. Authors proposed a methodology

to study the effect of embedding floating point coarse grained units in FPGAs.

Authors have shown that embedding coarse grained floating point units in FPGAs

can result in 3.7× area reduction and 4.4× speedup.

26 2 Background and Literature Review

[112] examined register file architectures for coarse-grained recongurable architec-

tures. Issues and approaches to CGRA development were explored in [113] by im-

plementing encryption-specialized CGRA. It was shown that flexibility and adapt-

ability reduces as we increase the granularity of the functional units. Difficulty

of finding optimum number of functional units for domain specialized architec-

ture and problem of allocating hardware resources required by the algorithm was

mentioned and techniques were proposed to allocate functional units to balance

performance and area constraints.

The Chameleon system was proposed as heterogeneous processing tiles connected

to each other by a network on chip. In CHAMELEON SoC, Montium architecture[70]

was integrated with a processor and fine-grained reconfigurable logic in order to

provide power efficient execution. The design methodology for the Chameleon

SoC is based on the Kahn process network model. Montium consists of multi-

ple processor tiles each consists 5 combinational ALUs, 10 local memories and a

communication and configuration unit.

Zippy [114] approach aims at the investigation of a hybrid processor consisting

of an embedded CPU and a coarse-grained reconfigurable array. Authors have

explored temporal partitioning of netlists at coarse grain level and reported that

resource requirement can be reduced and resource-constrained platform can be

used to execute large applications using temporal partitioning followed by multi-

context execution[115]. The Scalability problem was described as how to run a

scaled version of an algorithm on a resource-constrained architecture. Cycle ac-

curate CPU model written in C was extended with a coprocessor interface and

was used to control multi-context homogeneous CGRA (4×4) specified in VHDL.

Multi-context execution of FIR filters was shown using Modelsim based simu-

lation framework. Authors have developed PAR tools for mapping applications

(described in graph form and converted to a textual description in Zippy Netlist

format (ZNF)) on reconfigurable array. A configuration generator was used to

generate array configurations from placed and routed netlists. Authors also pre-

sented a brief survey on virtualization of hardware [116] and compared virtualized

2 Background and Literature Review 27

and non-virtualized execution of ADPCM decoder on the developed simulation

environment [114].

The Smartcell architecture was proposed for streaming applications to bridge the

energy efficiency gap between FPGAs and customized ASICs. Key features are

runtime partial reconfiguration, support for SIMD, MIMD and systolic style com-

putations, cycle-by-cycle FU reconfiguration. It also supports three-level layered

on-chip communication and two levels of pipelining, including instruction level

pipelining and task level pipelining.

The key attraction of coarse-grained reconfigurable devices is their near ASIC-like

computational and energy efficiency and software-like engineering efficiency. At

least for commercial products, the main market has been as a component in SoCs

for efficiently implementing a specific range of DSP functions as part of a larger

system. CGRAs have not been successfully developed as stand-alone systems that

designers can incorporate at the board level. This is because functional units

are often too application specific to be efficient and useful for a wide range of

applications. ASIC implementations of coarse-grain architectures also suffer from

the design-time freeze of functional units and interconnect capabilities. It is hard

to find a particular configuration that suits a wide enough set of applications for

the approach to be viable as a stand-alone product. Hence there is a need for a

mechanism where capabilities can be tailored to applications or adapted at runtime

based on application needs.

2.4 Coarse-Grained FPGA Overlays

One solution that has been explored extensively by researchers is to implement

a coarse-grained reconfigurable architecture on top a commercial FPGA device,

referred to as a coarse-grained overlay. This allows the coarse-grained elements

and structure, specifically the FU and interconnect to be changed at runtime

as per the application requirements. Compared to a conventional coarse-grained

reconfigurable architecture on an SoC device, using an FPGA to implement a

28 2 Background and Literature Review

coarse-grained architecture has several potential advantages. These include: im-

proved designer productivity, better design portability, software-like programma-

bility, faster application switching and enhanced security. This is motivated by the

fact that programs can be written at a higher level of abstraction with compilation

to the overlay being several orders of magnitude faster than for the fine grained

FPGA on which the overlay is implemented. That is, instead of the requirement

for a full cycle through the FPGA vendor tools, overlay architectures present a

simpler problem, that of programming an interconnected array of FUs. However,

overlays are not intended to replace HLS tools and vendor-implementation tools.

Instead intended to support FPGA usage models where programmability, abstrac-

tion, resource sharing, fast compilation and design productivity are critical issues.

Overlay

Fine Grained FPGA fabric

Coarse Grained Logic Blocks (DSPs)

Coarse Grained Array of Tiles

Figure 2.3: Coarse-grained FPGA overlay architecture.

FPGA overlays apply the concept of hardware abstraction to the domain of re-

configurable computing [117], simplifying application development by abstracting

away details from the physical resources. FPGA hardware abstraction decouples

system properties, such as scalability, reliability and isolation, from implemen-

tation details, thereby reducing developer effort and concern for device specific

details. However, hiding device specific details and the underlying functionality

of the resource can mean there is less control over optimization [75]. Within

the reconfigurable computing community, there has been some research effort

to abstract FPGA hardware from the user. CoRAM [93], LEAP [94], Virtu-

alRC [118], SIRC[91] and RIFFA[119] are examples of approaches to abstract mem-

ory and communication interfaces in FPGA devices. Overlays such as QUKU [120],

2 Background and Literature Review 29

DySER [75] and intermediate fabrics [73] are examples of approaches to abstract

compute logic in FPGA devices. One motivation for using FPGA overlays for

hardware abstraction aspect is to be able to execute several applications on lim-

ited hardware resources in a time multiplexed manner or to be able to execute an

application of arbitrary size on a single device and allows the strategic reuse of

resources used by the overlay. Both fine- and coarse-grained overlay architectures

have been proposed to abstract FPGA fabric resources.

A fine-grained FPGA overlay (that is FPGA-on-an-FPGA) provides a non-vendor

specific fine-grained architecture which is overlaid on top of an existing FPGA de-

vice [121, 122, 123]. This provides bitstream portability between different vendors

and devices as well as compatibility with open-source FPGA tool flows. How-

ever, there are significant drawbacks due to the fine granularity of the virtual

LUTs, switch boxes and connection boxes, which results in long compilation times,

large configuration file sizes and large area and performance overheads. As such,

fine-grained overlays are only viable if circuit portability is of paramount impor-

tance [121] due to the large overheads. Performance overheads showing a 100×

increase in area and a 6× decrease in circuit performance was reported [121].

Subsequent architectures (ZUMA [122]) have reduced the area overhead to 40×

through careful architectural choices, such as using LUTRAM to store the con-

figuration data for the circuit to be mapped on the overlay. An analysis of a

fine-grained overlay [122] embedded within the Xilinx Zynq SoPC platform was

presented in [117].

Unlike fine-grained overlays which are programmable at the bit level, coarse-

grained overlays are programmable at the data-word/operator level. This makes

the design problem much simpler, resulting in significantly faster compilation.

Programmable coarse-grained overlays range from simple soft-core processors [124]

and multi-ALU vector processors [125], to arrays of simple ALU-based processing

elements [75] and arrays of soft processors [126], where both the computational

units (the FUs) and the interconnect are programmable.

30 2 Background and Literature Review

Soft-processors are a coarse-grained overlay, as conceptually these are GPPs im-

plemented on top of the FPGA fabric, making the system easier to program

and more familiar to software designers [124]. While many soft processors have

been proposed, they typically exhibit a significant performance gap compared to

a traditional parallel and pipelined hardware implementation. Soft vector pro-

cessors [127], such as VESPA [128], VEGAS [127], VIPERS [129], VENICE [130]

and MXP [125] try to reduce the performance gap by utilizing multiple ALUs.

While soft vector processors can exploit the parallelism in compute kernels having

multilane patterns to achieve a significant speed-up, they do not perform well for

compute kernels having reduction patterns. These patterns are explained in more

detail in [131].

At the other end are the coarse-grained array-based overlays, similar to CGRAs,

which consist of an array of FUs interconnected using a programmable network.

Conceptually, an FU can be as simple as an arithmetic block (or simple ALU) or

as complicated as a soft-processor. Most of the FU-array overlays are essentially

dataflow machines, mainly used in systems as co-processors for task acceleration.

One possibility for communicating among FUs (ALUs/soft-processors) is to use a

bus-based architecture. However, this solution is unable to sustain the communi-

cation load among hundreds of FUs and eventually impacts system performance

drastically. Hence most of the FU-array overlays adopt a scalable interconnect

architectures built using FPGA hardware resources. These array-based overlays

can be categorised depending on their architecture using the classification of [132],

where 4 different categories are defined as: spatially configured, time multiplexed,

packet switched, and circuit switched, as shown in Figure 2.4.

While examples of packet switched networks [132, 146, 147, 148] and circuit

switched networks [149] in FPGA exist, they are generally very resource hun-

gry, and are unsuitable for large FPGA-based overlay architectures. For example,

in the case of packet switched networks, the CMU CONNECT [146] router con-

sumes 1.5K LUTs with a critical path of 9.6 ns, while the Penn Split-merge [147]

router consumes 1.7K LUTs with a critical path of 4.5 ns. Recently a light weight

packet switched network using Hoplite switches [148, 150] was demonstrated which

2 Background and Literature Review 31

Coarse-grained FPGA Overlays

Spatially-configured

Nearest-Neighbor style

QUKU [120, 133, 134, 63]

FPCA [62]

Mesh-of-FU overlay [74, 135]

Island-style

Intermediate Fabric [136, 73, 137]

Reconfiguration Contexts [138]

DySER [139, 131, 75]

Time-multiplexed

Nearest-Neighbor style

CARBON [140]

SCGRA [141, 142, 126, 143]

Customized

TILT Overlay [144]

Remorph [145]

Figure 2.4: Categorization of coarse-grained FPGA overlays.

consumed just 60 LUTs with a critical path of 2.9 ns, opening the way for efficient

packet-switched arrays of processing elements on FPGA.

As seen in Figure 2.4, most array-based overlays are restricted to just two classes:

spatially configured overlays; and time-multiplexed overlays, where both the FU

and the interconnect can fall within one of these two categories. These two cate-

gories of overlays will be described in more detail in the next two sections.

2.5 Time-multiplexed Coarse-Grained Overlays

A fully pipelined, spatially configured overlay can deliver maximum performance

by executing one computation iteration every clock cycle (that is it has an II of

one), but with a large FPGA resource overhead. Alternatively, time-multiplexing

the FU can significantly reduce the FU and interconnect resource requirements

but at the cost of a higher II and hence a reduced throughput. The most common

32 2 Background and Literature Review

time-multiplexed (TM) overlays have both a time-multiplexed FU and a time-

multiplexed interconnect network [141, 144, 140, 145], which we refer to as TMFU-

TMN. Time-multiplexing the overlay allows it to change its behavior on a cycle

by cycle basis while the compute kernel is executing [141, 144, 140, 145], thus

allowing the sharing of the limited FPGA resource for other purposes.

In a TM overlay, FUs generally behave like a conventional processor core, with

instruction memory embedded within each FU. However, in many cases the storage

requirements for the set of instructions is very large which results in a significant

area overhead. This is mainly due to the choice of the scheduling strategy; the

execution model; and the design of overlay architecture, which limits the scalability

of the overlay and also impacts the kernel context switch time. One major benefit

of using these type of overlays is that well established algorithms and tools can

be used for application mapping. The algorithms commonly used to schedule the

kernel operations to the array of FUs are List scheduling [151], Force Directed

Scheduling [152] and Modulo Scheduling [153]. Again, as with SC overlays, many

of the TM overlays (which we discuss next) are not architecture-focused and hence

the FU operates at a relatively slow frequency.

2.5.1 Nearest-neighbor Style Interconnect Based

CARBON: One example is CARBON [140], which was implemented as a 2×2

array of tiles on an Altera Stratix III FPGA. Each tile contains an FU consisting

of a programmable ALU and instruction memory, supporting a maximum of 256

instructions. An FU consumed 3K ALMs, 304 FFs, 15.6K BRAM bits and 4

DSP blocks, achieving an operating frequency of 90 MHz. Compared to the other

TMFU-TMN overlays discussed here, CARBON has large resource requirements

per FU with a relatively slow speed which limits the scalability of the architecture.

SCGRA: The SCGRA overlay [141] was proposed to address the FPGA design

2 Background and Literature Review 33

productivity issue, demonstrating a 10-100× reduction in compilation time com-

pared to the AutoESL HLS tool. An automatic nested loop acceleration frame-

work, targeting a CPU-FPGA system using the SCGRA overlay was also devel-

oped [126]. Application specific SCGRA overlays were subsequently implemented

on the Xilinx Zynq platform [143], achieving a speedup of up to 9× compared

to the same application running on the Zynq ARM processor. The FU used in

the Zynq based SCGRA overlay operates at 250 MHz and consists of an ALU,

multiport data memory (256×32 bits) and a customizable depth instruction ROM

(Supporting 72-bit wide instructions) which results in the excessive utilization of

BRAMs. Authors have designed the FU in such a way that it can fetch configura-

tion, from instruction ROM, every cycle. Configuration defines the behavior of the

FU for a particular clock cycle. They have shown a way to generate DFG specific

interconnect architecture, using genetic algorithm, instead of using a generalized

and fixed interconnect architecture, such as Ring, Torus and fully connected, for

all DFGs.

ArchSyn is a high level synthesis tool which extracts data flow graph from a C

program and then map it to SCGRA architecture by scheduling the data flow oper-

ations. The scheduler not only determines the computation schedule of operations

onto PEs but also determines the communication schedule of the intermediate

data among PEs. Authors have formulated the problem of mapping DFG to the

SCGRA into a precedence and resource constrained scheduling problem using a

time indexed integer linear programming (ILP). The optimization goal of this tool

is not only to minimize compute latency but also to minimize energy consumption

in computation and communication.

Authors proposed accelerator design methodology that utilizes SCGRA as an inter-

mediate compilation step. They proposed that new SCGRA design and generation

of corresponding bitstream is needed per application domain basis using vendor

tools. After that, proposed tool can schedule DFGs on SCGRA and generate in-

structions, per application basis, which can be merged with SCGRA bitstream to

generate final downloadable bitstream for the target FPGA. As the full FPGA

34 2 Background and Literature Review

bitstream needs to be reconfigured for a compute kernel change, very fast context

switching between applications, in the order of a few microseconds, is not possible.

2.5.2 Customized Topology Based

reMORPH: The reMORPH [145] overlay was proposed as a 2D array of tile-

based compute units, where each tile uses the hard macros available in the FPGA

fabric to achieve a lower footprint, consuming 1 DSP Block, 3 block RAMs, 196

LUTs and 41 registers. However, the reMORPH FU does not use decoders to

reduce the overhead caused by routing and muxes, and thus requires a 72-bit in-

struction memory (Supporting a maximum of 512 instructions) resulting in the

over utilization of BRAMs. Tiles are interconnected using an NN style of non-

programmable interconnect, which is adapted using partial reconfiguration at run-

time, and hence, suffers from the same slow hardware context switch problem as

SCGRA.

TILT: The TILT overlay [144, 154], being a floating point overlay, unlike the

other overlays discussed here, results in high resource consumption. TILT overlay

was proposed as a highly configurable compute engine for FPGAs with multiple,

varied and deeply pipelined floating point FUs which can be scaled by instantiating

multiple copies of the TILT core. All cores, consisting of data memory, crossbar

switches and FUs, share a single instance of the instruction memory and execute

in parallel in single-instruction-multiple-data (SIMD) fashion. TILT consists of

a scratchpad which is not double-buffered and the off-chip memory transfers are

interleaved into the compute schedule using ports that are shared with the FUs.

TILT has a separate 256-bit Memory Fetcher unit which allows for data transfer

between up to 8 TILT cores and the off-chip DDR memory. The TILT overlay

was evaluated for a set of five application benchmarks against Altera OpenCL HLS

implementations. The TILT overlay was able to achieve an operating frequency

close to that of the HLS implementations, with an area overhead of less than 2x

for the same throughput.

2 Background and Literature Review 35

TILT was presented as an overlay to complement Altera OpenCL HLS by sac-

rificing application throughput in scenarios when limited hardware resources are

available. Since OpenCL HLS maximizes throughput at the cost of more resources

by generating a heavily pipelined, spatial design, authors suggested to use TILT

overlay as TILT enables smaller implementations than OpenCL HLS when a lower

throughput is adequate, allowing a larger range of design space to be explored.

TILT uses a weaker form of application customization by varying the mix of pre-

configured standard FUs and optionally generating application-dependent custom

units to handle predication, loops and indirect addressing. However, as each ap-

plication requires that TILT be recompiled, a hardware context switch (referred

to as a kernel update in the paper) takes on average 38 seconds.

TILT and OpenCL HLS designs were generated using Altera’s Quartus 13.1 and

OpenCL SDK targeting the Stratix V 5SGSMD5H2F35C2 FPGA with 2 banks

of 4 GB DDR3 memory on the Nallatech 385 D5 board. An 8-core TILT system

(with each core having one multiply FU and one add/sub FU) was specifically

designed to implement a 64-tap FIR filter application, resulting in a throughput

of 30 M inputs/sec and consuming 12K eALMs. For the same application, Altera

OpenCL HLS was used to generate a fully parallel and pipelined implementation,

resulting in a throughput of 240 M inputs/sec (8× higher throughput than 8-core

TILT) and consuming 51K eALMs (4× higher area than 8-core TILT).

A number soft processor designs for FPGAs have also been proposed, which be-

cause they overlay the FPGA fabric, can be considered as overlay architectures.

In [72], a two dimensional array of soft-core processors was proposed to per-

form text analytic queries. A number of soft vector processor designs, including

VESPA [128], VEGAS [127], VIPERS [129], VENICE [130] and MXP [125], have

been proposed. While these have exhibited impressive performance improvements

compared to other scalar soft processors, when compared against more capable

processors, such as the ARM processor found in the Xilinx Zynq platform, more

modest improvements of approximately 4× against a single ARM core have been

reported [155]. Most of the time multiplexed overlays described above not only

results in performance overheads due to FU sharing and reduced throughput but

36 2 Background and Literature Review

also result in large area overheads due to instruction storage requirements, which

also results in a long kernel context switch time.

2.6 Spatially-configured Coarse-Grained Overlays

In spatially configured overlays, the compute and interconnect logic of the overlay

are unchanged while a compute kernel is executing to support maximum through-

put by dedicating individual FUs to kernel operations. This is different to time

multiplexed overlays, where the compute and interconnect logic of the overlay

change on a cycle by cycle basis while a compute kernel is executing to support

time-multiplexing of overlay resources among kernel operations.

By far the largest number of coarse grained overlays in the research literature

consist of spatially configured FUs and spatially configured interconnect net-

works [73, 74, 75, 78], which we shall refer to as SCFU-SCN or in short SC overlay.

In an SC overlay, an FU executes a single arithmetic operation and data is trans-

ferred over a dedicated point-to-point link between the FUs. That is, both the

FU and the interconnect are unchanged while a compute kernel is executing. This

results in a fully pipelined, throughput oriented programmable datapath executing

one kernel iteration per clock cycle, thus having an initiation interval (II) between

kernel data packets of one. A number of different spatially configured interconnect

strategies have been proposed, with the most common being: island style [73, 78],

nearest neighbor (NN) [74] and to a lesser extent linear interconnect [156, 157].

However, the island style and nearest neighbor connected overlays suffer from a

high area overhead due to the resources required for the interconnect network and

are unsuitable for large compute kernels due to the limited size of the overlay that

can be mapped to the FPGA fabric.

Spatially configured overlay fits well in a scenario where performance in terms of

throughput is a primary objective given the rich logic resources. With the expo-

nential increase of logic density on FPGA devices, it is possible to accommodate a

massive number of FUs on an FPGA which allows to map all of the operations in

2 Background and Literature Review 37

a compute kernel spatially on the array of FUs to exploit the parallelism available.

The primary target in such a scenario would no longer be hardware sharing given

the limited area constraint, but rather achieving the highest performance in terms

of throughput under the rich logic resources. The key feature of such an array

is the ability to exploit large amount of physical hardware resources to deliver

scalable performance for data-parallel and throughput oriented applications.

Spatially configured overlays have a number of other advantages as well, such as

the possibility to maintain extremely high throughput by employing a very heavy

pipelining within the architecture as well as drastically reduced compilation times

and configuration data sizes due to just one instruction per functional unit. But

this comes at a cost of area and performance overheads. Hence, significant recent

research effort has aimed to reduce area overheads and improving performance.

The primary metrics considered include: the Fmax and peak throughput of the

overlay [74], programmability cost [74], the configuration data size and configura-

tion time [73]. With these in mind, we now discuss the key features, performance

metrics and overheads for a number of spatially configured overlay architectures

proposed in the literature.

2.6.1 Nearest-neighbor Style Interconnect Based

QUKU : QUKU was proposed as a rapidly reconfigurable coarse grained overlay

architecture [133] to bridge the gap between soft processors and customized circuit

implementations. QUKU consists of a dynamically reconfigurable, coarse-grain

FU array with an associated soft-core processor providing system support. Sobel

and Laplace kernels from Edge detection application were used to evaluate the

performance of the QUKU architecture [63]. As shown in Figure 2.5, authors

used the concept of datapath merging to generate the QUKU overlay datapath by

merging the datapaths of both kernels (Sobel and Laplace).

A 4×4 array of FUs was also designed to support the compute kernels which was

compared to QUKU overlay and customized FPGA circuit implementations of the

38 2 Background and Literature Review

+ =

(a) Sobel (b) laplace (c) QUKU

Figure 2.5: Datapath merging for QUKU overlay generation.

same compute kernels, designed using Xilinx System Generator for DSP. A point

to point link was used to connect the FU with its four immediate neighbouring

FUs. All of these designs were implemented on a Xilinx Virtex-4 LX25 device

(ML401 development board). When compared to customized FPGA circuit im-

plementations of the compute kernels, QUKU overlay and 4×4 FU array required

approximately 1000× smaller configuration data sizes. It was shown that the cus-

tomized FPGA circuit implementations of both kernels required 4% extra Slices

than the device capacity, 4×4 FU array required 28% extra Slices than the device

capacity while QUKU overlay (merged datapath) was able to fit on the device,

consuming 89% of the Slices available on the device. Main point to note here is

that both designs, QUKU overlay and 4×4 FU array, were evaluated for very small

kernels. However, the concept of having an FU array or a merged datapath on top

of FPGA fabric pave the way for fast context switching between kernels.

FPCA: FPCA [62] was proposed as an array of clusters, organized in a mesh with

NN style interconnect, where each cluster consists of a set of PEs. PEs are con-

nected by a permutation network with a high connectivity within a cluster, and

then by a global NN style interconnect for more scalable connectivity. Authors

used three image processing kernels (Gradient, Convolution and Sobel) as bench-

marks to demonstrate the effectiveness of their overlay. Authors demonstrated the

issue of mismatch between the processing throughput and the off-chip bandwidth.

The ’gradient’ benchmark executing on a 32-bit overlay operating at 100 MHz has

an off-chip bandwidth requirement of 2.4 GB/s (0.4 GB/s per I/O). Authors tried

to replicate the kernel benchmark on the overlay to achieve higher throughput,

2 Background and Literature Review 39

however due to the limited external DDR bandwidth, performance saturated at

two copies of the kernel. On duplicating the kernel, the performance got dou-

bled, however on further replication, performance improvement stops. Authors

integrated the FPCA overlay within Xilinx Zynq device and used Linux OS for

runtime management of the overlay. It was shown that the FPCA overlay results

in 1.4 clock cycle per loop iteration which is close to the design target of 1 clock cy-

cle per loop iteration. The gap is due to the overhead of page translation and bank

switching in the main memory upon discontinuous data access. The approach used

in the FPCA overlay project inspires research on high throughput communication

interfaces and memory controllers for throughput oriented overlays.

Mesh-of-FU based Overlay : An overlay architecture optimized for high Fmax

and throughput was proposed in [74] for pipelined execution of data flow graphs.

The prototyped 24×16 overlay is a nearest-neighbor-connected mesh of 214 routing

cells and 170 heterogeneous functional units (FU) comprising 51 multipliers, 103

adders and 16 shift units. Authors used the concept of elastic pipelines to handle

the latency imbalance at FU inputs. The overlay executes a given DFG by mapping

the graph nodes to the FUs and configuring the routing logic to establish inter-FU

connections that reflect the graph edges. A placer and router was developed by

customizing VPlace [158] and PathFinder [159], respectively.

Authors mention that the direct synthesis of 24×16 overlay results in low Fmax in

the range of 100-150 MHz and a novel synthesis approach is necessary to achieve

high Fmax . Using the proposed approach of synthesis, an Fmax of 355 MHz and

a peak throughput of 60 GOPS was reported when implemented on an Altera

Stratix IV FPGA (420K ALUTs), consuming 204 DSP blocks, 200K ALUTs and

250K FFs. 186K ALUTs and 230K FFs were required to implement the routing

network for 170 FUs. Hence the proposed overlay results in a requirement of 3K

ALUTs (routing network area) per GOPS (peak throughput). Thus the resource

overhead associated with overlay architectures, particularly the routing network,

is still a concern. For overlays to be compelling, they must have high performance,

low area overhead and be capable of serving as general purpose compute-kernel

accelerator.

40 2 Background and Literature Review

2.6.2 Island Style Interconnect Based

Intermediate Fabrics : An overlay architecture, referred to as an intermedi-

ate fabric (IF) [136], was proposed to support near-instantaneous placement and

routing (on average within a second). A 9×9 array of 16-bit FUs were intercon-

nected using FPGA-like island-style coarse grained interconnect. The majority of

FUs were mapped directly onto Xilinx DSP48 units, with some additional shift

registers to handle realignment for pipelined routing. In the case of using fully

flexible connection boxes, when implemented on to a Xilinx XC4VLX200 FPGA

(178K LUTs), the array consumed 81 DSP Blocks and 32% of LUTs (57K LUTs)

and 59% of the LUTs (105K LUTs) for a channel width of 2 and 4, respectively,

resulting in an Fmax of 195 MHz and LUT/FU count of 703 and 1296 for a chan-

nel width of 2 and 4, respectively. Authors evaluated customized IFs for twelve

case studies, which they manually implemented as technology mapped IF-netlists.

Instead of proposing a generic IF to support all of the netlists, authors focused on

designing custom IFs for each netlist.

A generic IF (specialized for common image-processing kernels) in [73] was imple-

mented on an Altera Stratix III FPGA (200K ALUTs) in order to evaluate area

and performance overheads. It consists of 192 heterogeneous FUs comprising 64

multipliers, 64 subtractors, 63 adders, one square root unit, and five delay elements

with a 16-bit datapath and supports fully parallel, pipelined implementation of

compute kernels. The IF only achieves an Fmax of approximately 125 MHz when

implemented on a Altera Stratix III FPGA, resulting in a peak throughput of 24

GOPS, consuming 114K LUTs. When compared to a direct FPGA implementa-

tion of the biggest kernel that IF can support, IF consumes 4.5× LUTs, 4× FFs

and 2× DSP blocks. It enabled a 700× improvement in compilation time com-

pared to vendor tools at the cost of approximately 40% extra resources (approx

80K ALUTs) on the FPGA. Entire IF can be configured using 9234 bits of config-

uration data (stored in a 128-bit wide BRAM), enabling reconfiguration latency

of 28 to 72 cycles. Actual speedup compared to software averaged 8.3× for the

IF and 8.8× for the direct implementations. One major drawback of this IF was

2 Background and Literature Review 41

the use of heterogeneous array of different types of FUs instead of homogeneous

array of programmable FUs, resulting in increased requirement of programmable

interconnect resources. For example, the kernels used in [73] required a minimum

of 192 heterogeneous FUs. Using homogeneous array of programmable FUs, this

requirement which could have reduced to 128 FUs and hence reduced interconnect.

Further using DSP block like programmable FU where multiple operations can be

merged onto single, FU requirement could have reduced to 64 FUs.

Another IF based on island-style interconnect architecture with a channel width

(CW) of two, was mapped to a Xilinx XC5VLX330 FPGA (207K LUTs), along

with a low overhead version of the interconnect [137]. To perform design space ex-

ploration of overlay interconnect architecture, authors used fixed-logic multipliers

(mapped on DSP blocks by synthesis tool) as functional units (FUs) so that the

device utilization represents the LUT and FF overhead of implementing the target

application via an overlay rather than a direct HDL implementation. Both, the

original and the optimized, overlay consumed 196 FUs (DSP blocks) for a size of

14×14. The original 14×14 overlay used 44% of LUTs (91K LUTs) with an Fmax

of 131 MHz while the optimized overlay used 24% of the LUTs (50K LUTs) with

an Fmax of 148 MHz. Authors were able to reduce LUT requirements by 48%-54%

and flip-flop requirements by 46%-59%, while improving clock frequencies by an

average of 24% at the cost of 16% routability overhead. Although the authors

were able to reduce the LUTs/DSP count from 465 to 255, the overlay could not

utilize DSP blocks to the full extent since each FU was mapped to a DSP block

utilizing only multiplier.

Apparently, the IFs are beneficial in improving the design productivity and porta-

bility, though they do result in moderate area overhead and timing degradation.

The area overhead is mainly due to the virtual routing resources consisting of

multiplexer based coarse grained interconnect, implemented as switch boxes and

connection boxes.

Reconfiguration Contexts : Different applications require different sized over-

lays, with an overlay large enough to satisfy the resource requirements of the

42 2 Background and Literature Review

largest kernel being heavily underutilized when a small kernel is mapped to the

overlay. Also according to [138], it is not possible to create an optimal fabric for

all combination of compute kernels. To avoid above mentioned two issues, authors

presented a design heuristic that analyzes kernel requirements from an application

(or domain) and clusters them based on similarity into a set of fabrics referred

to as reconfiguration contexts [138]. When a context does not support a kernel,

authors proposed to reconfigure the FPGA fabric at runtime with the different

overlays (reconfiguration contexts) [138]. The overall goal is to minimize individ-

ual context area by minimizing the number of resources required for the context

to support all its assigned kernels. Although possibly more efficient than an IF,

this overlay (designed for a specific set of kernels known at design time) provides

no support for kernels not known at design time.

Authors designed 5 different overlays (2 floating point and 3 fixed point overlays),

each specialized for a specific set of kernels, and implemented them on Xilinx

Virtex-6 FPGA (XC6VCX130T) with an Fmax ranging from 196 MHz to 256 MHz.

The configuration data size for different overlays ranges from 429 Bytes to 1208

Bytes and the configuration time ranges from 13.4 us to 49.3 us.

DySER as a Dynamically Specialized Hardware: There are ever-increasing

demands for performance without crossing power-demand thresholds in data cen-

ters and also without compromising battery life in mobile platforms. It will no

longer always be possible to simply move to the next-generation general-purpose

processor to meet tighter energy-performance constraints. An alternative that

improves energy efficiency is the use of dynamically specialized hardware as an

accelerator within heterogeneous computing platforms. The DySER architec-

ture [131, 139] is one example of dynamically specialized hardware where the idea

is to dynamically synthesize large compound FUs to match program regions, using

a co-designed compiler and micro-architecture. The compiler enables automatic

identification and specialization of compute intensive parts of an application. In-

tel’s MicroOp-fusion is another example, where a specialized datapath is used for

the execution of fused micro-ops by examining the instruction streams. Another

2 Background and Literature Review 43

commercialized example is the SIMD accelerator, which extends a single instruc-

tion into multiple FUs and process parallel data streams at the same time.

DySER was originally designed as a heterogeneous array of 64 FUs (60% integer

ALU, 10% integer multiply and 30% floating point units) interconnected with a

circuit-switched mesh network [139]. Instead of using an array of homogeneous

programmable FUs, with each FU capable of primitive operations like addition,

multiplication, and logic operations, a heterogeneous array of FUs was used be-

cause of the area overheads associated with homogeneous programmable FUs. The

DySER RTL was integrated with the OpenSPARC T1 RTL and synthesized as an

ASIC, demonstrating up to 70% reduction in energy consumption and up to 10×

speedup in application execution.

The DySER architecture was improved by using homogeneous programmable FUs

and was then prototyped, along with the OpenSPARC T1 RTL, on a Xilinx

Virtex-5 device (having 69K LUTs) [75]. The integrated system had a critical

timing path of 12.7 ns, whereas OpenSPARC had a critical timing path of 10.1

ns. OpenSPARC consumed 31K LUTs while a 2×2 32-bit DySER consumed 27K

LUTs. Due to excessive LUT consumption, it was only possible to fit a 2×2 32-bit

DySER, a 4×4 8-bit DySER or an 8×8 2-bit DySER on the FPGA. The 2×2

32-bit DySER (supporting just 4 operations) is of limited value in performance

evaluation, and instead a 4×4 DySER (supporting up-to 16 operations) or an

8×8 DySER (supporting up-to 64 operations) is required to provide meaningful

performance comparisons. The possibility of building a 32-bit datapath out of

a 2 bit datapath, but consuming 16 cycles across every link, was discussed as a

FPGA specific design optimization, however this would degrade the performance

significantly.

The DySER architecture, although relatively efficient from an application mapping

perspective, suffered because it was implemented without much consideration for

the underlying FPGA architecture. Considering the presence of hard macro blocks,

and previous work that has demonstrated how these can be used for general pro-

cessing at near to their theoretical limits [160], we propose enhancing DySER by

44 2 Background and Literature Review

using the DSP48E1 found in all modern Xilinx FPGAs to take on most functions

of the FU. The motivation is to use low level features of the FPGA architecture

to develop architecture centric high performance computing blocks. In the next

section, the Xilinx DSP48E1 hard macro is discussed, along with the dynamic

mode control feature of the DSP blocks which allow cycle by cycle adaption of the

DSP block functionality.

Xilinx DSP48E1 Block: As technology started growing rapidly, FPGAs started

to get much more high performance with coarse grained processing elements which

enabled them to address signal processing and high performance computing prob-

lems. Following the addition of memory blocks, hard multipliers were added to

speed up common signal processing tasks. These later evolved into multiply-

accumulate blocks, often used in filters. Modern Xilinx FPGAs provide DSP48E1

blocks for computations requiring 25×18 multipliers, 25-bit Add/sub operators,

48-bit ALU or a combination of these. They offer significantly reduced power con-

sumption, superior logic density and speed, than equivalent LUT implementations

of the same computations.

DSP48E1 blocks can be divided into three stages: pre-adder, multiplier, and ALU

as shown in Figure 2.6. The pre-adder is a 25-bit two-input adder/subtractor

which takes data from the 30-bit A port and the 25-bit D port and produces a .

Its output is fed as one of the inputs of the multiplier which has asymmetric 18-bit

and 25-bit inputs. The ALU is 48 bits wide and operates on the output of the

multiplier and another input. Logic functions supported by the ALU are AND,

OR, NOT, NAND, NOR, XOR, and XNOR. Three multiplexers X, Y, and Z, are

used to select appropriate inputs for the ALU block.

DSP48E1 blocks can be configured in many different ways to perform different

arithmetic operations and support internal pipelining. As we can see in Figure 2.6,

the DSP48E1 block can be divided into a maximum of four pipeline stages. Two

of the pipeline stages are available at inputs A and B, one at the output of the

multiplier, and one at the output of the ALU. These pipeline stages are param-

eterised which means that the number of pipeline stages can be configured while

2 Background and Literature Review 45

MULT
25x18

Dual B
Register

Dual A, D and
Pre-Adder

C

M

X

Y

Z

INMODE

CARRYIN

OPMODE

CARRYINSEL

B

A

D

C

BCOUT* ACOUT*

0

1
0

0

BCIN* ACIN* PCIN* MULTSIGNIN*CARRYCASCIN*

CREG/C
Bypass/Mask

PATTERNDETECT

PATTERNBDETECT

P

CARRYOUT

PCOUT*MULTISIGNOUT*

CARRYCASCOUT*

ALUMODE
P

P

P

P

48

18

30

25

48

5

48

7

3

18

30

4 1

18

18 30

18

A:B

30

48

25

17-bit Shift

17-bit Shift

4

4

48

* These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Figure 2.6: Internal architecture of the DSP block.

instantiating the primitive. This cannot be changed dynamically, unlike other

functions of the DSP48E1. To achieve a high frequency, thus maximizing appli-

cation throughput, all of the pipeline stages of the DSP48E1 primitive can be

enabled.

The key feature of DSP blocks for the Xilinx family of FPGAs is the ability to

dynamically change the functionality at runtime using the dynamic mode control

feature of the DSP blocks. The functionality of these DSP blocks can be modified

in every clock cycle, greatly enhancing the flexibility and usability of these blocks

to implement programmable ALU within the FU of coarse-grained architectures.

Four control inputs are used to control and configure the operations of DSP48E1.

These are INMODE, OPMODE, ALUMODE, and CARRYINSEL.

INMODE is a 5-bit control input out of which least significant 4 bits selects the

functionality of the pre-adder block, which serves as a 25-bit input to the multi-

plier block and input registers of A and D. The most significant bit of INMODE

selects the input register of the multiplier B port. OPMODE is a 7-bit control

46 2 Background and Literature Review

input, that controls the outputs of the X, Y, and Z multiplexers. OPMODE [1:0]

selects the X multiplexer input, OPMODE [3:2] selects the Y multiplexer input,

and OPMODE [6:4] selects the Z multiplexer input. ALUMODE is a 4-bit control

input, that controls the behavior of the ALU block. CARRYINSEL is a 3-bit con-

trol input, which selects the appropriate source for CIN. In literature, the dynamic

mode control feature has been used for:

• The iDEA Processor [160]. The iDEA processor shares the DSP block across

multiple instructions, and achieves an Fmax of 405 MHz using a 9-stage

pipeline when implemented on a Virtex-6 (XC6VLX240T) device. iDEA

consumes 1 DSP Block, 321 LUTs and 413 FFs. An RTL implementation of

the processor, without instantiating the DSP primitive as an execution unit,

occupies 38% more registers and 169% more LUTs compared to iDEA. The

tool still synthesized a DSP block for the 16×16 multiplication, but only

achieved a clock frequency of 173 MHz, just 42% of iDEAs frequency.

• The Hoplite-DSP NoC [161]. Hoplite-DSP embeds the functionality of the

Hoplite router into DSP blocks. A 32×16 Hoplite-DSP NoC mapped onto

a VC707 board with a Xilinx XC7VX485T FPGA, consumes 1.5K DSP48E

blocks, but reduces the LUT costs from 35K to 7K LUTs, representing a 5×

saving, and reduces FF costs from 62K to 9K, representing a 6× saving.

• Application-specific hardware synthesis for DSP block architecture-aware

high level synthesis [162]. Careful use of the internal architecture of the

DSP block while synthesizing from HLL to RTL allows 1.2× throughput

improvement over Vivado HLS generated RTL implementations, at the cost

of up to 23% extra LUT resources.

2 Background and Literature Review 47

2.7 Summary

In reviewing the literature, we find that many overlays are developed with little

consideration for the underlying FPGA architecture. Previous work has demon-

strated that the DSP-rich FPGA fabrics in modern devices can support general

purpose processing at near to DSP block theoretical limits [124, 76]. In this the-

sis, we aim to explore coarse grained overlays designed using the flexible DSP48E1

primitive on Xilinx FPGAs, which can allow pipelined execution of compute ker-

nels without adding significant area and performance overheads.

3
Adapting the DySER Architecture as an

FPGA Overlay

3.1 Introduction

Recently the concept of using dynamically specialized hardware for accelerated

computing is gaining traction for improving energy efficiency of computing plat-

forms [163]. The DySER architecture [131, 139] is one example of dynamically

specialized hardware which was proposed to improve the performance of general

purpose processors by integrating a programmable array of FUs, referred to as dy-

namically specialized execution resources, into the processor pipeline. The DySER

architecture exhibit similarities not only with other spatially configured coarse-

grained architectures [63, 73, 74] but also with conventional tiled architectures

49

50 3 Adapting the DySER Architecture as an FPGA Overlay

such as RAW [164], Wavescalar [165] and TRIPS [166]. However, integration of

DySER within the pipeline of a processor would require a complete redesign of the

processor micro-architecture. Another approach is to overlay the DySER architec-

ture on top of a commercial FPGA fabric and use it as a bus-attached coprocessor

within a heterogeneous computing platform.

This chapter examines the DySER overlay architecture, mapped on the Xilinx

Zynq SoPC, to show that DySER suffers from a significant area and performance

overhead due to limited consideration for the underlying FPGA architecture. The

DySER architecture was chosen because it is the only spatially configured architec-

ture available as open source. We then propose an improved FU architecture using

the flexibility of the DSP48E1 primitive which results in a 2.5 times frequency im-

provement and 25% area reduction compared to the original FU architecture. The

motivation is to use low level features of the FPGA architecture, specifically the

dynamic mode control feature of DSP blocks, to develop architecture centric high

performance computing blocks. We demonstrate that this improvement results in

the routing architecture becoming the bottleneck in performance.

The main contribution of this chapter is to show how to configure and use the DSP

block for an efficient and practical implementation of the DySER FU. The modified

DySER architecture (referred to as DSP-DySER) is then targeted to the Xilinx

Zynq. This DSP-DySER overlay can then be used to host accelerators to offload

data-parallel compute kernels from compute-intensive applications running on the

ARM processor. We demonstrate how adopting the Xilinx DSP48E1 primitive in

the FU of the DySER architecture improves the performance and reduces the area

overheads. The main contributions can be summarized as follows:

• An RTL implementation of an FU (compatible with the DySER architec-

ture) using the DSP48E1 primitive, which can operate at near theoretical

maximum frequency.

• A scalability analysis of DSP-DySER and an analysis of performance im-

provement on the Xilinx Zynq device, including the evaluation of peak

3 Adapting the DySER Architecture as an FPGA Overlay 51

throughput (in terms of GOPS) and interconnect area overhead (in terms of

LUTs/GOPS) of DSP-DySER.

• A quantitative analysis of the area overheads of the DSP-DySER architecture

by mapping a set of benchmarks to DSP-DySER and to the FPGA fabric

using Vivado HLS.

• A quantitative evaluation of the hardware performance penalty of DSP-

DySER compared to HLS generated hardware implementations.

The work presented in this chapter is also discussed in

• A. K. Jain, X.Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER

Architecture with DSP Blocks as an Overlay for the Xilinx Zynq, in ACM

SIGARCH Computer Architecture News (CAN), vol. 43, no. 4, pp. 28-33,

September 2015.

3.2 The DySER Architecture

As shown in Figure 3.1(a), The DySER architecture consists of two blocks, the

tile fabric and the edge fabric, where each tile in the tile fabric instantiates a

switch and an FU, while the edge fabric only instantiates a switch, forming the

boundary at the top and left of the tile fabric. The resulting architecture contains

I/O ports around the periphery of the fabric, which are connected to FIFOs. A

simple 2×2 DySER overlay, consists of four tile instances and five switch instances

along the North and West boundaries, resulting in 4 FUs and 9 switches, as shown

in Figure 3.1(b). Extrapolating this to an N × N DySER architecture results in

N2 FUs and (N + 1)2 switches.

3.2.1 DySER Switch

The switches allow datapaths to be dynamically specialized. These switches form

a network that creates paths from inputs to the FUs, between FUs, and from FUs

52 3 Adapting the DySER Architecture as an FPGA Overlay

Switch Switch Switch Switch

Sw
it
ch

Sw
it
ch

Sw
it
ch

S
w
it
ch

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Switch

(a) DySER block diagram.

FU

Switch

FU

Switch

FU

Switch

FU

Switch

Switch

Switch

Switch SwitchSwitch

(b) 2×2 DySER as an example.

Figure 3.1: DySER architecture.

to outputs. Switches in DySER have 5 inputs (4 from neighbour switches and

1 from the FU at the North-West direction) and 8 outputs (to all 8 directions).

Hence, switches require a 5:1 multiplexer and a state machine for synchronization

at each output.

3.2.2 DySER Functional Unit

The FU provides resources for the mathematical and logical operations, and syn-

chronization logic. It receives its input values from the four neighbouring switches

and outputs its result to the switch in the south-east direction. The FU consists

of programmable computation logic and a state machine as synchronization logic

at each input and output of the computation logic. The state machine implements

a credit-based flow-control protocol to enable receiving of inputs asynchronously

at arbitrary times from the FIFO interfaces.

The operators in the FU can be selected according to application requirements. We

choose four operators: Add, Sub, Mul and OR in the FU, as shown in Figure 3.2,

to map the benchmarks from [167]. The benchmark characteristics are given in

Table 3.1. Figure 3.3 shows the mapping of these benchmarks to the DySER

architecture. A 5×5 DySER can be used to implement all of the benchmarks

considered in Table 3.1.

3 Adapting the DySER Architecture as an FPGA Overlay 53

c_in

done

v_in

d_in

Credit
Generator

c_out_SW

Conf[15:0]

d_in_SW [17:2]
d_in_NW[17:2]
d_in_NE [17:2]
d_in_SE [17:2]

d_in_SW [1:0]
d_in_NW[1:0]
d_in_NE [1:0]
d_in_SE [1:0]

c_out_NW
c_out_NE
c_out_SE

d_out_SE

c_in_SE

Conf[2:1]

Conf[6:5]

Conf[4:3]

Conf[12:5]

Conf[13]

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Conf[15:14]

MUL

MUX

B

A

16

16

16

Done Signal
Generator

c_in

done

v_in

d_in

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

ADD

SUB

OR

Figure 3.2: Functional unit architecture.

No. Benchmark Add Sub Mul OR Total

1. fft 3 3 4 10

2. kmeans 7 8 8 23

3. mm 7 8 15

4. mri-q 3 6 1 10

5. spmv 6 8 14

6. stencil 10 2 2 14

7. conv 8 8 16

8. radar 6 2 8

Table 3.1: Benchmark characteristics

Handling Latency Imbalance at FU inputs: A credit-based flow control (simplified

for the statically-switched network) was used to handle latency imbalance at the

FU inputs. Any stage (FU or switch) needs one credit to send data, and after

sending the data it sends a credit signal to its predecessor. If a stage is processing,

or delayed waiting for data, the valid bit is cleared and credit is not passed to the

previous stage. This allows the handling of latency imbalance and prevents values

from a new invocation overwriting values from a previous invocation, since the

array receives inputs asynchronously at arbitrary times from the FIFO interfaces.

The original DySER FU, supporting a 16-bit datapath, was implemented using

54 3 Adapting the DySER Architecture as an FPGA Overlay

Figure 3.3: Mapping of kernels on DySER architecture.

Xilinx ISE 14.6 targeting a Xilinx Zynq XC7Z020. The FU consumes 49 Slices

(148 LUTs, 66 FFs) and 1 DSP48E1 block, with a critical path of 6.7 ns. Hence

the maximum operating frequency of the FU is 150 MHz. Figure 3.4 shows the

physical mapping of the FU to the FPGA fabric [168]. While synthesizing, the

tool infers a DSP block for multiplication. The remainder of the operations and

the multiplexer in the compute logic are mapped to 17 Slices (57 LUTs). State

machines and input selection multiplexers are mapped to 32 Slices (91 LUTs and

66 FFs). After integrating the FU into the DySER tile and implementing it on

the FPGA fabric, we found that the critical path in the DySER Tile is the same

as the critical path of the FU (6.7 ns), and hence the FU limits the performance

of the DySER tile.

3.3 DSP Block Based DySER (DSP-DySER)

To reduce the DySER critical path, while building on the advantages of hard

DSP macros for implementing high speed PEs, we examine the use of the Xilinx

DSP48E1 primitive as a programmable FU in DySER. Despite the fact that the

original FU uses a DSP block for multiplication, it does not fully exploit the

3 Adapting the DySER Architecture as an FPGA Overlay 55

Embedded
Processor

 (ARM Cortex-A9)

Functional Unit

FPGA Fabric

DSP48E1 Primitive

Figure 3.4: Physical mapping of the functional unit on FPGA.

performance advantage of the DSP block. Since the DSP48E1 can be dynamically

configured and used for operations required by the FU, we show that an area and

performance efficient FU can be built by making use of DSP block as an ALU,

instead of just as a multiplier, and by enabling the internal pipeline registers of

the DSP block.

3.3.1 DSP48E1 Based Functional Unit

We use the DSP48E1 primitive, as shown in Figure 2.6, to implement the com-

putation logic in the modified FU, as shown in Figure 3.5. As mentioned earlier,

The DSP48E1 primitive has a pre-adder, a multiplier, an ALU, four input ports

for data, and one output port P, and can be configured to support various opera-

tions such as multiply, add, sub, bitwise OR, etc. These functions are determined

by a set of dynamic control inputs that are wired to configuration registers. The

DSP48E1 primitive is directly instantiated providing total control of the configura-

tion of the primitive. This allows us to maximize the compute kernel throughput

56 3 Adapting the DySER Architecture as an FPGA Overlay

and achieve a high FU frequency by operating the DSP48E1 at its maximum

frequency.

c_in

done

v_in

d_in

Credit
Generator

c_out_SW

Conf[15:0]

d_in_SW [17:2]
d_in_NW[17:2]
d_in_NE [17:2]
d_in_SE [17:2]

d_in_SW [1:0]
d_in_NW[1:0]
d_in_NE [1:0]
d_in_SE [1:0]

c_out_NW
c_out_NE
c_out_SE

d_out_SE

c_in_SE

Conf[2:1]

Conf[6:5]

Conf[4:3]

Conf[12:5]

Conf[13]

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Conf[15:14]

MULT
25x18

Dual B
Register

Dual A
Register

C

M

X

Y

Z

INMODE

OPMODE

B

A

C

1
0

0

ALUMODE

P

16

16

16

7

4 1

4

16

DSP48E1
Configuration

Decoder

Done Signal
Generator A:B

c_in

done

v_in

d_in

c_out

d_out

v_out

c_in

done

v_in

d_in

c_out

d_out

v_out

Figure 3.5: DSP48E1 based functional unit architecture.

We enable all of the pipeline stages of the DSP48E1 primitive. The redesign of the

DySER FU replaces the original compute unit (CU), shown in Figure 3.2, with

the fully pipelined DSP48E1 primitive, along with modifications to the done signal

generation logic and configuration decoding logic, as shown in Figure 3.5. The two

inputs from the FU (to the CU) are connected to the three ports of the DSP48E1

primitive, as shown in Figure 3.5. The FU configuration register includes 2 bits

for operation selection with the other 14 bits for constant and input multiplexers.

Additionally, we require three 16-bit registers at the DSP input ports (as shown

in Figure 3.5), consuming 48 FFs to balance the internal pipeline stages of the

DSP block. Table 3.2 shows the DSP48E1 configuration settings required for each

operation. Inmode remains the same for all of the operations and hence we hard-

code it to 00000.

3.3.2 Analysis of Performance Improvement

We analyze the performance improvement of the FU in terms of frequency and

resource usage. The DSP48E1 based FU consumes 37 Slices (116 LUTs, 117 FFs)

(25% less than the original FU) and 1 DSP block. Apart from obvious area savings,

3 Adapting the DySER Architecture as an FPGA Overlay 57

Operation ALUMODE OPMODE INMODE

ADD 0000 011 0011 00000

SUB 0011 011 0011 00000

MUL 0000 000 0101 00000

OR 1100 011 1011 00000

Table 3.2: DSP48E1 configuration for each operation

the strategy of using a fully pipelined DSP block as the computational part of the

FU also improves overall timing performance. The FU has a critical path of just

2.7 ns, resulting in a maximum frequency of 370 MHz, which is 2.5× that of the

original FU. Figure 3.6 shows the physical mapping of the FU onto the FPGA

fabric.

Since a hard primitive is used for the implementation of CU operations, only

minimal additional circuitry is implemented in the logic fabric which consists of

configuration decoding logic, three 16-bit balancing registers and done signal gen-

eration logic. All of this additional circuitry is mapped to 10 Slices (25 LUTs and

Functional Unit

FPGA Fabric

DSP48E1 Primitive

Embedded
Processor

 (ARM Cortex-A9)

Figure 3.6: Physical mapping of the enhanced functional unit on FPGA.

58 3 Adapting the DySER Architecture as an FPGA Overlay

Embedded
Processor

 (ARM Cortex-A9)
Functional Unit

FPGA Fabric

DySER Tile

Figure 3.7: Physical mapping of the DSP-DySER tile on FPGA.

51 FFs). State machines and input selection multiplexers are mapped to 27 Slices

(91 LUTs and 66 FFs).

By integrating the enhanced FU into the DSP-DySER tile and implementing it

on the FPGA fabric, we found that the critical path of the switch, which is 5.3 ns,

now limits the performance of the DSP-DySER tile. Figure 3.7 shows the physical

mapping of the DSP-DySER tile to the FPGA fabric. It is clear that the major

area overhead in DSP-DySER is due to significant resources consumed in the

switch implementation. The switch consumes 251 Slices (995 LUTs and 325 FFs)

and hence the whole tile consumes 288 Slices (1118 LUTs and 447 FFs). The

largest source of area overhead comes from the multiplexing logic in the switch

which could be minimized by using techniques mentioned in [137, 169, 170].

3 Adapting the DySER Architecture as an FPGA Overlay 59

We have shown that a more architecture-oriented approach to designing the FU

enables it to be small and fast. As a result the routing for the coarse grained array

becomes the limiting factor which should be addressed.

3.4 Scalability Analysis

The Xilinx Zynq-7020 fabric consists of 220 DSP blocks, with a theoretical max-

imum frequency of 400 MHz, each of which can support up to 3 arithmetic op-

erations, resulting in a peak throughput of 264 GOPS. We map the largest DSP-

DySER array possible to the Zynq device and determine the resource utilization

and peak throughput of the DSP-DySER overlay in GOPS to examine whether the

DSP-DySER overlay can be used to exploit the raw performance of the available

DSP blocks to the full extent.

The DSP-DySER overlay is implemented by replicating tiles and switches on the

FPGA fabric. One tile consumes 2.16% of Slices and one switch consumes 1.88%

of the Slices present in the fabric. As discussed previously, an N×N DSP-DySER

overlay incorporates N2 Tiles in the tile fabric and 2N + 1 switches in the edge

fabric. Hence, a 6× 6 DSP-DySER overlay is the largest that can fit on the Zynq-

7020. Table 3.3 shows the resource usage for different overlay sizes while Figure 3.8

shows the FPGA resource utilization.

Resource type 2x2 3x3 4x4 5x5 6x6

LUTs 5330 12785 22306 33875 48171

FFs 2781 5493 8950 13390 18728

Slices 2458 6538 9700 12284 13244

DSPs 4 9 16 25 36

Table 3.3: Resource usage for 16-bit DSP-DySER on Zynq-7020

It is clear from Table 3.3 and Figure 3.8 that excessive LUT usage (≈ 1360 LUT-

s/DSP) becomes a limiting factor in exploiting the raw performance of all DSP

blocks available on the Zynq device. It would only be possible to exploit the full

60 3 Adapting the DySER Architecture as an FPGA Overlay

2 3 4 5 6

0

20

40

60

80

100

DSP-DySER Size (N×N)

%
F

P
G

A
re

so
u
rc

es

LUTs
FFs

DSPs
Slices

Figure 3.8: % Resource usage of Zynq-7020 for 16-bit DySER.

raw performance if the LUTs/DSP factor of the overlay implementation matches

(or is less than) the LUTs/DSP factor of the Zynq device. The Xilinx Zynq-7020

fabric consists 53200 LUTs and 220 DSP blocks which corresponds to a LUTs/DSP

factor of 240. This significant gap in the LUTs/DSP factor of the DSP-DySER

overlay implementation and that of the Zynq device is mainly due to the signif-

icant resource overheads associated with the switch network, which needs to be

optimized to exploit the raw performance of all DSP blocks to the full extent.

Since a DSP block in DSP-DySER is used to support one operation, an overlay of

size N × N can support up to N2 operations. Hence the peak throughput of an

overlay of size N ×N is equal to N2 ∗ Fmax GOPS. A 6×6 DSP-DySER achieves

an Fmax of 175 MHz on Zynq, hence providing a peak performance of 6.3 GOPS

which is only 2% of the maximum achievable peak performance on Zynq.

A quantitative comparison of the DSP-DySER with the Intermediate Fabrics (IFs)

overlay [137] is given in Table 3.4. The first and second rows of the table shows

the device used to implement the overlay and resources available, respectively. We

compare the overlay size, LUTs used, Fmax in MHz, maximum number of opera-

tions supported in the overlay, and the peak throughput (in GOPS) for the three

different overlays; IF, IF with low overhead version of the interconnect architecture,

3 Adapting the DySER Architecture as an FPGA Overlay 61

referred to as IF(opt), and DSP-DySER. IF and IF(opt) use an FPGA-like island-

style coarse-grained interconnect architecture. Fixed-logic multipliers (mapped to

DSP blocks by the synthesis tool) were used as the FUs for IF and IF(opt), so

that the device utilization just represents the interconnect area overhead.

Resource IF [137] IF (opt) [137] DSP-DySER

Device XC5VLX330 XC5VLX330 XC7Z020

Slices|LUTs 51.8K|207K 51.8K|207K 13.3K|53K

Overlay 14×14 14×14 6×6

LUTs used 91K 50K 48K

Fmax (MHz) 131 148 175

Max OPs 196 196 36

Peak GOPS 25.6 29 6.3

LUTs/GOPS 3550 1725 7620

Table 3.4: Quantitative comparison of overlays

However, because of the different FPGA fabrics and the different overlay architec-

tures, it is difficult to make meaningful comparisons between the different over-

lays. Hence, we introduce a new comparison metric: the interconnect resource

used per unit peak throughput (LUTs/GOPS), which allows us to quantify the

area overhead of the overlay interconnect architectures irrespective of the FU im-

plementation.

Although the efficient use of DSP block in DSP-DySER provides an improvement

of 2.5× in frequency and a reduction of 25% in area compared to the original

FU design, the significant LUT resource requirement for the switch becomes the

bottleneck in the performance and scalability of DSP-DySER. It is clear from Ta-

ble 3.4 that almost the same number of LUT resources are required to implement a

6×6 DSP-DySER and a 14×14 IF(opt). Although DSP-DySER uses a DSP block

based programmable ALU as the FU, instead of a fixed-logic multiplier, the inter-

connect area overhead of DSP-DySER is 4.4× higher than the interconnected area

overhead of IF(opt). This high interconnect area overhead (7.6K LUTs/GOPS)

and the low peak performance (6.3 GOPS) prevents the realistic and practical use

of DSP-DySER overlay as a programmable accelerator. For FPGA overlays to

62 3 Adapting the DySER Architecture as an FPGA Overlay

become a possibility for general purpose on-demand application acceleration this

interconnect area overhead needs to be significantly reduced.

3.5 Area Overhead Quantification

As a comparison, albeit an unfair one as we are comparing static implementations

requiring a relatively long compile time with rapidly compiled dynamic imple-

mentations, we generate RTL of the compute kernels using Vivado HLS 2013.2 in

order to perform a quantitative analysis of area overheads. We use the pipeline

pragma with an II of one to generate fully parallel and pipelined RTL implemen-

tation of the compute kernels. Table 3.5 shows the results for the Vivado HLS

implementations of the benchmarks from Table 3.1.

Benchmark LUTs FFs Slices DSPs Freq. (MHz)

fft 218 (0.4%) 485 (0.4%) 117 (0.9%) 4 (1.8%) 324

kmeans 613 (1.1%) 1252(1.2%) 215 (1.6%) 8 (3.6%) 249

mm 315 (0.6%) 920 (0.8%) 205 (1.5%) 8 (3.6%) 295

mri-q 243 (0.4%) 588 (0.5%) 147 (1.1%) 6 (2.7%) 268

spmv 292 (0.5%) 842 (0.8%) 180 (1.3%) 8 (3.6%) 297

stencil 460 (0.8%) 870 (0.8%) 200 (1.5%) 2 (0.9%) 303

conv 353 (0.6%) 918 (0.8%) 222 (1.6%) 8 (3.6%) 272

radar 163 (0.3%) 457 (0.4%) 92 (0.7%) 6 (2.7%) 304

5×5 FU array 2900 (5.5%) 2925 (2.7%) 925 (6.9%) 25 (11.4%) 370

5×5 DSP-DySER 33875 (63.7%) 13390 (12.6%) 12284 (92.4%) 25 (11.4%) 175

Table 3.5: Experimental results for the Vivado-HLS implementations of the bench-
mark set

The compute kernels ranged from using 0.3-1.1% (on average 0.6%) of the total

LUTs in the FPGA, 0.4-1.2% (on average 0.7%) of the total FFs in the FPGA,

0.7-1.6% (on average 1.3%) of the total Slices in the FPGA and 0.9-3.6% (on

average 2.8%) of the total DSP blocks in the FPGA. Table 3.5 also shows the

result of mapping a 5×5 DSP-DySER onto the Xilinx Zynq 7020 device. A 5×5

DSP-DySER achieves an Fmax of 175 MHz, consuming 63.7% of the total LUTs,

12.6% of the total FFs, 92.4% of the total Slices and 11.4% of the total DSP blocks

in the FPGA fabric. It clearly shows that DSP-DySER require almost all of the

fine-grained resources of the FPGA fabric to support the benchmark set while the

3 Adapting the DySER Architecture as an FPGA Overlay 63

largest HLS mapped benchmark requires only 1.6% of the fine-grained resources

of the FPGA fabric. However, in an accelerator context, the concept of using

DSP-DySER by swapping in and out different benchmark kernels and reusing the

FPGA resources for multiple benchmark kernels is an advantage, but at the cost

of huge area overheads.

The area overheads associated with the more flexible DSP-DySER architecture

need to be reduced by exploring alternative FU and interconnect implementations

for overlays. For example, the area overhead can be lowered by sacrificing some of

the flexibility in the interconnect architecture. However, for overlays to be com-

pelling, they must not just have high performance and low area overhead, but

must also be capable of serving as a general purpose compute-kernel accelerator.

A significant challenge in using FPGA overlays is identifying interconnect archi-

tectures that provide appropriate overhead vs. flexibility trade-offs for a particular

application domain or a set of benchmark kernels.

As a further comparison, We assess the overhead of the flexible routing network

in a similar way to [74] by designing a hardwired version of the 5×5 DSP-DySER,

referred to as 5×5 FU array, in which the switches are replaced by direct wires. The

routing network overhead is the ratio of the 5×5 DSP-DySER overlay resources to

those of the 5×5 FU array. 5×5 FU array consumes 5.5% LUTs, 2.7% FFs, 6.9%

Slices and 11.4% DSP blocks, while a fully functional 5 × 5 DSP-DySER overlay

consumes 63.7% LUTs, 12.6% FFs, 92.4% Slices and 11.4% DSP blocks. Hence,

a 5× 5 DSP-DySER overlay can be used to implement all of the compute kernels

with a routing network overhead of 11× more LUTs, 5× more FFs, and 13× more

Slices.

It is difficult to get a good feel for the relative performance of each implementation

from the results of Table 3.5, because they all have different resource utilisations

and operating frequencies. This is also the case when comparing implementations

targeted to different vendors FPGAs. To overcome this problem, we attempt

to normalize the hardware resource utilization using a single equivalent slices (e-

Slices) metric, where we assume that 1 DSP block is equivalent to 60 slices based

64 3 Adapting the DySER Architecture as an FPGA Overlay

Benchmark OP Freq. (MHz) Slices DSPs eSlices MOPS MOPS/eSlice

fft 10 324 117 4 357 3240 9.0

kmeans 23 249 215 8 695 5727 8.3

mm 15 295 205 8 685 4425 6.5

mri-q 10 268 147 6 507 2680 5.3

spmv 14 297 180 8 660 4158 6.3

stencil 14 303 200 2 320 4242 13.2

conv 16 272 222 8 702 4352 6.2

radar 8 304 92 6 452 2432 5.4

Table 3.6: Determining MOPS/eSlice for the Vivado-HLS implementations of the
benchmark set

on the ratio of slices/DSP on the Zynq XC7Z02-1CLG484C (which is approxi-

mate 60). We then introduce a new performance metric, the throughput per unit

area (in MOPS/eSlice), which is able, to some extent, to normalise performance

between different implementations and architectures. We then compare the per-

formance, in terms of throughput per unit area, of the Vivado-HLS generated RTL

implementation of kernels with that of the DSP-DySER overlay. For each of the

benchmarks in Table 3.1, we obtain the area in e-Slices, the throughput in MOPS

and throughput per unit area in MOPS/eSlice, as shown in Table 3.6.

We observe that the average throughput per unit area for the HLS implementation

of the benchmark set is ≈ 7.5 MOPS/eSlice. In comparison, a 5×5 DSP-DySER

overlay achieves 0.3 MOPS/eSlice, which is around 4% of the HLS implementa-

tions. This 25× hardware performance penalty needs to be considered in context

with the ability of the overlay to support runtime compilation and runtime config-

uration of the compute kernels. However, this penalty still needs to be reduced for

there to be any hope of mainstream adoption of coarse-grained overlays as high

performance programmable accelerators.

3 Adapting the DySER Architecture as an FPGA Overlay 65

3.6 Summary

We have presented an enhancement to the DySER coarse-grained overlay that

uses the Xilinx DSP48E1 primitive to implement most of the FU, improving the

area and performance. We show an improvement of 2.5× in frequency and a

reduction of 25% in area compared to the original FU design. We quantify the

area overheads by mapping a set of benchmarks to the adapted version of a 6×6

16-bit DySER overlay, referred to as DSP-DySER, and directly to the FPGA fabric

using Vivado HLS. DSP-DySER, when implemented on a Xilinx Zynq, provides

a peak performance of 6.3 GOPS with an interconnect area overhead of 7.6K

LUTs/GOPS, but with a 25× hardware performance penalty compared to the

HLS generated hardware implementations.

We have demonstrated that an architecture-focused FU design exposes the sig-

nificant overhead of the flexible routing. Hence optimizing the switch network

or developing a light weight interconnect architecture to reduce this overhead is

necessary. In the next chapter, we present a more FPGA targeted overlay archi-

tecture that maximizes the peak performance and reduces the interconnect area

overhead through the use of an array of DSP block based fully pipelined FUs and

an island-style coarse-grained routing network.

4
Throughput Oriented FPGA Overlays

Using DSP Blocks

4.1 Introduction

In this chapter, we design and implement a more FPGA targeted overlay archi-

tecture that maximizes the peak performance and reduces the interconnect area

overhead through the use of an array of DSP block based fully pipelined FUs and

an island-style coarse-grained routing network (referred to as, DSP block based

Island-Style Overlay (DISO)), achieving a peak performance of 65 GOPS (10x

better than DSP-DySER) with an interconnect area overhead of 430 LUTs/GOPS

(18x better than DSP-DySER). The overlay uses the dynamic programmability of

the DSP block and maps up to three operations to each node (1 add/sub, 1 mul,

67

68 4 Throughput Oriented FPGA Overlays Using DSP Blocks

1 ALU op), resulting in a significant reduction in the number of processing nodes

required. The motivation is to combine the benefits of an FPGA friendly inter-

connect architecture (having enough flexibility but with a low overhead compared

to DySER) with the dynamic mode control feature of DSP blocks to develop ar-

chitecture centric throughput oriented FPGA overlays. We demonstrate that this

improvement results in better exploitation of the performance provided by the

DSP blocks available on the FPGA fabric.

Next, we extend this work to improve the compute-to-interconnect resource usage

ratio by including more compute nodes inside an FU, that is to use multiple DSP

blocks. However, efficiently utilizing the DSP resources, both in terms of the

optimum number of DSP blocks that can be used in an FU and being able to map

applications to the new architecture, needs to be investigated. As such, we firstly

analyse the characteristics of a number of compute kernels from the literature to

ascertain the suitability of mapping multiple instances of kernels to the overlay.

We then prototype an enhanced version of DISO (referred to as Dual-DISO) which

uses two DSP blocks within each FU and shows a significant improvement in

performance and scalability, with a reduction of almost 70% in the overlay tile

requirement compared to existing overlay architectures, an operating frequency in

excess of 300 MHz and a peak performance of 115 GOPS (18x better than DSP-

DySER) with an interconnect area overhead of 320 LUTs/GOPS (24x better than

DSP-DySER).

We then map several benchmarks kernels onto the proposed overlays and show

that the proposed overlays can deliver better throughput compared to Vivado HLS

generated fully pipelined RTL implementations. We also present the approach of

building a single large overlay and mapping multiple instances of kernels to the

overlay to achieve effective utilization of overlay resources. The main contributions

can be summarized as:

• The design and RTL implementation of an FPGA targeted overlay archi-

tecture using of an array of DSP block based fully pipelined FUs and an

4 Throughput Oriented FPGA Overlays Using DSP Blocks 69

island-style coarse-grained routing network (referred to as DISO), which can

operate at near to the theoretical maximum frequency of the FPGA.

• A scalability analysis of DISO on the Xilinx Zynq device, including the

evaluation of peak throughput (in terms of GOPS) and interconnect area

overhead (in terms of LUTs/GOPS).

• An analysis of a wide variety of compute kernels using a DSP48E1 aware data

flow graph based approach to ascertain the suitability of mapping multiple

instances of kernels to the overlay.

• The design and parameterized RTL implementation of an enhanced FU

which contains two DSP48E1 blocks for improving peak performance and

reducing interconnect area overhead.

• A comprehensive comparison of the resource requirements of DISO and Dual-

DISO with other overlays from the literature.

• A comprehensive analysis of the proposed overlays (DISO and Dual-DISO)

by mapping a set of benchmarks (possibly with multiple instances of kernels)

to the overlays and also directly to the FPGA fabric using Vivado HLS.

The work presented in this chapter is also discussed in

• A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient Overlay Architecture

Based on DSP Blocks, in Proceedings of the IEEE International Symposium

on Field Programmable Custom Computing Machines (FCCM), Vancouver,

Canada, May 2015.

• A. K. Jain, D. L. Maskell, and S. A. Fahmy. Throughput Oriented FPGA

Overlays Using DSP Blocks, in Proceedings of the Design, Automation and

Test in Europe Conference (DATE), Dresden, Germany, March 2016.

70 4 Throughput Oriented FPGA Overlays Using DSP Blocks

4.2 DSP Block Based Island-Style Overlay

(DISO)

Building on the ideas presented in the previous chapter and the advantages of

hard DSP macros for implementing high speed FUs, we examine the use of the

Xilinx DSP48E1 primitive for a programmable FU in an efficient overlay architec-

ture targeting data-parallel compute kernels, commonly implemented as pipelined

circuits on FPGAs. The architecture of the proposed overlay consists of a tradi-

tional, island-style topology, arranged as a virtual homogeneous two-dimensional

array of tiles as shown in Figure 4.1(a), distributed across the fine grained FPGA

fabric.

The overlay instantiates the tiles and borders, where each tile instantiates virtual

routing resources and an FU and each border instantiates one switch box (SB) and

one connection box (CB), forming the boundary at the top and right of the array,

as shown in Figure 4.1(a). This results in an overlay architecture which contains

I/O around the periphery of the overlay fabric. This I/O can be connected to a

FIFO or BRAM I/O data port. Figure 4.1(b) shows the architecture of a 2×2

overlay having four tiles, an east boundary (two east borders), a north boundary

(two north borders) and a switch box at the north east corner. It shows that a 2×2

overlay would consist of 4 FUs, 9 SBs and 8 CBs. Extrapolating, an N×N overlay

would incorporate N2 FUs, (N + 1)2 SBs and N2 + 2 ∗N CBs. Each tile contains

an FU and interconnect resources, as shown in more detail in Figure 4.1(c).

Border Border Border Border

B
or
de
r

B
or
de
r

B
or
de
r

B
o
rd
e
r

SB

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

(a) Overlay block diagram.

CB

SB

CB

SB

SB CBSB CB

FUCB

SB CB

FUCB

SB CB

FUCB

SB CB

FUCB

SB CB

SB

(b) Architecture of a 2×2 over-
lay.

CB

SB CB

Functional Unit

Vertical Channel

Ho
riz

on
ta

l C
ha

nn
el

(c) Tile architecture.

Figure 4.1: Overlay architecture.

4 Throughput Oriented FPGA Overlays Using DSP Blocks 71

4.2.1 Island-style Interconnect Architecture

Routing resources in the island-style interconnect architecture are switch boxes,

connection boxes, and horizontal and vertical channels consisting of routing tracks.

Unlike the single-wire tracks in fine grain FPGA fabrics, the overlay tracks com-

prise multiple wires; in this case, 16-bits to support a 16-bit datapath. Addi-

tionally, multiple tracks can exist in both the horizontal and vertical directions,

forming channels within the overlay architecture. The number of tracks in a chan-

nel is referred to as the channel width (CW), and as this increases, application

routing becomes easier but with a higher area overhead. The overlay tile shown

in Figure 4.1(c) has four unidirectional tracks in each channel corresponding to a

CW=4. For flexibility we split the channel so that there is an equal number of

tracks in each direction.

Switch boxes (SBs) connect tracks to other tracks in intersecting channels. Con-

nection boxes (CBs) connect FU inputs and outputs to routing tracks in adjacent

channels. It is also possible to change the flexibility of the SBs and CBs depending

on the routing requirements of the compute kernels. In this chapter, all SBs use

fs equal to one and all CBs use fc equal to one. For the CBs and SBs, we use

multiplexers to implement each possible connection. This means routing resources

contribute significantly to area overhead.

4.2.2 DSP Block Based Functional Unit

The FUs provide the resources for the mathematical or logical operations of the

application and consist of a programmable PE, MUX based reordering logic and

variable length shift register based synchronization logic for balancing pipeline

latencies, as shown in Figure 4.2. Variable length shift registers are implemented

as SLICEM shift register LUTs (SRLs) to achieve maximum performance. The

FU has 4 input and 4 output ports logically organised at the 4 cardinal points.

The reordering logic is basically a 4×4 crossbar switch network which allows full

connectivity between FU inputs and PE inputs.

72 4 Throughput Oriented FPGA Overlays Using DSP Blocks

MUL

B Register

Pre-Adder

C

M

INMODE

OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5

7

4 1

4

16

SRLs

SRLDELAY 24

MUXSEL 10

Immediate 16

DSP48E1

SRLs

SRLs

SRLs

X

Y

Z

Figure 4.2: Functional unit architecture.

Instead of using the fine-grained FPGA resources to implement the programmable

FU, we use the DSP48E1 primitive as a PE to implement functions in the pro-

grammable FU. As discussed in Chapter 3, the DSP48E1 primitive has a pre-

adder, a multiplier, an ALU, four input ports for data, and one output port P,

as shown in Figure 4.2, and can be configured to support various operations such

as multiply-add, multiply-subtract, add-multiply, subtract-multiply, etc. These

functions are determined by a set of control inputs that are wired to configuration

registers. The DSP48E1 primitive is directly instantiated providing total control

of the configuration of the primitive, and allowing us to achieve high frequency.

Since the DSP48E1 can support three operations, an overlay of size N × N can

support 3∗N2 operations. Hence the peak throughput of an overlay of size N×N

is equal to 3 ∗N2 ∗ Fmax .

4.2.3 Architectural Optimization and Design Issues

This section describes some of the architectural optimizations to improve the per-

formance of our overlay architecture. The overlay architecture proposed in this

paper exploits very deep pipelining, and a number of issues including signal prop-

agation delay arise in the design of the architecture. This is because the output of

a pipeline stage (the FU output) can be connected to the inputs of multiple other

4 Throughput Oriented FPGA Overlays Using DSP Blocks 73

FUs, and multiple FUs may connect to the inputs of an FU, resulting in different

signal propagation latencies.

Frequency and Throughput Optimization: To achieve a high Fmax , thus

maximizing application throughput, the FU must be operated at its maximum

frequency. To achieve the highest Fmax possible, we enable all three pipeline

stages of the DSP48E1 primitive, add a register at the output of each reordering

multiplexer, and register the outputs of the SRLs. As a result, the total latency of

the FU is 7 clock cycles. In addition, to further increase the Fmax and eliminate

the possibility of combinational loops in the resulting HDL we use a 16-bit register

at the output of each MUX in the CB.

Distinguishing PE Inputs: Any of the four inputs of the FU can connect to

any of the four inputs of the PE. However, as the input pins of the DSP48E1 block

are not logically equivalent, unlike that of the FPGA LUTs, we must implement

reordering logic for each input pin using a multiplexer as shown in Figure 4.2. The

four outputs of the FU are logically the same single output of the DSP block.

Latency Imbalance at FU Inputs: With a large pipeline latency in each node,

and the need for signal timing to be correctly matched, balancing pipeline latencies

at the different FUs is necessary. To maintain a full pipeline, delays are required

at all paths to ensure that the inputs to each FU are correctly aligned. The most

efficient way to achieve this is using variable-length shift registers, implemented

using the LUT-based SRL32 primitives. The depth of the variable shift registers is

set to introduce the right amount of delay for each path, and the maximum can be

set to 16, 32, or 64 cycles, depending on the flexibility desired. We experimentally

determine the optimal depth of the variable shift registers for our benchmark set.

As long as the inputs at any node are not misaligned by more than the depth of

the variable shift registers, the VPR place and route algorithms [171] can be used

for placement and routing on the overlay. By doing this, we avoid the use of more

complex place and route algorithms for pipelined interconnect [172]. In a later

section we will describe the mapping process and the mapping tool chain used for

mapping kernels to the overlay.

74 4 Throughput Oriented FPGA Overlays Using DSP Blocks

4.2.4 Mapping to the FPGA Fabric and Resource Usage

We synthesize and map the DISO overlay using Xilinx ISE 14.6 onto a Xilinx

Zynq XC7Z020-1CLG484C. The FPGA resource usage and the overlay Fmax is

determined for the overlay with channel widths of 2 and 4.

As discussed previously, an N × N overlay would require N2 FUs, (N + 1)2 SBs

and N2 + 2 ∗ N CBs. Table 4.1 shows the FPGA resource required for the FU,

FU configuration registers (FUCR), SB, SB configuration registers (SBCR), CB

and CB configuration registers (CBCR), for CW=2 and CW=4. The mapping

of overlay components to the physical FPGA fabric and their micro-architectural

resource usage is as follows.

Resource CW=2 CW=4

FU FUCR SB SBCR CB CBCR SB SBCR CB CBCR

LUTs 224 0 64 0 64 0 128 0 96 0

FFs 176 66 0 8 64 6 0 16 96 12

DSPs 1 0 0 0 0 0 0 0 0 0

Table 4.1: FPGA resource usage for DISO overlay components having CW=2 and
CW=4

Resource Usage for the FU and FUCR: As mentioned in Section 4.2.2, the

FU consists of a programmable PE, latency balancing logic and reordering logic.

We use four 16-bit wide variable length shift registers, implemented as SLICEM

shift register LUTs (SRLs) as the latency balancing logic, one on each of the four

PE inputs. A LUT in a SLICEM can be configured as a variable 1 to 32 clock

cycle shift register without using the flip-flops in the slice. The four LUTs in a

SLICEM can then be cascaded to produce delays up to 128 clock cycles. Our

overlay requires a shift register that can produce delays of up to 64 clock cycles.

Hence, for each input, we cascade two registered SRLs to form a chain and use

16 chains of SRLs at each input of the PE to achieve a 16-bit variable delay of

between 1 and 64 cycles. Thus each input consumes 32 LUTs and 16 FFs, resulting

in 128 LUTs and 64 FFs for the complete latency balancing logic. The reordering

logic requires 4 multiplexers, consuming 96 LUTs and 64 FFs. Additionally, we

4 Throughput Oriented FPGA Overlays Using DSP Blocks 75

require three 16-bit registers at the DSP input ports for pipeline balancing, (two

at the C input and one at the B input as shown in Figure 4.2), consuming 48 FFs.

Thus the total resource used by the FU is 224 LUTs, 176 FFs and 1 DSP block.

The FU configuration register includes 16 bits for DSP block configuration, 16 bits

for immediate data, 10 bits for reordering multiplexer selection, 24 bits for depth

selection of the 4 variable length shift registers. Hence, the FUCR consumes 66

FFs. The channel width does not impact the FU resource utilization. The resource

utilization for the FU and FUCR are given in Table 4.1.

Resource Usage for the SB and SBCR: For CW=2, a SB requires four 16-

bit 4:1 muxes, each consisting of 16 LUTs. The SB configuration register requires

8 bits as the selection inputs of the 4 muxes. Hence the SBCR consumes 8 FFs.

For CW=4, a SB consists of eight 16-bit 4:1 muxes, requiring 32 LUTs at each

cardinal point. Each mux consumes 16 LUTs. The SB configuration register

requires 16 bits as the selection inputs of the 8 muxes. Hence the SBCR consumes

16 FFs. Total consumption of the SB and SBCR, for CW=2 and CW=4, is shown

in Table 4.1.

Resource Usage for the CB and CBCR: For CW=2, a CB consists of two

2:1 and two 4:1 muxes (each 16-bits wide). As each mux is registered, the total

resource usage is 64 LUTs and 64 FFs. The CB configuration register requires 6

bits for the selection inputs of the 4 muxes and hence the SBCR consumes 6 FFs.

For CW=4, a CB consists of six 16-bit 4:1 muxes. As each mux is registered, the

resource usage is 96 LUTs and 96 FFs. The CB configuration register requires 12

bits for the selection inputs of the six muxes and hence the SBCR consumes 12

FFs. Total consumption of the CB and SBCB, for CW=2 and CW=4, is shown

in Table 4.1.

Resource Usage for the Overlay Tile: The overlay tile contains 1 FU, 1 SB,

2CBs and their configuration registers, while a border tile contains 1 SB, 1 CB

and their configuration registers. Hence for CW=2, an overlay tile consumes 416

LUTs, 390 FFs and 1 DSP block and a border tile consumes 112 LUTs and 76

76 4 Throughput Oriented FPGA Overlays Using DSP Blocks

FFs. For CW=4, an overlay tile consumes 544 LUTs, 474 FFs and 1 DSP block

while a border consumes 192 LUTs and 120 FFs.

Peak Throughput, Resource Usage and Frequency: The peak throughput

and the resource consumption for different size overlays for a channel width CW=2

and CW=4 is presented in Tables 4.2 and 4.3, respectively.

The resource consumption on Zynq, as a percentage of the total FPGA resources,

for a channel width CW=2 and CW=4 is shown in Figs. 4.3(a) and 4.3(b), re-

spectively. All of these results are post-place and route. Resource usage tracks

our expectations, but it is worth noting that Slice usage becomes a limiting factor

due to the reduced number of SLICEM primitives (required for the SRL latency

balancing) on the lower-end Zynq fabric.

Resource type 2x2 3x3 4x4 5x5 6x6 7x7 8x8

LUTs 1910 4134 7087 11023 15761 21400 27918

FFs 1852 3950 6828 10486 14924 20142 26140

Slices 802 1614 2754 4207 5948 8007 10306

DSPs 4 9 16 25 36 49 64

fmax 392 382 380 370 356 350 338

Tmin 2.55 2.62 2.63 2.7 2.81 2.85 2.96

Peak GOPS 4.70 10.31 18.24 27.75 38.44 51.45 64.89

Table 4.2: FPGA resource usage for DISO overlays with CW=2

Resource type 2x2 3x3 4x4 5x5 6x6 7x7 8x8

LUTs 2702 5927 9941 15198 21658 29599 39410

FFs 2296 4866 8382 12844 18252 24606 31906

Slices 1067 2003 3655 5898 8097 10300 12379

DSPs 4 9 16 25 36 49 64

fmax 357 345 329 317 303 300 295

Tmin 2.8 2.9 3.04 3.16 3.3 3.35 3.4

Peak GOPS 4.28 9.31 15.79 23.77 32.72 44.10 56.64

Table 4.3: FPGA resource usage for DISO overlays with CW=4

4 Throughput Oriented FPGA Overlays Using DSP Blocks 77

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F

P
G

A
re

so
u
rc

es

LUTs
FFs

DSPs
Slices

(a) Resources usage for CW=2.

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F

P
G

A
re

so
u
rc

es

LUTs
FFs

DSPs
Slices

(b) Resources usage for CW=4.

2 3 4 5 6 7 8
0

200

400

600

Overlay Size (N×N)

f m
a
x

in
M

H
z

0

50

100

150

200

P
ea

k
T

h
ro

u
gh

p
u
t

fmax for CW=2
fmax for CW=4

Peak Throughput for CW=2
Peak Throughput for CW=4

(c) Frequency trend.

Figure 4.3: Resource usage and frequency of DISO architecture on the Zynq.

Figure 4.3(c) shows the decrease in Fmax as the size of the overlay increases for

CW=2 and CW=4 on the Zynq device. A modest drop in frequency is observed,

but even for large sized overlays, a frequency in excess of 300 MHZ is achieved.

Figure 4.3(c) also shows the variation in peak throughput as the size of the over-

lay increases for CW=2 and CW=4. The Zynq fabric is able to accommodate an

8×8 DISO overlay (CW=2) which can provide a peak performance of 65 GOPS

which is 24% of the maximum achievable peak performance if all the DSP blocks

on Zynq were fully utilised. The 8×8 DISO overlay (CW=2) achieves an Fmax

of 338 MHz on Zynq, consuming 52% of the LUTs in the FPGA fabric, with a

LUTs/GOPS count of 430. It is clear from Figure 4.3(a) and 4.3(b) that excessive

LUT usage is still a limiting factor in exploiting the raw performance of all DSP

blocks available on the Zynq device. Even though DISO has a significantly better

78 4 Throughput Oriented FPGA Overlays Using DSP Blocks

compute-to-interconnect resource usage ratio than the DSP-DySER overlay pre-

sented in chapter 3 (430 LUTs/GOPS versus 7.6K LUTs/GOPS for DSP-DySER),

the compute-to-interconnect resource usage ratio of the overlay still needs improve-

ment.

While techniques such as runtime LUT content manipulation [169] and intercon-

nect multiplexing [132] can reduce routing network overheads and can improve

the compute-to-interconnect resource usage ratio, they become unsuitable as the

overlay frequency approaches the theoretical limit of the FPGA fabric.

One easy way to improve the compute-to-interconnect resource usage ratio is to

include more PEs inside an FU, that is to use multiple DSP blocks. However,

efficiently utilizing the DSP resources, both in terms of the optimum number of

DSP blocks that can be used in an FU and being able to map applications to the

new architecture, needs to be investigated. Hence in the next section, we analyse

the characteristics of a number of compute kernels from the literature to ascertain

the suitability of mapping multiple instances of kernels to the overlay.

4.3 Analysis of Compute Kernels

Most benchmarks used to analyse the performance of overlays are relatively small,

limited by small overlay sizes. As FPGAs have increased in size, these benchmarks

are no longer sufficient to fully test newer more efficient overlays. Thus, we have

compiled a benchmark set (shown in Table 4.4) containing a number of small and

medium sized compute kernels from the literature [162, 173, 167].

Table 4.5 and Table 4.6 presents the details of the benchmarks shown in Table 4.4.

Table 4.4 shows the characteristics of the kernels after extracting the data flow

graphs (DFGs), including the number of I/O nodes, graph edges, operation nodes,

average parallelism, graph depth, and graph width. The graph depth is the critical

path length of the graph, while the graph width is the maximum number of nodes

that can execute concurrently, both of which impact the ability to efficiently map

4 Throughput Oriented FPGA Overlays Using DSP Blocks 79

a kernel to the overlay. The average parallelism is the ratio of the total number

of operations and the graph depth. We observe that for the benchmarks selected,

the average parallelism varies from 1 to 8. The DFGs contain up to 44 operation

nodes, 88 edges and exhibit a depth of up to 14 and a width of up to 18.

Benchmark I/O DFG Characteristics (DSP-aware Characteristics)

No. Name nodes graph op graph average graph

edges nodes depth parallelism width

1. chebyshev 1/1 12(10) 7(5) 7(5) 1.00(1.00) 1(1)

2. sgfilter 2/1 27(19) 18(10) 9(5) 2.00(2.00) 4(3)

3. mibench 3/1 22(14) 13(6) 6(4) 2.16(1.50) 3(3)

4. qspline 7/1 50(46) 26(22) 8(7) 3.25(3.14) 7(7)

5. poly1 2/1 15(12) 9(6) 4(3) 2.25(2.00) 4(4)

6. poly2 2/1 14(10) 9(6) 5(3) 1.80(2.00) 3(3)

7. poly3 6/1 17(13) 11(7) 5(3) 2.20(2.30) 4(4)

8. poly4 5/1 13(9) 6(3) 4(2) 1.50(1.50) 2(2)

9. poly5 3/1 43(28) 27(14) 9(6) 3.00(2.30) 6(6)

10. poly6 3/1 72(51) 44(25) 11(9) 4.00(2.77) 11(10)

11. poly7 3/1 62(44) 39(21) 13(8) 3.00(2.62) 10(7)

12. poly8 3/1 51(35) 32(17) 11(5) 2.90(3.40) 8(8)

13. fft 6/4 24(22) 10(8) 3(3) 3.33(2.66) 4(4)

14. kmeans 16/1 39(36) 23(20) 9(7) 2.55(2.85) 8(8)

15. mm 16/1 31(24) 15(8) 8(8) 1.88(1.00) 8(1)

16. mri 11/2 24(20) 11(7) 6(5) 1.83(1.40) 4(2)

17. spmv 16/2 30(24) 14(8) 4(4) 3.50(2.00) 8(2)

18. stencil 15/2 30(24) 14(8) 5(3) 2.80(2.66) 6(4)

19. conv 24/8 40(32) 16(8) 2(1) 8.00(8.00) 8(8)

20. radar 10/2 18(16) 8(6) 3(3) 2.66(2.00) 4(2)

21. arf 26/2 58(50) 28(20) 8(8) 3.50(2.50) 8(4)

22. fir2 17/1 47(32) 23(8) 9(8) 2.55(1.00) 8(1)

23. hornerbezier 12/4 32(22) 14(8) 4(3) 3.50(2.66) 5(4)

24. motionvector 25/4 52(40) 24(12) 4(3) 6.00(4.00) 12(4)

25. atax 12/3 123(99) 60(36) 6(6) 12.00(7.20) 27(9)

26. bicg 15/6 66(54) 30(18) 3(3) 10.00(6.00) 18(6)

27. trmm 18/9 108(90) 54(36) 4(4) 13.50(9.00) 27(9)

28. syrk 18/9 126(99) 72(45) 5(4) 14.40(11.25) 36(18)

Table 4.4: The characteristics of the benchmarks

80 4 Throughput Oriented FPGA Overlays Using DSP Blocks

No. Kernel DAG Expressions

1. chebyshev out = (x ∗ (x ∗ (16 ∗ x2 − 20) ∗ x + 5))

2. sgfilter out = (x ∗ (x ∗ (7 ∗ x− 76 ∗ y + 7) + y ∗ (92 ∗ y − 39) + 7)− y ∗ (y ∗ (984 ∗ y + 46) + 46)− 75)

3. mibench out = (x ∗ (x + 2 ∗ y + 6 ∗ z + 43) + y ∗ (y + 6 ∗ z + 43) + z ∗ (9 ∗ z + 1))

4. qspline out = (z ∗ u4 + 4 ∗ a ∗ u3 ∗ v + 6 ∗ b ∗ u2 ∗ v2 + 4 ∗ w ∗ v3 ∗ u + q ∗ v4)

5. poly1 out = (x2 ∗ (x + y − 1)− y2 ∗ (x− y + 1))

6. poly2 out = (x2 ∗ (2 ∗ x2 − 3 ∗ y) + (y − 1)2 ∗ y2)

7. poly3 out = (15 ∗ (x + 2 ∗ t− 11 ∗ v2) + 25 ∗ u ∗ y − 80 ∗ z)

8. poly4 out = (c ∗ (c + n) + h ∗ (m + a ∗ c))
9. poly5 out = x ∗ x ∗ y ∗ (y ∗ (2 ∗ z − x− 144)− z ∗ (207− z)− 3416)

+x ∗ y ∗ (y ∗ (288 ∗ z − 5184) + z ∗ (78 ∗ z − 9504)− c2)

+x ∗ z ∗ (62208 + z ∗ (z − 432))− c1

10. poly6 out = t ∗ (t ∗ (z2 ∗ (864− z)− c3 ∗ z + x2 ∗ (x ∗ (32− z) + z ∗ (z − 72))− x ∗ z ∗ (2592 + 87 ∗ z)))

−t ∗ ((x ∗ (x ∗ (z ∗ (4 ∗ z + 6 ∗ x)− 432 ∗ z)− z ∗ (414 ∗ z − 20736))− (3456 ∗ z2 − c4 ∗ z)))

−(z ∗ x2 ∗ (8 ∗ x + 1728) + c1 ∗ x + c2 ∗ z)

11. poly7 out = t2 ∗ y2 ∗ (4 ∗ y + 96) + t2 ∗ (2304 ∗ x + x ∗ y ∗ (8 ∗ x− 12 ∗ y − 160))

+t3(x ∗ (128 + y ∗ (x− 2 ∗ y − 24)) + y2(y + 24)) + (t ∗ x ∗ (13824 + 96 ∗ y + 20 ∗ y(x− y)))

+(x ∗ (y ∗ (16 ∗ x + 1152) + 27648))

12. poly8 out = t3 ∗ (y ∗ (y ∗ (y − z) + 1728 + 71 ∗ z)− 464 ∗ z − 13824)

+t2 ∗ (y ∗ (y ∗ (4y + 288) + 6912 + 360 ∗ z) + 55296 + z ∗ (6 ∗ z − 4312))

+(t ∗ z ∗ (432 ∗ y − 13824)) + (z ∗ (z − 13824))

13. fft out0 = (in0 − (in1 ∗ in2 + in3 ∗ in4))

out1 = (in0 + (in1 ∗ in2 + in3 ∗ in4))

out2 = (in5 − (in1 ∗ in4 + in3 ∗ in2))

out3 = (in5 + (in1 ∗ in4 + in3 ∗ in2))

14. kmeans out = (in0 − in1)2 + (in2 − in3)2 + (in4 − in5)2 + (in6 − in7)2

+(in8 − in9)2 + (in10 − in11)2 + (in12 − in13)2 + (in14 − in15)2

15. mm out = (in0 ∗ in1) + (in2 ∗ in3) + (in4 ∗ in5) + (in6 ∗ in7)

+(in8 ∗ in9) + (in10 ∗ in11) + (in12 ∗ in13) + (in14 ∗ in15)

16. mri out0 = (in6 ∗ (in0 ∗ in1 + in2 ∗ in3 + in4 ∗ in5) + in7) ∗ (in9|in10)

out1 = (in6 ∗ (in0 ∗ in1 + in2 ∗ in3 + in4 ∗ in5) + in8) ∗ (in9|in10)

17. spmv out0 = (in0 ∗ in1) + (in2 ∗ in3) + (in4 ∗ in5) + (in6 ∗ in7)

out1 = (in8 ∗ in9) + (in10 ∗ in11) + (in12 ∗ in13) + (in14 ∗ in15)

18. stencil out0 = (in0 + in1 + in2 + in3 + in4 + in5) ∗ in6 − in7

out1 = (in8 + in9 + in10 + in11 + in12 + in13) ∗ in6 − in14

19. conv out0 = (in0 + (in1 ∗ in2))

out1 = (in3 + (in4 ∗ in5))

out2 = (in6 + (in7 ∗ in8))

out3 = (in9 + (in10 ∗ in11))

out4 = (in12 + (in13 ∗ in14))

out5 = (in15 + (in16 ∗ in17))

out6 = (in18 + (in19 ∗ in20))

out7 = (in21 + (in22 ∗ in23))

20. radar out0 = (in0 ∗ in1 + in3 ∗ in4) ∗ in2

out1 = (in6 ∗ in7 + in8 ∗ in9) ∗ in5

21. arf out0 = (((in1 ∗ in2 + in3 ∗ in4) + in9) ∗ in11 + ((in1 ∗ in2 + in3 ∗ in4) + in9) ∗ in12) ∗ in19 + in15 ∗ in16

+in17 ∗ in18 + (((in5 ∗ in6 + in7 ∗ in8) + in10) ∗ in13 + ((in5 ∗ in6 + in7 ∗ in8) + in10) ∗ in14) ∗ in20

out1 = (((in1 ∗ in2 + in3 ∗ in4) + in9) ∗ in11 + ((in1 ∗ in2 + in3 ∗ in4) + in9) ∗ in12) ∗ in25 + in21 ∗ in22

+in23 ∗ in24 + (((in5 ∗ in6 + in7 ∗ in8) + in10) ∗ in13 + ((in5 ∗ in6 + in7 ∗ in8) + in10) ∗ in14) ∗ in26

22. fir2 out = (in1 + in2) ∗ b01 + (in3 + in4) ∗ b01 + (in5 + in6) ∗ b01 + (in7 + in8) ∗ b01 + (in9 + in10) ∗ b01
+(in11 + in12) ∗ b01 + (in13 + in14) ∗ b01 + (in15 + in16) ∗ b01

23. hornerbezier out0 = (b1 + (b1 ∗ (datasize0 ∗ in0 + b1)))

out1 = (b1 + datasize1 ∗ in1)

out2 = (in5 ∗mem1out + (in3 ∗ in4) ∗mem2out)

out3 = (b1 + (b1 ∗ (datasize2 ∗ in2 + b1)))

24. motionvector out0 = in11 ∗ in12 + in13 ∗ in14 + in15 ∗ in16 + b0

out1 = in21 ∗ in22 + in23 ∗ in24 + in25 ∗ in26 + b0

out2 = in31 ∗ in32 + in33 ∗ in34 + in35 ∗ in36 + b0

out3 = in41 ∗ in42 + in43 ∗ in44 + in45 ∗ in46 + b0

Table 4.5: Kernel benchmarks

4 Throughput Oriented FPGA Overlays Using DSP Blocks 81

atax

for (i = 0; i < nx; i++)

y[i] = 0;

for (i = 0; i < ny; i++)

{

tmp[i] = 0;

for (j = 0; j < ny; j++)

tmp[i] = tmp[i] + A[i][j] * x[j];

for (j = 0; j < ny; j++)

y[j] = y[j] + A[i][j] * tmp[i];

}

bicg

for (i = 0; i < ny; i++)

s[i] = 0;

for (i = 0; i < nx; i++)

{

q[i] = 0;

for (j = 0; j < ny; j++)

{

s[j] = s[j] + r[i] * A[i][j];

q[i] = q[i] + A[i][j] * p[j];

}

}

trmm

for (i = 1; i < ni; i++)

for (j = 0; j < ni; j++)

for (k = 0; k < i; k++)

B[i][j] += alpha * A[i][k] * B[j][k];

syrk

for (i = 0; i < ni; i++)

for (j = 0; j < ni; j++)

C[i][j] *= beta;

for (i = 0; i < ni; i++)

for (j = 0; j < ni; j++)

for (k = 0; k < nj; k++)

C[i][j] += alpha * A[i][k] * A[j][k];

Table 4.6: Linear algebra kernels

Mapping these kernels to DSP blocks allows us to reduce the number of FUs

required by combining simple arithmetic operations into the more complex com-

pound instructions supported by the DSP block, as shown in Figure 4.4 for the

chebyshev benchmark. We perform this transformation on all of the kernels and

re-analyse the benchmark characteristics for DSP-aware DFGs (shown in brackets

in Table 4.4). It is clear from the op nodes column that an overlay with at least 45

DSP blocks is needed to accommodate all benchmarks, down from the 72 single

operation nodes which would be needed if the DSP block capabilities were ignored.

82 4 Throughput Oriented FPGA Overlays Using DSP Blocks

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(a) Input DFG

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(b) Node-merging

O0 N7

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul sub Imm 20 N5

mul add Imm 5 N6

(c) Mapped DFG

Figure 4.4: DSP48E1 aware DFG generation.

While DSP aware mapping does reduce the number of FUs required, the I/O

requirements remain unchanged. Additionally, using a large overlay and mapping

multiple instances of the smaller kernels to it impacts the availability of both

compute and I/O resources. As the size of an island-style overlay increases, the

number of I/O interfaces grows linearly while the number of compute tiles grow

quadratically. Thus, an N × N overlay supports N2 FUs, but as the I/O is

determined by the overlay perimeter it is proportional to N (e.g. 4N , 8N , 12N

depending on the number of I/O nodes per tile). The scalability curves for the

three different architectures with different numbers of I/O nodes per tile, assuming

a single DSP block based FU, are shown (as the grey dashed lines) in Figure 4.5.

Here, an 8× 8 4N overlay has 64 DSP nodes and 32 I/O nodes, while an 8× 8 8N

overlay has the same 64 DSP nodes but now has 64 I/O nodes. Figure 4.5 also

shows plots of the I/O vs DSP nodes required for multiple replicated instances

(represented as the symbols) of the compute kernels (represented as the solid

lines) from Table 4.4. It can be seen that the replicated kernels towards the

top left are I/O bound and require more I/O nodes, as provided by the 8N and

12N architectures, while the kernels with points below the architecture curves

are compute bound and can make use of the available FUs for the given I/O

4 Throughput Oriented FPGA Overlays Using DSP Blocks 83

0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

Number of DSP nodes

T
ot

al
n
u

m
b

er
of

I/
O

chebyshev[5] sgfilter[10] mibench[6] qspline[22] poly1[6]
poly2[6] poly3[7] poly4[3] poly5[14] poly6[25]
poly7[21] poly8[17] fft[8] kmeans[20] mm[8]

mri[7] spmv[8] stencil[8] conv[8] radar[6]
arf[20] fir2[8] hornerbezier[8] motionvector[12]

12N 8N 4N

Figure 4.5: I/O scalability analysis.

0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

Number of DSP nodes

T
ot

al
n
u
m

b
er

of
I/

O

4N-1D 4N-2D 4N-4D

Figure 4.6: DSP scalability analysis (4N architecture).

0 10 20 30 40 50 60 70 80 90 100 110 120
0

10

20

30

40

50

60

Number of DSP nodes

T
ot

al
n
u
m

b
er

of
I/

O

8N-1D 8N-2D 8N-4D

Figure 4.7: DSP scalability analysis (8N architecture).

architecture. For example, the replicated compute kernels towards the bottom

right of Figure 4.5 have a limited I/O requirement and can consume the majority

of DSP blocks in a 4N architecture.

84 4 Throughput Oriented FPGA Overlays Using DSP Blocks

To determine the impact of adding additional compute nodes into the FU we re-

examine the scalability curves for the 4N architecture with an FU consisting of one,

two and four DSP blocks, referred to as 4N-1D, 4N-2D and 4N-4D, respectively.

The resulting scalability curves, along with the I/O and DSP node requirements

for replicated instances of the compute kernels, are shown in Figure 4.6. It can

be seen that the 4N-4D architecture is only suitable for a very small number of

kernels (those below the 4N-4D curve), with a significant underutilization of DSP

blocks for the other kernels, and, as such, is not considered further. Similarly,

the scalability curves for the 8N architecture with an FU consisting of one, two,

and four DSP blocks, referred to as 8N-1D, 8N-2D and 8N-4D in Figure 4.7,

respectively, were also considered.

The benefit of using a 4N-2D over a 4N-1D architecture, or an 8N-4D over a 4N-1D

architecture, is the reduced cost of the routing network per DSP block. The FPGA

resource cost of the 4N-2D architecture is 100 Slices per DSP block, compared to

160 Slices per DSP block for the 4N-1D architecture. Thus, a 128 DSP block

4N-2D overlay would consume 12.8K Slices while a 128 DSP block 4N-1D overlay

would consume 20.5K Slices. Due to the low cost of the 4N-2D architecture, an

overlay with 128 DSP blocks can easily fit onto a Xilinx Zynq device having 13K

Slices. In the next section, we describe the detailed architecture of the dual-DSP

block based overlay and its mapping to FPGA fabric.

4.4 Dual-DSP Block Based Island-Style Overlay

(Dual-DISO)

We now examine the use of a cluster of DSP48E1 primitives as a programmable

FU in an efficient overlay architecture targeting data-parallel compute kernels. We

use a conventional tile-based island-style overlay architecture, similar to the DISO

architecture presented earlier, where a tile consists of an FU and programmable

routing resource, consisting of one switch box (SB), two connection boxes (CB))

4 Throughput Oriented FPGA Overlays Using DSP Blocks 85

and horizontal and vertical routing tracks, all 16-bits wide to support a 16-bit dat-

apath. The number of tracks in a channel is referred to as the channel width (CW),

and as this increases, application routing becomes easier but with a higher area

overhead. Multiplexer-based connection boxes and switch boxes connect tracks to

the FU and other tracks in intersecting channels, respectively.

4.4.1 Dual-DSP Block Based Functional Unit

To improve the compute-to-interconnect resource usage ratio and hence reduce the

number of LUTs per DSP block in the implementation of the overlay, we improve

on the FU of the DISO architecture by using two DSP48E1 blocks. The dual

PE FU, shown in Figure 4.8, has the same 4-input, 4-output structure as DISO,

allowing it to connect to any of the four adjacent channels. To ensure signal timing

across the array is correctly matched, pipeline latencies at the different FUs must

be balanced by introducing a delay into each path. This is again achieved by adding

variable-length shift registers, implemented using LUT-based SRL32 primitives at

each FU input, which can be set to a maximum of 16, 32, or 64 cycles, depending

on the flexibility required. As long as the inputs at any node are not misaligned

by more than the depth of the variable shift registers, the VPR place and route

algorithms can be used for placement and routing on the overlay. Multiplexer-

based reordering logic is used to connect the delayed inputs of the FU to the DSP

blocks. This is required as any of the four inputs of the FU can connect to any

of the four inputs of a DSP48E1 primitive which, unlike LUTs, are not logically

equivalent.

The two DSP blocks are connected in series, with four additional registers added to

each input of the second DSP block for pipeline balancing. Lastly, the output from

either DSP block can be selected as the FU output. To maintain a high Fmax , all

three pipeline stages in the DSP48E1 primitives are enabled. Additional registers

are added at the output of each reordering multiplexer, at the input selector of

the second DSP block and at the FU output. These registers, along with the

86 4 Throughput Oriented FPGA Overlays Using DSP Blocks

SRLSEL

24

MUXSEL

8

SRLs
SRLs
SRLs
SRLs

MUL

B Register

Pre-Adder

C

M

INMODE

OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5
7

4 1

4

16

DSP48E1

X

Y

Z

MUXSEL

8

MUL

B Register

Pre-Adder

C

M

INMODE
OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5
7

4 1

4

16

DSP48E1

X

Y

Z

MUXSEL

432

CONST

Figure 4.8: Architecture of Dual-DSP block based functional unit.

registered outputs of the SRLs result in a total FU latency of 8 clock cycles when

using only one DSP block and 13 clock cycles when using both DSP blocks.

4.4.2 Resource Usage when Mapped to the FPGA Fabric

We synthesize and map an overlay with a CW=2, one I/O per row/column and

an FU with 2 DSP blocks, referred to as the CW2-4N-2D overlay, along with an

overlay with a CW=4, two I/O per row/column and an FU with 2 DSP blocks,

referred to as the CW4-8N-2D overlay, using Vivado 2014.2 targeting the Xilinx

Zynq XC7Z020.

An N × N CW2-4N-2D overlay would require N2 FUs, (N + 1)2 SBs and 2 ∗

N ∗ (N + 1) CBs. Table 4.7 shows the FPGA resources required for the FU, FU

configuration registers (FUCR), SB, SB configuration registers (SBCR), CB and

CB configuration registers (CBCR) for both the CW2-4N-2D and the CW4-8N-2D

(in brackets) overlays. Note that there is no difference between the FU and FUCR

for both overlays, the difference being restricted to just the routing in a tile. Next,

4 Throughput Oriented FPGA Overlays Using DSP Blocks 87

we describe the individual overlay component mapping onto the physical FPGA

fabric and their resource usage.

As mentioned in Section 4.4.1, the FU consists of programmable PEs, latency

balancing logic and reordering logic. We use four 16-bit wide variable length

shift registers, implemented as SLICEM shift register LUTs (SRLs) as the latency

balancing logic, one on each of the four PE inputs. As we require a maximum

delay of 64 clock cycles for our benchmark set we use two cascaded SRLs to form

a chain and use 16 chains at each input of the PE to achieve a 16-bit variable

delay of between 1 and 64 cycles. Thus each input consumes 32 LUTs and 16

FFs, resulting in 128 LUTs and 64 FFs for the complete latency balancing logic.

The reordering logic requires 4 multiplexers with registered outputs, at the input

of each PE, consuming 128 LUTs and 128 FFs in total. Additionally, we require

three 16-bit registers at the DSP input ports (as shown in Figure 4.8) for each

PE, consuming 96 FFs. Delay lines at the four inputs of the second PE require

64 LUTs and 64 FFs and the second PE input selection logic requires 32 LUTs

and 64 FFs. Finally at the output of the FU, we require a multiplexer with a

registered output, consuming 8 LUTs and 16 FFs. Thus the total FU resource

usage is 360 LUTs, 432 FFs and 2 DSP blocks. The FU configuration register

includes 16 bits for each DSP block configuration, 16 bits for the two immediate

operands, 8 bits for each reordering logic, 4 bits for the second PE input selection

logic, 1 bit for the FU output selection logic and 24 bits for depth selection of the

latency balancing logic. Hence, the FUCR consumes 109 FFs. The FU and FUCR

resource utilization are given in Table 4.7.

Resource FU FUCR SB SBCR CB CBCR

LUTs 360 0 64 (128) 0 48 (96) 0

FFs 432 109 0 8 (16) 64 (128) 6 (12)

DSPs 2 0 0 0 0 0

Table 4.7: FPGA resource usage for Dual-DISO overlay components

For the CW=2 overlay, a SB requires four 16-bit 4 × 1 muxes, each consisting of

16 LUTs. The SB configuration register needs 8 bits, 2 for each of the 4 muxes.

88 4 Throughput Oriented FPGA Overlays Using DSP Blocks

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F

P
G

A
re

so
u
rc

es

LUTs
FFs

DSPs
Slices

(a) % resource usage

2 3 4 5 6 7 8
200

250

300

350

400

Overlay Size (N×N)

f m
a
x

in
M
H
z

0

50

100

150

200

P
ea

k
T

h
ro

u
gh

p
u
t

fmax
Peak Throughput

(b) Fmax and Peak Throughput

Figure 4.9: Zynq-7020 CW2-4N-2D Dual-DISO overlay scalability results.

2 3 4 5 6 7

0

20

40

60

80

100

Overlay Size (N×N)

%
F

P
G

A
re

so
u
rc

es

LUTs
FFs

DSPs
Slices

(a) % resource usage

2 3 4 5 6 7
200

250

300

350

400

Overlay Size (N×N)

f m
a
x

in
M
H
z

0

50

100

150

200

P
ea

k
T

h
ro

u
gh

p
u
t

fmax
Peak Throughput

(b) Fmax and Peak Throughput

Figure 4.10: Zynq-7020 CW4-4N-2D Dual-DISO overlay scalability results.

Hence the SBCR consumes 8 FFs. The total SB and SBCR resource usage, for

CW=2, is shown in Table 4.7. A CB consists of two 2 × 1 and two 4 × 1 muxes

(each 16-bits wide). As each mux is registered, the total resource usage is 48 LUTs

and 64 FFs. The CB configuration register requires 6 bits for the selection inputs

of the 4 muxes and hence the SBCR consumes 6 FFs. The total CB and CBCR

resource usage, for CW=2, is shown in Table 4.7.

The CW2-4N-2D overlay tile contains 1 FU, 1 SB, 2CBs and their configuration

registers, while a border tile contains 1 SB, 1 CB and the configuration registers.

Thus, an overlay tile consumes 520 LUTs, 625 FFs and 2 DSP blocks while a

border tile consumes 112 LUTs and 76 FFs. The post-place and route resource

consumption on Zynq, as a percentage of total FPGA resources, is shown in Fig-

ure 4.9(a). Figure 4.10(a) shows the resource consumption results for CW4-4N-2D

4 Throughput Oriented FPGA Overlays Using DSP Blocks 89

overlay. It is clear that the Zynq fabric can accommodate 7×7 CW4-4N-2D overlay

due to the high resource consumption of routing resources.

The overlay operating frequency approaches the DSP theoretical limit of 400 MHz

on Zynq for small overlays, but as the overlay grows in size the frequency decreases

slightly, as shown in Figure 4.9(b) and Figure 4.10(b). Since the DSP48E1 can

support three operations, an N × N overlay can support a maximum of 6 × N2

operations, and hence the peak throughput is 6∗N2×Fmax operations per second,

as shown in Figure 4.9(b) and Figure 4.10(b) for the different overlay sizes.

The CW2-4N-2D overlay requires 109 configuration bits for the dual-DSP FU and

20 configuration bits for programming the routing network tile. Thus, an 8×8

overlay has a configuration size of 9100 bits (1137 Bytes).

The Zynq fabric is able to accommodate an 8×8 CW=2 Dual-DISO overlay and

can provide a peak performance of 115 GOPS at an Fmax of 300 MHz, consuming

70% of the LUTs in the FPGA fabric with a LUTs/GOPS ratio of 320. Figure 4.11

shows the mapping of the Dual-DISO overlay, for different array sizes (from a single

tile up to an 8×8 array of tiles) onto the Zynq Fabric. We also mapped the overlay

to a mid-sized Virtex-7 (XC7VX690T-2) device where we were able to implement a

20×20 CW=2 overlay, resulting in a frequency of 380 MHz and a peak throughput

of 912 GOPS.

4.4.3 Discussion

A quantitative comparison of the proposed overlay architecture with some existing

overlays from the research literature is given in Table 4.8. For the different FPGA

devices and overlay sizes we compare the resource usage in terms of the LUTs used

and the percentage of the total LUTs used in the target device (shown in brack-

ets), the frequency, the maximum number of simultaneous arithmetic operations

(Max OPs), the peak throughput of the arithmetic operations in GOPS and the

interconnect area overhead in terms of LUTs/GOPS.

90 4 Throughput Oriented FPGA Overlays Using DSP Blocks

Figure 4.11: Physical mapping of Dual-DISO overlay on Zynq fabric.

Resource IF [137] IF (opt) [137] DSP-DySER DISO Dual-DISO Dual-DISO-V7

Device XC5VLX330 XC5VLX330 XC7Z020 XC7Z020 XC7Z020 XC7VX690T

Slices|LUTs 51.8K|207K 51.8K|207K 13.3K|53K 13.3K|53K 13.3K|53K 108.3K|433.2K

Overlay 14×14 14×14 6×6 8×8 8×8 20×20

LUTs used 91K(44%) 50K(24%) 48K(90%) 28K(52%) 37K(70%) 228K(52%)

Fmax (MHz) 131 148 175 338 300 380

Max OPs 196 196 36 192 384 2400

GOPS 25.6 29 6.3 65 115 912

LUTs/GOPS 3550 1725 7620 430 320 250

Table 4.8: Quantitative comparison of overlays

The Xilinx Zynq-7020 fabric consists of 220 DSP blocks, with a theoretical max-

imum frequency of 400 MHz, and each of these can support up to 3 arithmetic

operations, resulting in a peak throughput of 264 GOPS. We observe that for the

DSP-DySER overlay, it is possible to fit an array of 36 DSP blocks (16% of the

total DSP blocks), while for the DISO and Dual-DISO architectures it is possible

to fit 64 (30%) and 128 (60%) DSP blocks, respectively. In terms of the Peak

GOPS, DSP-DySER achieves 6.3 GOPS, while the DISO and Dual-DISO overlays

achieve 65 GOPS and 115 GOPS, representing 2.4%, 25% and 44% of the maximum

achievable GOPS, respectively.

4 Throughput Oriented FPGA Overlays Using DSP Blocks 91

Figure 4.12 shows the LUTs/GOPS, for the various overlays, and clearly shows

that the Dual-DISO overlay has the lowest interconnect area overhead (approach-

ing the ideal interconnect area overhead of 200 LUTs/GOPS for the Zynq device).

A resource balanced overlay on Zynq would consist all of the 220 DSP blocks

for computations (resulting in 264 GOPS) and all 53K LUTs for interconnect,

resulting in the ideal interconnect area overhead of 200 LUTs/GOPS.

IF IF(opt) DSP-DySER DISO Dual-DISO Dual-DISO-V7
0

2,000

4,000

6,000

8,000

3,550

1,725

7,620

430 320 250

L
U

T
s/

G
O

P
S

Figure 4.12: Comparison of interconnect area overhead.

4.5 Evaluating Kernel Mapping

Our mapping tool, which is described in detail in Chapter 6, takes a C description

of the compute kernel and maps it to the DISO and Dual-DISO overlay using the

steps described in Chapter 6. As a first step, we compare the number of overlay

tiles needed for each of the benchmarks, when mapping on DSP-DySER, DISO

and Dual-DISO overlay, as shown in Figure 4.13, where the numbers on the x-

axis relate to the benchmark number from Table 4.4. We observe a reduction in

the number of tiles required for DISO and Dual-DISO of up to 50% and 69%,

respectively. The advantage of the DISO and Dual-DISO architectures becomes

apparent by examining specific benchmarks, such as poly7 (benchmark 11), where

only a single DFG instance can fit onto an 8×8 DSP-DySER overlay (as a minimum

it requires a 7 × 7 overlay). Since a 6×6 DSP-DySER is the largest which can

fit on the Zynq fabric, it is not possible to support the poly7 benchmark, which

requires 39 DSP blocks on DSP-DySER. However, using the DISO architecture,

92 4 Throughput Oriented FPGA Overlays Using DSP Blocks

not only one but three separate instances of the poly7 benchmark are able to fit

onto an 8 × 8 DISO overlay, utilising 63 of the 64 tiles. Using the Dual-DISO

architecture, 4 separate instances of the poly7 benchmark are able to fit onto an

8× 8 Dual-DISO overlay, utilising 56 of the 64 tiles. It is clear that architecture-

focused overlays (DISO and Dual-DISO) can support larger compute kernels (even

multiple instances of compute kernels) for a given resource budget, which other

overlays, such as DSP-DySER, are unable to do.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

20

40

60

80

7

1
8

1
3

2
6

9 9 1
1

6

2
7

4
4

3
9

3
2

1
0

2
3

1
5

1
1 1
4

1
4 1
6

8

2
8

2
3

1
4

2
4

6
0

3
0

5
4

7
2

5

1
0

6

2
2

6 6 7

3

1
4

2
5

2
1

1
7

8

2
0

8 7 8 8 8 6

2
0

8 8

1
2

3
6

1
8

3
6

4
5

3 6 4

1
3

4 5 4 3

9

1
7

1
4

1
0

6

1
2

7 5 6 6 8

4

1
2

8 5

1
2

2
2

1
2 1

8

2
8

T
il
es

R
eq

u
ir

ed

DSP-DySER DISO Dual-DISO

Figure 4.13: The number of tiles required for the kernels in table 4.4.

4.5.1 DISO

In this section, we first compare the DISO architecture with DSP-DySER in terms

of resource usage for implementing a set of compute kernels. Next, we demonstrate

the throughput advantages of the DISO architecture compared to Vivado-HLS

generated RTL implementations.

Comparing with DSP-DySER: In chapter 3, a set of compute kernels were

mapped onto a 5×5 DSP-DySER. In this section, we consider the same benchmark

set (which is also shown as benchmarks 13-20 in Table 4.4) and try to map the

compute kernels onto the DISO overlay so that we can compare the benefits of

using DISO over DSP-DySER. We observe that a 5×5 DISO overlay can be used

to map the all of kernels in the benchmark subset. While both DSP-DySER

and DISO overlays have similar DSP usage, both consuming 25 DSP blocks (5×5

overlay), the LUT and FF requirement at (33875 and 11023) and (13390 and

10486), respectively, shows a significant reduction for the DISO overlay, as shown

in Figure 4.14.

4 Throughput Oriented FPGA Overlays Using DSP Blocks 93

LUTs FFs DSP Blocks
0

20

40

60

80

100

%
U

ti
li
za

ti
on

5×5 DSP-DySER

5×5 DISO overlay

Figure 4.14: Comparison of overlay resources required for the benchmark set.

Comparing with Vivado-HLS generated RTL implementations: The

resource usage of the overlay architecture depends on two main parameters: the

overlay size and the channel width (CW). As it is desirable to minimize both of

these while still maintaining the routability of the benchmarks, we conducted an

experiment to find out the minimum DISO overlay size required for the bench-

marks while at the same time ensuring routability. We consider two set of bench-

marks from Table 4.4, set-I (benchmarks 1-8) and set-II (benchmarks 25-28). Set-I

consists of small benchmarks having a relatively small graph width and average

parallelism while set-II consists of larger benchmarks having a relatively higher

graph width and average parallelism.

It is clear from Table 4.9 that DSP block aware node merging reduces the number

of nodes in the DFG, and hence the number of tiles required (up to 53% for

benchmark set-I and up to 40% for benchmark set-II). Table 4.9 also shows that

the set-II benchmarks are not routable for an architecture with CW=2, whereas for

CW=4, all benchmarks are routable. Hence, we prototype 2 overlay architectures:

DISO-I (size=5×5) with CW=2 for benchmark set-I and DISO-II (size=7×7) with

CW=4 for benchmark set-II. Figure 4.15 shows the mapping of set-I benchmarks

on DISO-I (size=5×5) with CW=2 and Figure 4.16 shows the mapping of set-II

benchmarks on DISO-II (size=7×7) with CW=4.

In order to determine the required depth for the variable length shift registers we

94 4 Throughput Oriented FPGA Overlays Using DSP Blocks

Benchmark Characteristics Routability DISO Overlay Results

Benchmark i/o op merged savings CW=2 CW=4 Latency MLI GOPS

nodes nodes nodes

chebyshev 1/1 7 5 28% 3×3 3×3 49 36 2.59

sgfilter 2/1 18 10 44% 4×4 4×4 54 31 6.66

mibench 3/1 13 6 53% 3×3 3×3 47 35 4.81

qspline 7/1 26 22 15% 5×5 5×5 76 64 9.62

poly1 2/1 9 6 33% 3×3 3×3 34 22 3.33

poly2 2/1 9 6 33% 3×3 3×3 29 7 3.33

poly3 6/1 11 7 36% 3×3 3×3 31 11 4.07

poly4 5/1 6 3 50% 2×2 2×2 24 12 2.22

atax 12/3 60 36 40% — 6×6 72 58 18.0

bicg 15/6 30 18 40% — 6×6 46 32 9.0

trmm 18/9 54 36 33% — 7×7 58 30 16.2

syrk 18/9 72 45 37% — 7×7 41 19 21.6

Table 4.9: Experimental results for DISO implementations of the benchmark set

chebyshev sgfilter mibench qspline

poly1 poly2 poly3 poly4

Figure 4.15: Benchmark set-I mapped on DISO-I.

atax bicg trmm syrk

Figure 4.16: Benchmark set-II mapped on DISO-II.

4 Throughput Oriented FPGA Overlays Using DSP Blocks 95

conducted an experiment to find the maximum latency imbalance (MLI) for all

nodes in the mapped DFGs. This is the largest difference between any two inputs

for a node, labelled MLI in Table 4.9. Since the MLI ≤ 64 for the benchmarks,

the depth we have chosen for the DISO overlay is sufficient.

DISO-I achieves an Fmax of 370 MHz on Zynq, hence providing a peak performance

of 27.75 GOPS while DISO-II achieves an Fmax of 300 MHz on Zynq, hence pro-

viding a peak performance of 44.10 GOPS. For each benchmark we compute the

throughput as the product of the number of compute nodes in the DFG and the

overlay’s frequency, in GOPS, as shown in Table 4.9. We observe kernel through-

puts of up to 9.62 GOPS (33% of the DISO-I peak throughput) and 21.6 GOPS

(49% of the DISO-I peak throughput) using DISO overlays for benchmark set-I

and set-II, respectively.

We also generate RTL implementations of the compute kernels for benchmark set-

I and set-II using Vivado HLS in order to compare the performance in terms of

throughput. We use the pipeline pragma with an II of one to generate fully parallel

and pipelined RTL implementation of the compute kernels. Example code used

for generating RTL using Vivado HLS for chebyshev kernel benchmark is shown

in Table 4.10.

#include "kernel.h"

using namespace hls;

void kernel(stream <ap_int <16> > &stream_in , stream <ap_int <16> > &stream_out)

{

ap_int <16> x;

if (! stream_in.empty ())

{

x = stream_in.read();

#pragma HLS pipeline II=1

stream_out.write(x*(x*x*(16*x*x-20) +5));

}

}

Table 4.10: Code used for generating RTL using Vivado HLS for chebyshev

Table 4.11 shows the results for the Vivado HLS implementations of the bench-

mark set and Figure 4.17 shows the normalized throughput of the overlay imple-

mentations compared to the Vivado HLS implementations (which are normalized

to one). The DISO overlay is able to achieve an average throughput improvement

96 4 Throughput Oriented FPGA Overlays Using DSP Blocks

of 50% due to the highly pipelined architecture, something which Vivado HLS is

currently unable to exploit. However, this better throughput comes at the cost

of significantly more FPGA resource consumption and greater latency. For the

DISO overlay implementations, we observe a resource consumption (in eSlices)

which is 7× higher (on an average) and a latency which is 4× higher (on an av-

erage), compared to the HLS implementations. The Latency increase is due to

the deep pipelining of the overlay, but does not impact the performance since the

II is always one which ensures processing of input data samples every clock cycle

without stall.

Benchmark OP Freq. (MHz) Slices DSPs eSlices MOPS MOPS/eSlice Latency

chebyshev 7 333 24 3 204 2331 11.4 13

sgfilter 18 278 40 8 520 5004 9.62 11

mibench 13 295 81 3 261 3835 14.6 9

qspline 26 244 126 14 966 6344 6.56 21

poly1 9 285 62 4 302 2565 8.49 12

poly2 9 295 45 4 285 2655 9.31 11

poly3 11 250 52 6 412 2750 6.67 12

poly4 6 312 36 3 216 1872 8.66 7

atax 60 263 78 18 1158 15780 13.6 13

bicg 30 270 91 18 1171 8100 6.91 7

trmm 54 222 105 36 2265 11988 5.29 8

syrk 72 250 237 24 1677 18000 10.7 10

Table 4.11: Determining MOPS/eSlice for the Vivado-HLS implementations of the
benchmark set

From Table 4.11, the average throughput per unit area for the HLS implementation

of the benchmark set is ≈ 9.2 MOPS/eSlice while a 5×5 DISO overlay achieves

1.8 MOPS/eSlice, which is around 20% of the HLS value. This 5× hardware

performance penalty needs to be considered in context with the ability of the

overlay to support runtime compilation and runtime configuration of the compute

kernels.

DISO-I (size=5×5) and DISO-II (size=7×7) have a configuration sizes of 287 Bytes

and 700 Bytes, respectively, and can be configured entirely in 11.5 us and 28 us,

4 Throughput Oriented FPGA Overlays Using DSP Blocks 97

ch
eb

ys
he

v

sg
fil

te
r

m
ib

en
ch

qs
pl

in
e

po
ly

1

po
ly

2

po
ly

3

po
ly

4

po
ly

5
at

ax
bi

cg

tr
m

m
sy

rk
0

0.5

1

1.5

2

N
or

m
al

iz
ed

T
h
ro

u
gh

p
u
t Vivado HLS DISO Overlay

Figure 4.17: Normalized throughput of DISO overlay implementations over Vivado
HLS implementations.

respectively, compared to 31.6 ms for the entire Zynq programmable fabric using

the PCAP port, providing a 1000× improvement in reconfiguration time.

4.5.2 Dual-DISO

Even if we use an 8×8 DISO overlay (which is able to fit on a Zynq 7020 device)

having a peak throughput of 65 GOPS, the achievable kernel throughput is 4.57

GOPS (on average) for the compute kernels of benchmark set-I, with a maximum

throughput of 9.62 GOPS (for the qspline kernel). This gap is mainly due to the

fact that different applications require different sized overlays, with an overlay large

enough to satisfy the requirements of larger kernels being heavily underutilized

when a small kernel is executing.

To avoid underutilization, other researchers have proposed using multiple instances

of small overlays for smaller kernels and a large overlay for larger kernels, reconfig-

uring the FPGA fabric at runtime based on kernel requirements [138]. However,

this approach negates a key advantage of overlay architectures, specifically rapid

configuration to support fast switching of kernels. Reconfiguring the FPGA fabric

takes orders of magnitude more time than a kernel context switch.

98 4 Throughput Oriented FPGA Overlays Using DSP Blocks

In this section, we take the approach of building a single large Dual-DISO overlay

and mapping multiple instances of kernels to the overlay to achieve effective utiliza-

tion of resources while maximizing throughput. We replicate multiple instances of

the benchmarks from Table 4.4 and map them to an 8×8 CW2-4N-2D Dual-DISO

overlay. The x-axis of Figure 4.18 indicates the benchmark number, followed by

the number of replicated instances in brackets and shows that we are able to map

multiple instances of kernels to the overlay. It should be noted that there are a

number of benchmarks (benchmark 14-15, 17-19, 21-22, and 24) that are unable to

map more than 1 instance due to the I/O limitations of the CW2-4N-2D overlay,

as indicated in Figure 4.6.

1
(1

6)

2
(1

0)
3

(7
)
4

(3
)
5

(9
)

6
(1

0)
7

(3
)
8

(5
)
9

(4
)

10
(2

)

11
(4

)

12
(6

)

13
(3

)

14
(1

)

15
(1

)

16
(2

)

17
(1

)

18
(1

)

19
(1

)

20
(2

)

21
(1

)

22
(1

)

23
(2

)

24
(1

)
0

20

40

60

80

3
3
.6

5
4

2
7
.3

2
3
.4

2
4
.3

2
7

9
.9

9

3
2
.4

2
6
.4

4
6
.8 5

7
.6

9 6
.9

4
.5 6
.6

4
.2

4
.2

4
.8

4
.8 8
.4

6
.9 8
.4

7
.2

2
5
.2 3
3
.3

2
0
.9

1
2
.9

1
4
.2

1
5
.3

6
.3

5

5
.8

5 1
8
.6

8

1
4
.0

8

2
3
.4

2
7
.8

4

8 5
.7

4
.4 5
.9

4
.1

5

4
.2

4
.3

5

4
.8 6
.4

4

5
.1

1

6
.0

2

6
.7

T
h
ro

u
gh

p
u
t

in
G

O
P

S

Dual-DISO Vivado HLS

Figure 4.18: The performance comparisons of the CW2-4N-2D overlay and Vivado
HLS implementations.

The actual throughput, in GOPS, for the replicated benchmark instances is shown

by the left bar in Figure 4.18, calculated as the product of the DFG compute nodes

and the implementation operating frequency. For example, an overlay throughput

of 57.6 GOPS is achieved by instantiating 6 instances of the poly8 (12) benchmark.

This is 50% of the absolute peak performance, of 115 GOPS, which could be

hypothetically achieved by a synthetic kernel having 384 operations (128 Add/sub,

128 MUL, 128 ALU ops) which would fully utilise the DSP block resources of the

64 FUs in our 8 × 8 overlay. It is clear that the benchmarks with modest I/O

requirements benefit from replication, while those with larger I/O requirements

would benefit from the CW4-8N-2D overlay.

To compare the performance of our proposed overlay with application specific

accelerator implementation, we generate RTL implementations of the same kernel

4 Throughput Oriented FPGA Overlays Using DSP Blocks 99

instances replicated an identical number of times using Vivado HLS. In this way,

we are able to perform a quantitative comparison of performance between the two

implementations. Figure 4.18 shows the performance comparison of the overlay

implementations (left bar) and Vivado HLS implementations (right bar) in terms

of throughput. Our overlay is able to achieve an average throughput improvement

of 40% due to the highly pipelined architecture, something which Vivado HLS is

currently unable to exploit. The Vivado HLS implementations of the replicated

benchmarks require significantly less hardware resource (on average, our overlay

requires 30× and 70× more slices, for benchmarks 1-12 and 13-24, respectively).

However, this hardware penalty is the result of a general overlay architecture that

can be effortlessly integrated into a virtualised hardware/software environment on

the Zynq FPGA that may incorporate both static and PR accelerators as well as

overlays for generality and performance. The key advantage of an overlay is the

fast compilation, software-like programmability and run-time management, with a

relatively small configuration data size and fast non-preemptive hardware context

switching, all of which are missing in a static Vivado HLS accelerator design. As

indicated in Section 4.4.2, our proposed overlay is able to perform a hardware

context switch in just 45.5 us (1000× faster than reconfiguring the Zynq FPGA)

using just 1137 Bytes of configuration data.

4.6 Summary

We have presented two FPGA targeted overlay architectures (DISO and Dual-

DISO) that maximize the peak performance and reduce the interconnect area

overhead through the use of an array of DSP block based fully pipelined FUs and

an island-style coarse-grained routing network. A scalability analysis of DISO on

the Xilinx Zynq device shows that the Zynq fabric can accommodate an 8×8 DISO

overlay, achieving a peak performance of 65 GOPS (10× better than DSP-DySER)

with an interconnect area overhead of 430 LUTs/GOPS (18× better than DSP-

DySER). We then presented an analysis of a wide variety of compute kernels using

a DSP48E1 aware data flow graph based approach to ascertain the suitability of

100 4 Throughput Oriented FPGA Overlays Using DSP Blocks

mapping multiple instances of kernels to the overlay and observed that the dual-

DSP block based overlay is most suitable for our benchmark set.

We then presented a prototype of an enhanced version of DISO (referred to as

Dual-DISO) which uses two DSP blocks within each FU and shows a significant

improvement in performance and scalability, with a reduction of almost 70% in

the overlay tile requirement compared to existing overlay architectures and an op-

erating frequency in excess of 300 MHz. A scalability analysis of Dual-DISO on

the Xilinx Zynq device shows that Zynq fabric can accommodate an 8×8 Dual-

DISO overlay, achieving a peak performance of 115 GOPS (18× better than DSP-

DySER) with an interconnect area overhead of 320 LUTs/GOPS (24× better than

DSP-DySER). We demonstrate that this improvement results in better exploita-

tion of the performance provided by the DSP blocks available on the FPGA fabric.

We then map several benchmarks kernels onto the proposed overlays and show

that the proposed overlays can deliver better throughput compared to Vivado

HLS generated fully pipelined RTL implementations. Our experimental evalua-

tion shows that the DISO overlay delivers kernel throughputs of up to 21.6 GOPS

(33% of the peak theoretical throughput of the DISO overlay) while the Dual-

DISO overlay delivers kernel throughputs of up to 57.6 GOPS (50% of the peak

theoretical throughput of the DISO overlay) and provides an average throughput

improvement of 40% over Vivado HLS for the same implementations of our bench-

mark set. Using the Dual-DISO overlay, we show that we are able to map multiple

instances of the benchmark kernels to the overlay automatically, resulting in more

efficient utilization of overlay resources, without resorting to reconfiguring the

FPGA fabric at runtime. We have demonstrated that architecture-focused FPGA

overlays can better exploit the raw performance of the DSP blocks, with better

resource utilization and significantly improved performance metrics, compared to

other overlays.

However, when compared to HLS implementations, there is still a significant hard-

ware resource penalty, even though a better throughput is achieved. This hardware

resource requirement needs to be further reduced for overlays to be accepted as

4 Throughput Oriented FPGA Overlays Using DSP Blocks 101

a viable alternative to the standard HLS flow. In the next chapter, we present

an overlay architecture with a novel interconnect architecture that maximizes the

peak performance and reduces the interconnect area overhead through the use of

a cone-shaped array of DSP blocks.

5
Low Overhead Interconnect for DSP Block

Based Overlays

5.1 Introduction

DSP block based overlays (DISO and Dual-DISO) can greatly improve perfor-

mance in terms of throughput by using the full capability of highly pipelined DSP

blocks along with a flexible island-style interconnect architecture as shown in the

Chapter 4. However, supporting the full flexibility of island-style interconnect

contributes to a significant area overhead. Not only DISO and Dual-DISO, but

many of the existing overlay architectures [136, 74] use general-purpose intercon-

nect which allows all FUs to communicate with each other by exploiting the high

flexibility of the interconnect architecture. This level of interconnect flexibility

103

104 5 Low Overhead Interconnect for DSP Block Based Overlays

is, in many cases, an over-provision and normally not required for implementing

accelerators based on feed-forward pipelined datapaths.

A number of authors have instead proposed a linear array of interconnected

FUs [157] [156] to improve resource utilization. The VDR overlay [157] was

proposed as an array of tiles interconnected linearly by a set of programmable

switches. However, the Fmax was only 172 MHz when implemented on an Altera

Stratix III FPGA. A domain specific reconfigurable array, with a linear feed for-

ward interconnect structure and with array dimensions determined by merging the

datapaths of all DFGs, was proposed in [174]. However this approach resulted in

heavy underutilization of FUs, with not more than 40% utilization when mapping

DFGs. Instead, it was observed that better utilization could be achieved if the FU

architecture was customized to better match the shape of the DFGs [174], which

in many cases have the general shape of an inverted cone.

Thus, to further reduce the overlay interconnect complexity, it appears feasible to

customize the typical rectangular array of FUs to produce a cone shaped cluster of

FUs utilizing a simple linear interconnect. As a first step, we perform an analysis

of linear interconnect overlays from the perspective of both the DFG structure

and interconnect flexibility, which we term the programmability overhead. This

would allow a reduction in the area overheads when implementing compute ker-

nels extracted from compute-intensive applications represented as directed acyclic

data flow graphs by better targeting the set of FUs, while still allowing high

data throughput. After determining the interconnect flexibility required for a set

benchmarks, we design a cone shaped overlay with low overhead interconnect and

observe significant savings in the LUT requirements compared to other overlays

from the literature. The main contributions of this chapter can be summarized as:

• A design space exploration of linear overlay architectures by modeling pro-

grammability overhead as a function of the overlay design parameters

• An area efficient RTL implementation of a DSP-enabled Cone-shaped

Overlay architecture, referred to as DeCO, which can operate at near to

the DSP block theoretical maximum frequency

5 Low Overhead Interconnect for DSP Block Based Overlays 105

• An analysis of DeCO on the Xilinx Zynq device, including the evaluation

of peak throughput (in terms of GOPS) and interconnect area overhead (in

terms of LUTs/GOPS) of DeCO.

• A technique for mapping compute kernels to the proposed overlay by per-

forming graph optimizations such as rebalancing, DSP48E1 aware node

merging and architecture aware rescheduling.

• A quantitative performance comparison of the proposed DeCO architecture

with other overlays from the literature

• A quantitative evaluation of the hardware performance penalty of DeCO

compared to HLS generated hardware implementations.

The work presented in this chapter is also discussed in

• A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. DeCO: A DSP

Block Based FPGA Accelerator Overlay With Low Overhead Interconnect, in

Proceedings of the IEEE International Symposium on Field Programmable

Custom Computing Machines (FCCM), Washington DC, USA, May 2016.

5.2 Interconnect Architecture Analysis

A linear interconnect architecture, consisting of a one-dimensional array of pro-

grammable homogeneous tiles, where each tile contains a programmable routing

network and a cluster of DSP block based FUs and data forwarding (DF) links,

is shown in Figure 5.1. Data forwarding is required in each cluster for forwarding

input data to the next tile, thereby bypassing the current tile, and thus they re-

quire a latency equivalent to that of the DSP block based FUs. This significantly

reduces the need to waste FUs for routing signals through the overlay, which is

one of the main drawback with nearest-neighbor overlays. A linear interconnect

based overlay has two main advantages. Firstly, the resource requirement is sig-

nificantly reduced from that of an island-style or nearest-neighbor architecture as

the routing network between FU stages is only required in one direction. Secondly,

106 5 Low Overhead Interconnect for DSP Block Based Overlays

the FU array complexity is reduced as delay balancing or reordering logic is not

needed with a simple, strictly balanced pipelined structure with no feedback.

Tile-1

Programmable Routing Network

DFs DSP DSPDSP

Programmable Routing Network

DFs DSP DSPDSP

Tile-2

DFs DSP DSPDSP
Tile-N

Data inputs

Data outputs

Figure 5.1: Block diagram of linear dataflow overlay.

As mentioned previously, a DSP-based overlay architecture should ideally have

a programmability overhead less than the ratio of the LUTs/DSP in the target

FPGA, so as to get the most out of the available FPGA resources, particularly

the DSP blocks. For example, in the 16-bit overlay of [78], reordering logic, syn-

chronization logic and routing network logic requires 6, 8 and 10 LUTs/bit per

tile, respectively, to support interconnectivity between the DSP block based FUs,

5 Low Overhead Interconnect for DSP Block Based Overlays 107

resulting in a programmability overhead of 384 LUTs/FU. We term programma-

bility overhead as the number of LUTs required per DSP block based FU to allow

programmable connections between DSP blocks. However, this programmability

overhead is significantly more than that of target FPGA (in this case a Xilinx

Zynq XC7Z020), where there are 220 DSP blocks for 53K LUTs, resulting in a

LUT/DSP ratio of 240. To achieve a programmability overhead approaching this

value, we propose further customizing the number of FUs, data forwarding links

and the complexity of the routing network in each tile based on the character-

istics of the set of compute kernels. This is similar to datapath merging [174],

except that we only merge computation blocks of sequenced DFGs in a stage-wise

manner, leaving a fully flexible interconnect between stages, hence still retaining

significant flexibility. This then allows us to handle unknown DFGs, so long as

the DFG can be scheduled on the merged datapath.

5.2.1 Programmability Overhead Modeling

For each tile, the number of DSP blocks, delay lines and the routing network

complexity can be decided based on a set of compute kernels. The complexity of

the routing network in the nth tile depends on the resources in the nth tile and

(n + 1)th tile, that is the number of DSP blocks and delay lines. The routing

network can then be designed using an (Xn + Yn) × (I ∗ Xn+1 + Yn+1) crossbar

switch, where I is the number of FU inputs, which because of the characteristics

of the DSP block is 3 for a 32-bit FU and 4 for a 16-bit FU, and where Xn and

Yn are the number of DSP blocks and delay lines in nth tile and Xn+1 and Yn+1

are the number of DSP blocks and delay lines in (n + 1)th tile. The reason for

the different I between the two FUs is that the 16-bit FU is able to utilize the

pre-adder in the DSP block, whereas the 32-bit version is not.

If Ln is the number of LUTs/bit required to design an (Xn + Yn):1 multiplexer,

the programmability overhead per bit (POB) of the overlay network, in LUTs/bit,

is:

108 5 Low Overhead Interconnect for DSP Block Based Overlays

POB =
N−1∑
n=1

(Ln ∗ (I ∗Xn+1 + Yn+1)) (5.1)

where N is the number of tiles in the overlay.

Given a set G of M sequenced DFGs, we refer to the number of operation nodes in

the nth stage as gmxn, the total number of stages as Ngm, and the crossing edges

as gmyn in the mth DFG, Gm. We can then find Xn, Yn and N using:

Xn = max(g1xn, g2xn, ...gMxn) (5.2)

Yn = max(g1xn + g1yn, g2xn + g2yn, ...gMxn + gMyn)−max(g1xn, g2xn, ...gMxn)

(5.3)

N = max(Ng1, Ng2, Ng3, ...NgM) (5.4)

5.2.2 Set-specific Overlay Design

We calculate the overlay design parameters and programmability overhead using

a subset of DFGs from [75], given in Table 5.1. The graph depth is the critical

path length of the graph, while the graph width is the maximum number of nodes

that can execute concurrently, both of which impact the ability to efficiently map

a kernel to the overlay. The average parallelism is the ratio of the total number of

operations and the graph depth. We note that many of these DFGs are poorly bal-

anced, so we firstly apply tree-balancing to all DFGs, which both reduces the graph

depth and better shapes the DFG. Next we apply DSP aware node merging [78],

which better targets the DSP block based FU, and lastly we apply rescheduling

techniques, possibly increasing the graph depth, which results in different FU re-

quirements at each stage. This results in a number of different DFGs for the same

benchmark, with different values for the overlay design parameters (N , Xn, and

Yn), resulting in different programmability overhead values.

For example, the original kmeans benchmark [75], shown in Figure 5.2(a), has a

depth of 9 requiring 9 stages in a linear overlay. The rebalanced graph is shown

5 Low Overhead Interconnect for DSP Block Based Overlays 109

Benchmark Characteristics (After transformation characteristics)

No. Name I/O graph op graph graph

nodes edges nodes depth width

1. fft 6/4 24(22) 10(8) 3(3) 4

2. kmeans 16/1 39(35) 23(19) 9(5) 8

3. mm 16/1 31(31) 15(15) 8(4) 8

4. spmv 16/2 30(30) 14(14) 4(3) 8

5. mri 11/2 24(21) 11(9) 6(5) 4

6. stencil 15/2 30(23) 14(8) 5(3) 6

Table 5.1: DFG characteristics of benchmark set

I0 I1

SUB

ADD ADD

ADD

O0

SQR

I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

SUB SUB SUB SUB SUB SUB SUB

ADD

SQR

ADD

SQR

ADD

SQR

ADD

STAGE-1

STAGE-2

STAGE-3

STAGE-4

STAGE-5

I0 I1

SUB

ADD ADD

ADD

O0

SQR

I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

SUB SUB SUB SUB SUB SUB SUB

SQRADD

SQR

SQRADD

SQR

SQRADD

SQR

SQRADD

STAGE-1

STAGE-2

STAGE-3

STAGE-4

STAGE-5

SQR SQR SQR SQR

I0 I1

SUB

ADD

ADD

ADD

SQR

I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15

SUB SUB SUB SUB SUB SUB SUB

SQR SQR

ADD

SQR

STAGE-1

STAGE-2

STAGE-4

STAGE-5

STAGE-6

SQR SQR SQR SQR

ADD

STAGE-7

ADD

ADD STAGE-3

STAGE-8

O0

STAGE-9

(a)

(b)

(c)

Figure 5.2: Applied transformations including graph balancing and DSP aware
node merging.

110 5 Low Overhead Interconnect for DSP Block Based Overlays

in Figure 5.2(b), and requires just 5 stages, with a significantly reduced latency.

One example of node merging and rescheduling using ASAP scheduling is shown

in Figure 5.2(c) resulting in a reduced FU count. It should be noted that we

observe a higher programmability overhead for the ALAP scheduled version, due

to the additional data forwarding delay line needed to forward input data to the

2nd stage. The 3 implementations shown in Figure 5.2 result in a programma-

bility overhead of 6.25, 4.75 and 4.3 LUTs/bit per FU, respectively. Thus, we

would choose DFG 3, the one with the smallest programmability overhead, as the

candidate DFG for the design process.

We repeat this process for the remaining DFGs in the benchmark set of Table 5.1,

to determine the best FU and data forwarding link configuration to support all

compute kernels in the benchmark set. This results in a structure with different

resource requirements in each scheduling stage, which we refer to as a cone [175,

176]. This cone consists of 20 DSP block based FUs and four layers of connection

network, as shown in Figure 5.3.

Cluster

Connection
Network

Delay Line

Figure 5.3: Design of the optimized cone.

Figure 5.4 shows the mapping of the largest benchmark (”kmeans”) on to the

DeCO and onto the DISO[78]. When ”kmeans” is mapped on DISO it has an

5 Low Overhead Interconnect for DSP Block Based Overlays 111

initial latency of 52 cycles while on DeCO the initial latency is just 24 cycles,

more than half that of the DISO implementation.

Figure 5.4: Mapping of kmeans on DISO vs DeCO.

5.3 The DeCO Architecture

We use the Xilinx DSP48E1 primitive as a programmable FU in the proposed

DeCO architecture. However, unlike in other overlays from the literature [177, 78,

137] the interconnect network in the proposed overlay is very lightweight, enabling

us to efficiently implement both 16-bit and 32-bit implementations. The overlay

micro-architecture of the two implementations is described, which because of the

characteristics of the DSP block, are slightly different. We then detail the physical

mapping to the FPGA fabric and the resource usage. To achieve this we use Xilinx

ISE 14.6 and a Verilog HDL description of the overlay targeting the Xilinx Zynq

XC7Z020.

5.3.1 The 32-bit Architecture

The Xilinx DSP48E1 primitive does not provide a full 32-bit implementation,

even though some internal signals are much larger than 32-bits. The problem

arises, because the pre-adder is just 25-bit, while the multiplier is 25-bit × 18-bit.

While this could be a problem for long integer multiplication, it is less likely if all

112 5 Low Overhead Interconnect for DSP Block Based Overlays

variables are restricted to the C language 32-bit int data type. This is because the

default conversion rules for the int data type will truncate the result of an integer

multiplication, discarding the most significant part. To avoid possible overflow

conditions with the 25-bit pre-adder, we choose not to use it, and instead bypass

the pre-adder. The resulting micro-architecture, showing the 32 bit connection

network and the 32-bit FU, which is able to support the C language 32-bit int data

type, is shown in Figure 5.5. In this case, the FU uses just the multiplier, the ALU,

the three separate A, B and C ports for input data, and one output port P, as shown

in Figure 5.5, and can be configured to support various operations such as multiply-

add, multiply-subtract, etc. The actual DSP48E1 function is determined by a set

of control inputs that are wired to the ALUMODE, INMODE and OPMODE

configuration registers. The DSP48E1 primitive is directly instantiated providing

total control of the configuration of the primitive, allowing us to achieve a high

frequency.

The top most routing layer of the 20 FU overlay, shown in Figure 5.3, requires

connections to four FUs (with three inputs each) and four data forwarding links

(with a single input). Thus, for full routing flexibility, the top most routing network

layer requires 16 8:1 multiplexers. However, during the design process we observed

that there is no requirement for connectability between the left and right regions

in the top part of the cone, and thus they do not need to be fully connected. Hence

in the top connection layer, we use two separate smaller connection networks, each

having 8 4:1 multiplexers. Similarly, in the second layer, we again isolate the left

and right regions, allowing the use of 4:1 multiplexers. In the third connection

layer, we combine the signals from the left and right regions, which now also only

requires 4:1 multiplexers. Thus, the resulting 32-bit cone, shown in Figure 5.3,

consists of a top layer of 8 FUs followed by three identical clusters of 4 FUs and

2 data forwarding links, and has a total latency of 24 clock cycles.

Each cluster consists of four FUs preceded by three individual 4:1 muxes at the

input of each FU, and two data forwarding links preceded by a 4:1 mux, as shown

for the 16-bit version in Figure 5.7. The 32-bit FU requires one DSP block and four

additional registers at the DSP input ports (an 18-bit register for input B, a 25-bit

5 Low Overhead Interconnect for DSP Block Based Overlays 113

MUL

B Register

A register

C

M

INMODE

OPMODE

B

A

C

1
0

0

ALUMODE

P

5

7

4 1

4

MUXSEL
6

DSP48E1

X

Y

Z

Functional UnitSwitch

Figure 5.5: The 32-bit functional unit and interconnect switch.

register for input A, and two 32-bit registers for input C) for pipeline balancing

(as shown in Figure 5.5), consuming 107 FFs. The 25-bit 2:1 multiplexer in front

of the A input port consumes 13 LUTs and allows to choose between the 25 bits

(for a multiplication operation) or the 14 most significant bits of the data going

to the B input port (for an addition operation). Each FU connection network

requires three 4:1 multiplexers with registered outputs, consuming 96 LUTs and

89 FFs. The delay line requires 32 LUTs (SRLs) and 32 FFs and the delay line

input selection logic requires 32 LUTs and 32 FFs. This results in a total cluster

resource consumption of 564 LUTs, 912 FFs and 4 DSP blocks. The cluster

configuration register includes 16 bits for each DSP block configuration, 2 bits

for each mux and 2 bits for delay line input selection logic. Hence, the cluster

configuration register consumes 92 FFs. The entire routing network requires 84

bits for the 32-bit cone and hence the entire cone can be reconfigured using just

404 bits (50.5 Bytes) of configuration data.

The post-place and route resource consumption of the 32-bit DeCO is 2076 LUTs,

3984 FFs and 20 DSP blocks, with a programmability overhead of 103.8 LUTs/FU

(3.24 LUTs/bit per FU), significantly less than original target of ≤ 240 LUTs/FU.

114 5 Low Overhead Interconnect for DSP Block Based Overlays

The 32-bit DeCO overlay achieves a frequency of 395 MHz, which is close to the

DSP theoretical limit of 400 MHz on the Zynq device.

5.3.2 The 16-bit Architecture

The 16-bit FU is similar to the 32-bit FU, except that it can now make use of

the DSP block A input and the pre-adder, allowing additional instructions such

as add-multiply and subtract-multiply. This results in the four input, one output

FU, shown in Figure 5.6. As with the 32-bit version, the DSP48E1 function is de-

termined by a set of control inputs that are wired to the ALUMODE, INMODE

and OPMODE configuration registers.

MUL

B Register

Pre-Adder

C

M

INMODE

OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5

7

4 1

4

16

MUXSEL
8

DSP48E1

X

Y

Z

Functional UnitSwitch

Figure 5.6: The 16-bit functional unit and interconnect switch.

Because of the extra DSP block input (used by the pre-adder), the top most

routing layer requires connections to four FUs (with four inputs each) and four

data forwarding delay lines (each with a single input). Again, because we do not

need full routing flexibility, the top most connection layer requires two sets of 10

4:1 multiplexers. Similar to the 32-bit version, we use 4:1 multiplexers in the other

connection layers. The 16-bit DeCO overlay also has a total latency of 24 clock

cycles.

5 Low Overhead Interconnect for DSP Block Based Overlays 115

M
U

L

B
 R

egister

Pre
-A

d
d

er

C M

IN
M

O
D

E

O
P

M
O

D
E BADC

1 00

A
LU

M
O

D
E

P

161616

1
6

57

4
1

4

16

M
U

X
SEL

8
D

SP
48

E1

XYZ

M
U

L

B
 R

egister

Pre
-A

d
d

er

C M

IN
M

O
D

E

O
PM

O
D

E BADC

1 00

A
LU

M
O

D
E

P

1
61616

1
6

57

4
1

4

16

M
U

XSEL

8
D

SP
48

E1

XYZ

M
U

L

B
 R

egister

Pre
-A

d
d

er

C M

IN
M

O
D

E

O
P

M
O

D
E BADC

1 00

A
LU

M
O

D
E

P

16161
6

16

57

4
1

4

16

M
U

XSEL

8
D

SP
4

8
E1

XYZ

M
U

L

B
 R

egister

P
re

-A
d

d
er

C M

IN
M

O
D

E

O
P

M
O

D
E BADC

1 00

A
LU

M
O

D
E

P

161616

1
6

57

4
1

4

16

M
U

XSEL

8
D

SP
48

E1

XYZ

Figure 5.7: Micro-architectural design of the 16-bit cluster consisting of four func-
tional units and two delay lines.

Resource Usage for the 16-bit Architecture: In the 16-bit version of the

overlay, which also consists of three tiles with an additional eight FUs at the

top layer, each tile consists of four FUs preceded by four individual 4:1 muxes

at the input of each FU, and two data forwarding delay lines preceded by a 4:1

116 5 Low Overhead Interconnect for DSP Block Based Overlays

mux, as shown in Figure 5.7. The 16-bit FU requires one DSP block and three

additional 16-bit registers at the DSP input ports for pipeline balancing (as shown

in Figure 5.6), consuming 48 FFs. Each FU connection network requires four 4:1

multiplexers with registered outputs, consuming 64 LUTs and 64 FFs, while the

delay line requires 16 LUTs (SRLs) and 16 FFs and the delay line input selection

logic requires 16 LUTs and 16 FFs. This results in a total 16-bit cluster resource

consumption of 320 LUTs, 512 FFs and 4 DSP blocks. The cluster configuration

register includes 16 bits for each DSP block configuration, 2 bits for each mux and 2

bits for delay line input selection logic, resulting in a cluster configuration register

size of 100 FFs. For the DSP block based FU, programming the FU settings

requires 16 configuration bits while programming the routing network requires 2

configuration bits per 4:1 multiplexer. Thus, the entire routing network requires

108 bits for the 16-bit cone and hence the entire cone can be reconfigured using

just 428 bits (53.5 Bytes) of configuration data.

The post-place and route resource consumption of the 16-bit DeCO is 1368 LUTs,

2348 FFs and 20 DSP blocks, with a programmability overhead of 68.4 LUTs/FU

(2.14 LUTs/bit per FU), significantly less than original target of ≤ 240 LUTs/FU.

The 16-bit DeCO achieves a frequency of 395 MHz, which is again very close to

the DSP theoretical limit of 400 MHz on the Zynq device. The 16-bit DeCO was

subsequently mapped to a Xilinx Virtex-7 XC7VX690T-2 and achieved a frequency

of 645MHz. Compared to 32-bit version of the DeCO architecture, 16-bit version

requires 35% less LUTs and 40% less FFs.

5.4 Experimental Evaluation

In this section, we first present a quantitative comparison of the DeCO architecture

with some existing overlays from the research literature and then evaluate the

performance of the DeCO architecture, using a benchmark set of compute kernels,

which we then compare to other overlay implementations. Figure 5.8 shows the

mapping of the 16-bit DeCO architecture onto the Zynq FPGA (the red area at

5 Low Overhead Interconnect for DSP Block Based Overlays 117

the bottom left of the fabric). The Zynq fabric is thus able to accommodate a

number of multiple parallel instances of the DeCO architecture which allows the

exploitation of all of the DSP blocks available on the fabric. In this section, we will

only consider the 16-bit version of the DeCO architecture so that we can compare

to the other overlays which are all 16-bit.

Figure 5.8: Mapping of DeCO on Zynq.

To show that the interconnect area overhead (in terms of LUTs/GOPS) has been

reduced significantly, we compare DeCO with a number of different overlays, both

from the literature and previous chapters as shown in Table 5.2. For the different

overlays we compare the resource usage in terms of the LUTs used and the percent-

age of the total LUTs used in the target device (shown in brackets), the frequency,

118 5 Low Overhead Interconnect for DSP Block Based Overlays

Max OPs and the peak throughput of the arithmetic operations in GOPS. As the

overlays are all different sizes, with peak throughputs (in GOPS) which are depen-

dent on the number of FUs, it is important to normalize the characteristics of the

different overlays, which we do by using the interconnect area overhead in terms of

LUTs/GOPS. Table 5.2 also shows the LUTs/GOPS, for the various overlays, and

clearly shows that the DeCO architecture has the lowest interconnect area over-

head. The interesting point to note is that the smaller DeCO architecture achieves

a peak performance of 23.7 GOPS (3.8× better than DSP-DySER) but with an

interconnect area overhead of 58 LUTs/GOPS (130× better than DSP-DySER),

consuming 45× fewer LUTs compared to DSP-DySER. This is mainly due to the

considered use of the DSP blocks and the low overhead interconnect used in the

DeCO architecture.

Resource IF [137] IF (opt) [137] DSP-DySER DISO Dual-DISO DeCO

Device XC5VLX330 XC5VLX330 XC7Z020 XC7Z020 XC7Z020 XC7Z020

Slices|LUTs 51.8K|207K 51.8K|207K 13.3K|53K 13.3K|53K 13.3K|53K 13.3K|53K

Overlay FUs 14×14 14×14 6×6 8×8 8×8 20

LUTs used 91K(44%) 50K(24%) 48K(90%) 28K(52%) 37K(70%) 1368(2.5%)

Fmax (MHz) 131 148 175 338 300 395

Max OPs 196 196 36 192 384 60

GOPS 25.6 29 6.3 65 115 23.7

LUTs/GOPS 3550 1725 7620 430 320 58

Table 5.2: Quantitative comparison of DeCO with other overlays

We observe that for the DSP-DySER overlay, it is possible to fit an array of 36 DSP

blocks (16% of the total DSP blocks on Zynq), while for the DISO and Dual-DISO

architectures it is possible to fit 64 (30%) and 128 (60%) DSP blocks, respectively.

For the DeCO architecture, it is possible to fit 11 parallel instances of DeCO re-

sulting in the use of all of the 220 DSP blocks with a resource consumption of

15K LUTs only. It will result in a large overlay (can support up-to 660 arithmetic

operations) operating at a frequency of 395 MHz and providing a peak throughput

of 260 GOPS with an interconnect area overhead of 58 LUTs/GOPS. In terms of

the Peak GOPS, DSP-DySER achieves 6.3 GOPS, DISO and Dual-DISO over-

lays achieve 65 GOPS and 115 GOPS, respectively, while 11 parallel instances of

5 Low Overhead Interconnect for DSP Block Based Overlays 119

DeCO achieve 260 GOPS, representing 2.4%, 25%, 44% and 98% of the maximum

achievable GOPS, respectively.

5.4.1 Overlay Comparison and Analysis for Benchmark

Set

For comparison purposes, we map the benchmark set onto the proposed 16-bit

DeCO architecture, and onto on a 5×5 DSP-DySER [177] and a 5×5 DISO [78],

both of which are 16-bit architectures. We do not consider IF [137] for the com-

parison, since it only uses fixed-logic multipliers (mapped to the DSP blocks by

the synthesis tool) as functional units (FUs), and as such, it is not possible for IF

to support the kernels in the benchmark set. We also do not compare with Dual-

DISO as in this experiment we are only mapping single instances of the benchmark

set.

While all overlays have comparable DSP usage (25, 25 and 20, respectively), the

LUT and FF requirements at (33875, 11023 and 1368) and (13390, 10486 and

2348), respectively, show a significant reduction for the proposed overlay, as shown

in Figure 5.9. This represents a savings in the LUT requirements of 96% and 87%,

compared to DSP-DySER[177] and DISO[78], respectively.

LUTs FFs DSP Blocks
0

20

40

60

80

100

%
U

ti
li
za

ti
on

DSP-DySER

DISO
DeCO

Figure 5.9: Comparison of overlay resources required for the benchmark set.

As a second experiment, we compare the physical footprint in terms of configu-

ration tiles, operating frequency and configuration time, of DeCO with the two

120 5 Low Overhead Interconnect for DSP Block Based Overlays

previous overlays and the minimum partial reconfiguration (PR) region which can

contain the hardware resources of the RTL implementation (generated using Vi-

vado HLS 2013.2) of the benchmark set, as shown in Table 5.3. The Zynq fabric

consists of 22 DSP tiles (each containing 10 DSP blocks) and 133 CLB tiles (each

containing 50 CLBs), and reconfiguration using PR must be done in a multiple

of these tiles to be fast. DeCO requires 2 DSP tiles and 6 CLB tiles. DSP-

DySER[177] requires 3 DSP tiles and 126 CLB tiles while DISO[78] requires 3

DSP tiles and 42 CLB tiles. We also include a PR region which is big enough to

accommodate the largest benchmark (”kmeans”) in the set, which requires 1 DSP

tile and 3 CLB tiles, half that of DeCO. In terms of area, all overlays have a higher

resource utilization, as is expected, with DeCO, DSP-DySER[177] and DISO[78]

requiring 2×, 21× and 7× the FPGA resources, compared to a PR-based direct

FPGA implementation of the compute kernels, respectively.

Area Tiles Freq. Config. Config. Peak

(DSP/CLB) (DSP/CLB) (MHz) data (Bytes) time (µs) GOPS

DSP-DySER 25/6142 3/126 175 194.0 7.2 4.37

DISO 25/2095 3/42 370 287.0 11.5 27.75

DeCO 20/258 2/6 395 53.5 2.0 23.70

PR region 10/150 1/3 249 49000.0 382.0 -

Table 5.3: Experimental results for the comparison of different implementations

Perhaps more notable is the time required to change the kernel context for the

various implementations. This is important if we need to swap between different

accelerator implementations as an application executes. The PR region can be

reconfigured entirely using 49 KBytes of configuration data in 382 µs using PCAP,

while DeCO can be reconfigured entirely using just 53.5 Bytes of configuration

data in 2 µs, which represents a 190× improvement in configuration time. The

other two overlays, while requiring a slightly longer configuration time than the

proposed overlay, are also significantly better than for PR.

We also calculate the peak throughput of the overlays, in GOPS, as the product

of the overlay frequency and the maximum number of arithmetic operations, as

5 Low Overhead Interconnect for DSP Block Based Overlays 121

show in Table 5.3. However, because of the different resources used by the HLS

implementations, compared to that of the overlays, we cannot use the compute

area overhead (LUTs/GOPS) metric. Instead, we use the throughput per unit

area (in MOPS/eSlice), where the hardware resource utilization is normalised in

terms of equivalent slices (e-Slices), assuming that 1 DSP block is equivalent to 60

slices based on the ratio of slices/DSP on the Zynq XC7Z02-1CLG484C (which is

approximate 60), as discussed in Chapter 3.7. The average throughput per unit

area for the HLS implementation of the benchmark set is ≈ 7.5 MOPS/eSlice.

In comparison, the largest kernel (kmeans) in the benchmarks set, when mapped

onto the DeCO architecture, achieves 5.3 MOPS/eSlice, which is around 70% of

the HLS implementations. This 1.5× hardware performance penalty needs to be

considered in context with the ability of the DeCO architecture to support runtime

compilation and runtime configuration of the compute kernels.

5.4.2 Mapping Additional Compute Kernels on to the

DeCO

To analyze the mapping flexibility and utilization of the proposed overlay, we map

additional kernels, taken from [78] and [62], remembering that the DeCO archi-

tecture was originally designed for the kernels shown previously in Table 5.1. This

demonstrates that the DeCO architecture is more general than the initial design

set. Table 5.4 shows the required number of cones, the percentage utilization of

the FUs in the DeCO architecture, and the achievable GOPS for each benchmark.

It can be seen that the proposed DeCO architecture is able to efficiently map

kernels which are unknown at overlay design time.

Table 5.4 shows FU utilizations of up to 95%. For small kernels, with a utilization

of less than 50%, such as gradient and Chebyshev, we are able to improve utilization

by mapping replicated versions of the kernels. For example, the FU utilization for

gradient [62] on a single full cone is 45%, but by mapping two instances of this

kernel onto the proposed cone, we can achieve an effective FU utilization of 90%.

For some of the compute kernels, such as FFT and Chebyshev, the FU utilization

122 5 Low Overhead Interconnect for DSP Block Based Overlays

Benchmark Required No. % Utilization GOPS

of Cones

fft 1 40% 3.95

kmeans 1 95% 9.08

mm 1 75% 5.92

spmv 1 70% 5.53

mri 1 75% 4.34

stencil 1 80% 5.53

gradient [62] 0.5 90% 4.34

chebyshev 0.5 40% 2.76

sgfilter 1 50% 7.11

mibench 1 40% 5.13

bicg 3 50% 11.85

trmm 4.5 60% 21.33

syrk 4.5 80% 28.44

Table 5.4: Experimental results for mapping benchmarks

is less because these kernels are not cone shaped DFGs. Here, FFT is wide while

Chebyshev is narrow. Using a single DeCO, we are able to achieve a throughput

of up to 9.08 GOPS (that is 38% of the peak throughput).

To map larger kernels, multiple instances of the overlay cone are used. The last

three rows of Table 5.4 show the mapping of larger benchmarks to replicated in-

stances of the cone, allowing us to achieve high GOPS values. Cones are replicated

in a multi-lane pattern to reflect the shape of the larger graph.

5.5 Summary

We have presented DeCO, a DSP-enabled cone-shaped overlay architecture that

uses Xilinx DSP48E1 primitives as a programmable FU, resulting in an area-

efficient overlay (due to the low overhead interconnect) for pipelined execution

of compute kernels, with improved performance metrics. After determining the

5 Low Overhead Interconnect for DSP Block Based Overlays 123

interconnect flexibility required for a set benchmarks, we design and implement a

16-bit version and a 32-bit version of the DeCO architecture. The post-place and

route resource consumption of the 32-bit DeCO overlay is 2076 LUTs, 3984 FFs

and 20 DSP blocks, while the resource consumption of the 16-bit DeCO overlay

is 1368 LUTs, 2348 FFs and 20 DSP blocks. Compared to the 32-bit version of

DeCO, the 16-bit version requires 35% less LUTs and 40% less FFs.

The 16-bit DeCO, when implemented on a Xilinx Zynq, achieves savings in the

LUT requirements of 96% and 87%, compared to 16-bit DSP-DySER[177] and

16-bit DISO[78], respectively. 16-bit DeCO achieves a frequency of 395 MHz and

provides a peak performance of 23.7 GOPS (3.8× better than DSP-DySER) with

an interconnect area overhead of 58 LUTs/GOPS (130× better than DSP-DySER),

consuming 45× fewer LUTs compared to DSP-DySER, but with a 1.5× hardware

performance penalty compared to the HLS generated hardware implementations.

We have demonstrated that the use of an architecture-focused FU and low over-

head interconnect can result in an efficient overlay architecture with significantly

lower area and performance overheads compared to other overlays.

Although the proposed overlay architectures focus on Xilinx FPGA devices, the

approach used to design these architectures is highly flexible when implementing

on other platforms. For example, the proposed overlays can be implemented on

an Altera FPGA device just by changing the DSP primitive instantiation. The

mapping tool would need to incorporate FU templates based on the DSP block

capability of the Altera FPGA device. The overlay interconnect is essentially

vendor-independent and portable across all FPGA devices.

6
Mapping Tool for Compiling Kernels onto

Overlays

6.1 Introduction

When FPGA accelerators are used to speed up a software application, these are

normally designed at a low level of abstraction (typically RTL) in order to obtain

an efficient implementation, and this can consume more time and make reuse

difficult when compared with a similar software design. A designer must specify the

structure of the datapath and control interfaces for reading inputs from memories

into buffers, stalling the datapath when buffers are full or empty, writing outputs

to memory, and so on. This makes the design process complex, requiring low-level

device expertise and knowledge of both hardware and software systems. When

125

126 6 Mapping Tool for Compiling Kernels onto Overlays

coding an accelerator, a fully pipelined datapath implementation of several lines

of C code requires many lines of RTL code. Vendor implementation tools take

the RTL description of an accelerator and generate the FPGA implementation,

through logic synthesis, mapping, and placement and routing (PAR) processes,

which are time-consuming compared to software compilation. The difficulty of

accelerator design and the long, complex compilation flow are two key design

productivity issues standing in the way of more mainstream adoption of FPGAs

in general purpose computing [34].

High level synthesis (HLS) tools [30, 31] have helped simplify accelerator design

by raising the level of programming abstraction from RTL to high level languages,

such as C or C++. These tools allow the functionality of an accelerator to be

described at a higher level to reduce developer effort, enable design portability, and

enable rapid design space exploration, thereby improving productivity, verifiability,

and flexibility. Raising the level of programming abstraction reduces the amount

of information required to describe the functionality of an accelerator, typically

with a marginal area and performance cost. For example, Bluespec [90] abstracts

interface methods for control and concurrency, though it still describes cycle-level

behavior of resources. Higher level tools use languages such as C or C++ where

timing is no longer explicit. Most high level languages, like C/C++, are sequential

programming languages with no standardized means to describe parallel execution.

HLS tools extract parallelism in the datapath through multiple steps to build a

hardware implementation.

At the same time, the significant amount of resources available on modern FPGAs

could be exploited to replicate hardware to process more data in parallel. However,

such datapath replication remains a manual design activity. Recently, FPGA

vendors have been exploring explicitly parallel languages, such as OpenCL in order

to bridge this gap between the expressiveness of sequential languages and the

parallel capabilities of the hardware [178]. In OpenCL, parallelism is explicitly

specified by the programmer, and compilers can use system information at runtime

to scale the performance of the application by executing multiple replicated copies

of the application kernel in hardware [179].

6 Mapping Tool for Compiling Kernels onto Overlays 127

OpenCL also has the benefit of being portable across architectures, such as FP-

GAs, GPUs, and other parallel compute resources without requiring changes to

algorithm source code [180]. This is a key capability of OpenCL that makes it a

promising programming model for heterogeneous platforms. Specifically, the intro-

duction of heterogeneous system on chip (SoC) platforms, or hybrid FPGAs, which

tightly couple general purpose processors with high performance FPGA fabrics [56]

provide a more energy efficient alternative to high performance CPUs and/or

GPUs within the tight power budget required by high performance embedded sys-

tems. Hence techniques for mapping OpenCL kernels to FPGA hardware have at-

tracted both academic and industrial attention in the last few years [181, 182, 183].

Altera OpenCL [178] and Xilinx SDAccel are new tools that allow compilation and

offloading of OpenCL kernels onto FPGA fabric.

While these developments in HLS and OpenCL support have tackled design diffi-

culty to a reasonable extent, allowing designers to focus on high level functionality

instead of low-level implementation details, prohibitive compilation times (specifi-

cally PAR times) still limit design productivity significantly. Design iterations are

extremely slow, and as FPGA devices grow in size, and designs occupy larger ar-

eas, this problem continues to worsen. Coarse-grained overlay architectures have

emerged as a possible solution to this challenge [73, 74, 75]. Previous chapters

have demonstrated ways in which more efficient overlays can be built [78, 79], and

coupled with similar high-level design methods, they can address both aspects

of the design productivity gap. More interestingly, the complexity of traditional

FPGA implementation tools precludes their use in any scenario where accelerators

are to be built online, even by a powerful host CPU. However, compile flows for

overlays are multiple orders of magnitude faster, and can in fact be run on the

embedded processors in hybrid FPGAs.

A method for compilation of OpenCL kernels to the TILT overlay was presented

in [144]. Since the Altera OpenCL tool maximizes throughput at the cost of signif-

icant resource usage by generating a heavily pipelined, spatial design, the authors

suggest the TILT overlay as an alternative target when a lower throughput is ade-

quate, resulting in less area consumption. TILT uses a weaker form of application

128 6 Mapping Tool for Compiling Kernels onto Overlays

customization by varying the mix of pre-configured standard FUs and optionally

generating application-dependent custom units. However, as each application re-

quires that the TILT overlay be recompiled, a hardware context switch (referred

to as a kernel update in the paper) takes on average 38 seconds. An 8-core TILT

system (with each core having one multiply FU and one add/sub FU) was designed

specifically to implement a 64-tap FIR filter application, resulting in a throughput

of 30 M inputs/sec and consuming 12K eALMs. For the same application, Altera

OpenCL HLS was used to generate a fully parallel and pipelined implementation,

resulting in a throughput of 240 M inputs/sec (8× higher) and consuming 51K

eALMs (4× higher).

In [138], overlays having one dedicated functional unit were used for each OpenCL

kernel operation. Five different relatively small sized overlays (2 floating point

and 3 fixed point), each specialized for a specific set of kernels with no support for

kernels not known at design time were implemented on a Xilinx Virtex-6 FPGA

(XC6VCX130T). These overlays were able to achieve frequencies ranging from

196 MHz to 256 MHz. When the overlay residing on the FPGA fabric did not

support a kernel, it was proposed to reconfigure the FPGA fabric at runtime

with a different overlay which supported the new kernel. This is because different

applications require different sized overlays, with an overlay large enough to satisfy

the resource requirements of the largest kernel being heavily underutilized when a

small kernel is mapped to the overlay. However, this requires a full reconfiguration

of the FPGA fabric with a new overlay and takes 3.4 ms in the best case.

In this chapter, we present a methodology for compiling high level descriptions of

compute kernels (C/OpenCL) onto efficient coarse-grained overlays, rather than

directly to the FPGA fabric to improve design productivity. In the case of compil-

ing OpenCL kernels, the methodology benefits from the high level of abstraction

afforded by using the OpenCL programming model, while the mapping to overlays

offers fast compilation. We use a custom mapping tool to provide a rapid, vendor

independent, mapping to the overlay, demonstrating that the proposed approach

raises the abstraction level while also reducing compilation time significantly.

6 Mapping Tool for Compiling Kernels onto Overlays 129

The main contributions of this chapter can be summarized as follows:

• A mapping tool that takes a high level description of a compute kernel

(C/OpenCL), bypasses the conventional FPGA compilation process, and

maps directly to a coarse-grained overlay previously mapped to the FPGA

• A comparison of PAR times between the traditional PAR approach (for fine-

grained FPGAs) and the proposed PAR approach (for overlays), for a set of

benchmarks

• A demonstration of this flow running entirely on the embedded processor in

a Xilinx Zynq, with low runtime

6.2 Compiling Kernels to the Overlays

In this section we demonstrate the compilation flow for the DISO, Dual-DISO and

DeCO overlays. As mentioned previously in chapter 4, DISO and Dual-DISO, both

consist of a spatially configured array of functional units interconnected using an

island-style interconnect architecture. Each FU executes a single arithmetic oper-

ation and data is transferred over a dedicated point-to-point link between the FUs.

That is, both the FU and the interconnect are unchanged while a compute kernel

is executing. This results in a fully pipelined, throughput oriented programmable

datapath executing one kernel iteration per clock cycle, thus having an initiation

interval (II) between kernel data packets of one.

The design and implementation of the overlay itself still relies on the conventional

hardware design flow using vendor tools. However, this process is done once offline

and so does not impact the kernel implementation of an application. It is worth

mentioning that some other overlay methodologies do indeed require the overlay

itself to be adapted to the kernel being mapped, and hence lose the benefit of fast

compilation [143]. Instead of compiling high level application kernels to RTL and

then generating a bitstream using the vendor tools, we use an in-house mapping

flow to provide a rapid, vendor independent, mapping to the overlay. The mapping

130 6 Mapping Tool for Compiling Kernels onto Overlays

process comprises two main steps; DFG extraction from a kernel description and

DFG mapping onto the overlay; and are described in detail in next sections.

6.2.1 DFG Extraction From a Kernel Description

Starting with a high level description of the compute kernel, in either C or OpenCL,

we first extract a DFG representation of the kernel, where a node in the DFG

represents an operation and an edge represents data dependency between nodes.

DFG extraction uses existing HLS tools (HercuLeS [184] for C and LLVM [185]

for OpenCL). We use two separate HLS tools as HercuLeS provides direct DFG

generation, but unfortunately does not support OpenCL. While LLVM supports

both C and OpenCL, it is unable to generate a DFG directly, and a separate tool

needed to be written to produce the DFGs. We subsequently integrate with our

custom mapping tool-flow to produce a seamless process for application kernel

mapping targeting our overlay architectures.

DFG extraction from a C description: The HercuLeS front-end is used to

extract the DFG from a C description of the kernel. The C description (shown

in Table 6.1(a)) is first passed to GCC for GIMPLE dump generation (shown in

Table 6.1(b)), which is then processed by gimple2nac to generate a NAC repre-

sentation (shown in Table 6.1(c)) and finally it is converted into a DFG (in dot

file format) using nac2cdfg, where a node can either be an operation node or an

I/O node, as shown in Table 6.3.

GIMPLE is the intermediate representation (IR) used within the GCC compiler

and NAC is the representation used by the HercuLeS tool which gets converted

into a DFG. Figure 6.2(a) shows an example DFG, showing the nodes and edges.

DFG extraction from OpenCL description: The HercuLeS front-end cur-

rently does not support an OpenCL description of compute kernels. To support

OpenCL, we use LLVM, which can extract an optimized LLVM intermediate rep-

resentation (IR) from an OpenCL description, which we then convert to a DFG

using our custom IR parser. DFG generation has the following steps: The Clang

6 Mapping Tool for Compiling Kernels onto Overlays 131

(a) C description of the kernel

int example_kernel(int x)

{

int temp = 16*x;

return (x*(x*(temp*x-20)*x+5));

}

(b) GIMPLE representation of the kernel

example_kernel (int x)

gimple_bind <

int D.2534;

int D.2535;

int D.2536;

int D.2537;

int D.2538;

int D.2539;

int temp;

gimple_assign <mult_expr , temp , x, 16>

gimple_assign <mult_expr , D.2535, temp , x>

gimple_assign <plus_expr , D.2536, D.2535, -20>

gimple_assign <mult_expr , D.2537, D.2536, x>

gimple_assign <mult_expr , D.2538, D.2537, x>

gimple_assign <plus_expr , D.2539, D.2538, 5>

gimple_assign <mult_expr , D.2534, D.2539, x>

gimple_return <D.2534 >

>

(c) NAC representation of the kernel

procedure example_kernel(in s32 x,out s32 D_2534)

{

localvar s32 D_2535;

localvar s32 D_2536;

localvar s32 D_2537;

localvar s32 D_2538;

localvar s32 D_2539;

localvar s32 temp;

L0005:

temp <= mul x,16;

D_2535 <= mul temp ,x;

D_2536 <= sub D_2535 ,20;

D_2537 <= mul D_2536 ,x;

D_2538 <= mul D_2537 ,x;

D_2539 <= add D_2538 ,5;

D_2534 <= mul D_2539 ,x;

}

Table 6.1: Code descriptions for DFG extraction from C

front-end for the LLVM compiler, along with the LLVM disassembler generates

an IR from the OpenCL Kernel. We generate the LLVM IR, after compiling the

OpenCL kernel (shown in Table 6.2(a)) using Clang with the -O0 optimization

flag, as shown in Table 6.2(b). LLVM optimization passes are then used to gen-

erate an optimized LLVM IR, as shown in Table 6.2(c). Lastly, our custom IR

parser transforms the optimized IR description of the compute kernel into a DFG

description, as shown in Table 6.3.

132 6 Mapping Tool for Compiling Kernels onto Overlays

(a) OpenCL description of the kernel

__kernel void example_kernel(__global int *A, __global int *B)

{

int idx = get_global_id(0);

int x = A[idx];

B[idx] = (x*(x*(16*x*x-20)*x+5)) ;

}

(b) LLVM intermediate representation (IR) of the kernel

%0:

%1 = alloca i32*, align 4

%2 = alloca i32*, align 4

%idx = alloca i32 , align 4

%x = alloca i32 , align 4

store i32* %A, i32** %1, align 4

store i32* %B, i32** %2, align 4

%3 = call i32 bitcast (i32 (...)* @get_global_id to i32 (i32)*)(i32 0)

store i32 %3, i32* %idx , align 4

%4 = load i32* %idx , align 4

%5 = load i32** %1, align 4

%6 = getelementptr inbounds i32* %5, i32 %4

%7 = load i32* %6

store i32 %7, i32* %x, align 4

%8 = load i32* %x, align 4

%9 = load i32* %x, align 4

%10 = load i32* %x, align 4

%11 = mul nsw i32 16, %10

%12 = load i32* %x, align 4

%13 = mul nsw i32 %11, %12

%14 = sub nsw i32 %13, 20

%15 = mul nsw i32 %9, %14

%16 = load i32* %x, align 4

%17 = mul nsw i32 %15, %16

%18 = add nsw i32 %17, 5

%19 = mul nsw i32 %8, %18

%20 = load i32* %idx , align 4

%21 = load i32** %2, align 4

%22 = getelementptr inbounds i32* %21, i32 %20

store i32 %19, i32* %22

ret void

(c) Optimized LLVM IR of the kernel

%0:

%1 = call i32 bitcast (i32 (...)* @get_global_id to i32 (i32)*)(i32 0)

%2 = getelementptr inbounds i32* %A, i32 %1

%3 = load i32* %2

%4 = mul nsw i32 16, %3

%5 = mul nsw i32 %4, %3

%6 = sub nsw i32 %5, 20

%7 = mul nsw i32 %3, %6

%8 = mul nsw i32 %7, %3

%9 = add nsw i32 %8, 5

%10 = mul nsw i32 %3, %9

%11 = getelementptr inbounds i32* %B, i32 %1

store i32 %10, i32* %11

ret void

Table 6.2: Code descriptions for DFG extraction from OpenCL

6 Mapping Tool for Compiling Kernels onto Overlays 133

digraph example_kernel {

N8 [ntype="operation", label="add_Imm_5_N8"];

N9 [ntype="outvar", label="O0_N9"];

N1 [ntype="invar", label="I0_N1"];

N2 [ntype="operation", label="mul_N2"];

N3 [ntype="operation", label="mul_N3"];

N4 [ntype="operation", label="mul_Imm_16_N4"];

N5 [ntype="operation", label="mul_N5"];

N6 [ntype="operation", label="mul_N6"];

N7 [ntype="operation", label="sub_Imm_20_N7"];

N8 -> N2;

N1 -> N5;

N1 -> N6;

N1 -> N2;

N1 -> N3;

N1 -> N4;

N2 -> N9;

N3 -> N6;

N4 -> N5;

N5 -> N7;

N6 -> N8;

N7 -> N3;

}

Table 6.3: Compute kernel DFG description

6.2.2 DFG Mapping onto the Overlay

After extracting the DFG from the high level description of the compute kernel, the

next step is to map the DFG onto the overlay. This process includes mapping of the

DFG nodes onto the overlay FUs, FU netlist generation, placement and routing

of the FU netlist onto the overlay, latency balancing and finally, configuration

generation. The mapping process is shown in Figure 6.1, and is described in detail

next.

6.2.2.1 DFG to FU-aware DFG Transformation

In this step, the DFG description is parsed and translated into an FU-aware DFG.

This involves merging nodes that can be combined into a single FU, based on the

capabilities of the DSP block primitive. For example, we can use multiply-subtract

and multiply-add to collapse N5–N7 and N6–N8 in Figure 6.2(a) into N5 and N6

of Figure 6.2(b), respectively. As a result, the FU aware mapping requires only

5 FUs instead of the 7 required if each node were mapped to a single FU, as in

134 6 Mapping Tool for Compiling Kernels onto Overlays

Compute Kernel DFG Description

FU-aware DFG Transformation

Placement and Routing

Latency Balancing

Configuration Generation

Overlay Architecture Specification

Overlay RTL Generation

bitstream generation

Overlay

FPGA

Resource-aware FU Netlist Generation

Figure 6.1: Mapping flow.

many other overlays. This results in the FU-aware DFG shown in Table 6.4 and

Figure 6.2(b).

Furthermore, an FU can be made more complex by putting multiple DSP blocks

within it so that it can further reduce the number of required FUs. For example

using two DSP blocks within an FU, as with the Dual-DISO overlay, N4 and

N5 can be combined together and similarly N3 and N6 can be combined together,

resulting in another FU-aware graph as shown in Figure 6.2(c). In order to support

the dual-DSP FU, we cluster two consecutive nodes in the single DSP-aware DFG

if the fan-in of the resulting node, is ≤ 4. Dual-DSP based clustering results in a

significant reduction in the number of FUs required compared to an FU with just

a single DSP block, also meaning less global routing resources are needed. Our

6 Mapping Tool for Compiling Kernels onto Overlays 135

digraph example_kernel {

N7 [ntype="outvar", label="O0_N7"];

N1 [ntype="invar", label="I0_N1"];

N2 [ntype="operation", label="mul_N2"];

N3 [ntype="operation", label="mul_N3"];

N4 [ntype="operation", label="mul_Imm_16_N4"];

N5 [ntype="operation", label="mul_sub_Imm_20_N5"];

N6 [ntype="operation", label="mul_add_Imm_5_N6"];

N1 -> N5;

N1 -> N6;

N1 -> N2;

N1 -> N3;

N1 -> N4;

N2 -> N7;

N3 -> N6;

N4 -> N5;

N5 -> N3;

N6 -> N2;

}

Table 6.4: FU-aware DFG description for single-DSP FU

FU-aware DFG transformation currently only supports Xilinx DSP block based

FUs, but could be easily modified to support any user-defined FU type.

6.2.2.2 Resource-aware FU Netlist Generation From FU-aware DFG

The FU-aware DFG for the kernel can be replicated the appropriate number of

times to fit the available resources of the overlay architecture. This replicated DFG

is used to generate the FU netlist. Table 6.5 shows the FU netlist for a single-DSP

FU in VPR netlist format which can be used by VPR tool for the placement and

routing on island-style overlay. The replication factor used in this example is one

which means just one copy of kernel would be mapped onto the overlay. Figure 6.3

shows the concept of resource-aware replication of an FU-aware DFG, where we

first map a single kernel of a DSP FU aware DFG onto the DISO overlay and

single kernel of a dual-DSP FU aware DFG onto the Dual-DISO overlay. Since it

is possible to fit 8 instances of the dual-DSP FU aware DFG onto the Dual-DISO

overlay, the tool replicate the dual-DSP FU aware DFG 8 times and generates a

resource-aware FU netlist (containing 8 kernel instances) which gets mapped to

the Dual-DISO overlay. It is clear from Figure 6.3 that the proposed replication

approach can significantly improve the utilization of the overlay resources.

136 6 Mapping Tool for Compiling Kernels onto Overlays

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(a) DFG extracted from
OpenCL Kernel

O0 N7

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul sub Imm 20 N5

mul add Imm 5 N6

(b) FU-aware DFG where
FU consists of one DSP block

O0 N7

I0 N1

mul N2

mul N3,
mul add Imm 5 N6

mul Imm 16 N4,
mul sub Imm 20 N5

(c) FU-aware DFG
where FU consists of
two DSP blocks

(d) FU-aware DFG placed and routed on 5x5
DISO overlay

(e) FU-aware DFG placed and routed on 5x5
Dual-DISO overlay

Figure 6.2: FU aware mapping, placement and routing on overlay.

To support mapping of the FU-aware DFG on the DeCO architecture, we apply

tree-balancing and resource-aware replication technique to all FU-aware DFGs,

which both reduces the graph depth and better shapes the DFG according to the

DeCO architecture, and generate the FU netlist.

To enable ultra-fast resource-aware mapping at runtime, the process of converting

the kernel to the FU-aware DFG can be bypassed by converting the kernel to

an FU-aware DFG offline. The FU-aware DFG can then be used at runtime for

resource-aware FU-netlist generation and PAR on the overlay. We demonstrate

6 Mapping Tool for Compiling Kernels onto Overlays 137

.input N1

pinlist: N1

.output out:N7

pinlist: N7

.fu N2

pinlist: N1 N6 open open N7 open open open open

subblock: N2_blk 0 1 open open 4 open open open open

.fu N3

pinlist: N1 N5 open open N3 open open open open

subblock: N3_blk 0 1 open open 4 open open open open

.fu N4

pinlist: N1 open open open N4 open open open open

subblock: N4_blk 0 open open open 4 open open open open

.fu N5

pinlist: N1 N4 open open N5 open open open open

subblock: N5_blk 0 1 open open 4 open open open open

.fu N6

pinlist: N1 N3 open open N6 open open open open

subblock: N6_blk 0 1 open open 4 open open open open

Table 6.5: FU Netlist

Dual-DSP
FU aware DFG
transformation

Resource-aware
Replication

8 Kernel Instances

DISO Architecture Dual-DISO Architecture Dual-DISO Architecture

Figure 6.3: An example of resource-aware replication of an FU-aware DFG.

this in Section 6.3 by performing runtime PAR on the Xilinx Zynq Dual ARM

embedded processor.

138 6 Mapping Tool for Compiling Kernels onto Overlays

6.2.2.3 Placement and Routing of the FU Netlist to the Overlay

We now make use of VPR to place nodes onto the island-style overlay and route

signals between them. In this manner, we are adopting VPR at a higher level of

abstraction than its intended purpose. Rather than map logic functions to LUTs

and single-bit wires to 1-bit channels, we map nodes in the graph to FUs, and

16-bit wires to 16-bit channels. At this level of granularity, a netlist can have

100s of nodes, making the problem much smaller than that of fine-grained FPGA

placement and routing which deals with netlists of millions of nodes. The place

and route algorithm maps DFG nodes onto homogeneous FUs and DFG edges to

the overlay’s routing paths to connect mapped FUs.

The architecture of the DISO and Dual-DISO overlays consists of a traditional

island-style topology, arranged as a virtual homogeneous two-dimensional array of

tiles. A VPR 5.0 architecture file is used to describe the architecture of overlay, as

shown in Table. 6.6 for a 5×5 overlay. The field layout is used to define the width

and height of the overlay. The switch box type, flexibility fs of the switch box and

channel width distribution are specified in the field device. The field segmentlist

specifies that all the segments are unidirectional and span only one block, resulting

in one connection box and two switch boxes per FU.

Figure 6.2(d) shows the DFG of Figure 6.2(b) mapped on a 5×5 DISO overlay

using the VPR place and route tool. It shows the connections needed for data

flow between the FUs and the routing resources. Similarly, Figure 6.2(e) shows

the DFG of Figure 6.2(c) mapped on a 5×5 Dual-DISO overlay.

To support placement and routing of the FU netlist on the DeCO architecture, we

perform scheduling on the FU netlist to generate a sequenced FU netlist which is

used to place and route the FU netlist on the DeCO architecture in a stage-wise

manner. Figure 5.4 in Chapter 5 shows the approach of placement and routing on

DeCO architecture.

6 Mapping Tool for Compiling Kernels onto Overlays 139

<architecture >

<layout width="5" height="5" />

<device >

<sizing />

<area />

<chan_width_distr >

<io width="1"/>

<x distr="uniform" peak="1"/>

<y distr="uniform" peak="1"/>

</chan_width_distr >

<switch_block type="wilton" fs="3"/>

</device >

<switchlist >

<switch type="mux" name="0" mux_trans_size="10" buf_size="1" />

</switchlist >

<segmentlist >

<segment freq="1" length="1" type="unidir" >

<mux name="0"/>

<sb type="pattern" >1 1</sb >

<cb type="pattern" >1</cb >

</segment >

</segmentlist >

<typelist >

<io capacity="1">

<fc_in type="frac" >1</fc_in >

<fc_out type="frac" >1</fc_out >

</io >

<type name=".fu">

<subblocks max_subblocks="1"

max_subblock_inputs="4" max_subblock_outputs="4" >

</subblocks >

<fc_in type="frac" >1</fc_in >

<fc_out type="frac" >1</fc_out >

<pinclasses >

<class type="in">0 1 2 3 </class >

<class type="out">4 5 6 7 </class >

<class type="global">8 </class >

</pinclasses >

<pinlocations >

<loc side="left">3 7 8 </loc >

<loc side="right">1 5 </loc >

<loc side="top">0 4 </loc >

<loc side="bottom" >2 6 </loc >

</pinlocations >

<gridlocations >

<loc type="fill" />

</gridlocations >

</type >

</typelist >

</architecture >

Table 6.6: Architecture description of the overlay

6.2.2.4 Latency Balancing

As discussed previously, correct functioning of the mapped compute kernel is en-

sured only if it is latency balanced, which means that all FU inputs arrive at the

same execution cycle. It is clear from Figure 6.2(d) that the inputs at a node

might arrive at different clock cycles. For example, at N5 which is mapped onto

the FU at (2,1) the inputs arrive in the 13th and 3rd clock cycles. The FUs have

140 6 Mapping Tool for Compiling Kernels onto Overlays

3,0,0,X

2,0,1,X

4,1

5,1

5,0,0,X

3,0,1,X

1,1

5,0

1,0,1,X

3,0

3,1

4,0,0,X 3,1,1,Y

2,1,1,Y

4,1,1,Y

1,1,1,Y

5,0,1,X

2,1

12

3

2

1

4

2

21

22

3

49

2

31

30

3

39

1

4

40

48

13

3

Figure 6.4: Overlay resource graph corresponding to Figure 6.2(d).

delay chains that must be configured to match these input latencies. To determine

the latency imbalance at each node, we developed a tool to parse VPR output files

and generate an overlay resource graph, as shown in Figure 6.4 for the mapping

of Figure 6.2(d). An unshaded node in the graph shows the FU information and

a shaded node shows the track information used to carry the data from one FU

to another. For example, at N5 the data comes from N1 (placed at (3,0)) via two

6 Mapping Tool for Compiling Kernels onto Overlays 141

tracks and from N4 (placed at (1,1)) via only a single track. The overlay resource

graph is used to generate the configuration of the overlay (including the latency

imbalance SRL configuration) which can be loaded onto the overlay at runtime

by the host processor. Latency balancing step is not required while mapping the

kernel onto the DeCO architecture, since the inputs at a node arrive at same clock

cycles.

6.2.2.5 Configuration Generation

Next, we generate the configuration data for the FUs and the interconnect re-

sources. This configuration data can then be used to set the programmable settings

of the FU and the interconnect resources, implementing the kernel.

6.3 Experiments

Instead of compiling kernels onto relatively small kernel set-specific overlays, we

compile replicated instances of kernels onto a large overlay to achieve effective

utilization of resources. The size of the overlay on the fabric depends on the free

resource after any other logic is mapped. In the case where there is minimal, or

no, requirement for other logic we can completely fill the fabric with the largest

possible overlay. Hence, the overlays we consider can have different sizes and

FU types, with this information being exposed by the OpenCL runtime to the

compiler, which can then replicate and map the kernel to utilize the maximum

overlay resource.

We compile a set of benchmarks onto the overlay and measure the PAR time.

Figure 6.5 shows the comparison of PAR times between three different scenarios.

For each benchmark, the first (blue) bar shows the PAR time when Vivado 2014.2

is used targeting the Zynq FPGA fabric. The second (green) bar shows the PAR

time when the proposed approach is used targeting the overlay. In both of these

cases, we used a HP Z420 workstation with an Intel Xeon E5-1650 v2 CPU running

142 6 Mapping Tool for Compiling Kernels onto Overlays

at 3.5 GHz with 16 GB of RAM, hence the x86 suffix. The third (red) bar shows

the PAR time when the PAR tool is running on the Zedboard consisting of Zynq

device having a dual-core ARM Cortex-A9 CPU, running at 667 MHz with 512

MB of RAM. Xillinux-1.3 is used as an operating system running on the dual-core

ARM with Portable Computing Language (pocl) infrastructure [186] installed.

chebyshev(16) sgfilter(10) mibench(7) qspline(3) poly1(9) poly2(10)
0

0.5

1

240 396 245 242 256 270

0.2
0.29 0.27

0.17 0.18 0.23

0.92

1.2

0.82
0.7 0.67

0.97

P
A
R
ti
m
e
in

se
co
n
d
s

Vivado-x86 Overlay-PAR-x86 Overlay-PAR-Zynq

Figure 6.5: Comparison of PAR times (in seconds).

To place and route 16 copies of the Chebyshev benchmarks on an 8×8 Dual-DISO

overlay, it takes 200 milliseconds on the workstation while on the Zynq ARM

processor it takes 916 milliseconds. Vivado takes 240 seconds to place and route

the same design, meaning that it is 1200× slower than when the application is

mapped to the overlay. When using the Zynq ARM processor, the process is

still approx. 250× faster than Vivado. For the set of 8 benchmarks, it takes on

an average 200 ms for place and route on the workstation and 1 second on the

Zynq. In Figure 6.6, the Chebyshev kernel is replicated multiple times to show the

effect of kernel replication on PAR time. Note that these times exclude the initial

compilation to the FU-aware DFG format which takes on average 3 seconds on

a workstation or 15 seconds on the Zynq. We assume that this is acceptable as

runtime loading would involve known kernels on a known architecture. And the

introduction of new kernels at the cost of a few seconds still results in a significant

performance improvement compared to the Vivado HLS approach.

Figure 6.7 shows the heterogeneous infrastructure which includes the overlay in the

programmable logic region of the Zynq FPGA. Its size and FU type are exposed

6 Mapping Tool for Compiling Kernels onto Overlays 143

0 2 4 6 8 10 12 14 16

0

200

400

600

800

Kernel replication factor

P
A

R
ti

m
e

in
m
s

HP Z420 Workstation
Zedboard

Figure 6.6: Effect of Chebyshev kernel replication on PAR time

Memory

Interfaces

ARM Dual

Cortex - A9
Common

Peripheral

s

Processing

System

FPGA Fabric

High Speed AXI ports

Run-time Management System

Overlay

AXI interconnect

Other

Logic

Figure 6.7: Architecture, implemented on the Zynq, consisting of an overlay whose
size and FU type can be exposed by OpenCL runtime.

by the OpenCL runtime to the compiler so that it can replicate a suitable number

of kernel copies to utilize available overlay resources. There may be situations in

which other logic in the system consumes significant resources. In that case, the

overlay size can be changed and the fabric can be reconfigured using a new overlay

and the other logic. For example, in the case where the other logic is large, leaving

only minimal resources for a 2×2 overlay, this information can be exposed by the

144 6 Mapping Tool for Compiling Kernels onto Overlays

(a) 1 kernel (b) 3 kernels (c) 5 kernels (d) 8 kernels (e) 12 kernels (f) 14 kernels (g) 16 kernels

Figure 6.8: Performance scaling by the compiler using overlay size information
provided by the OpenCL runtime.

OpenCL runtime to the compiler which can than choose to map only a single copy

of the kernel as shown in Figure 6.8(a). In the case where other logic is minimal

and most of the fabric resources can be used to map an overlay, we can fit an 8×8

overlay and the compiler can then choose to map 16 copies of the kernel as shown

in Figure 6.8(g), limited by the available I/O. Figure 6.8(b)–Figure 6.8(f) show

cases in between.

The proposed techniques in this thesis can be effectively used for compiling and

offloading deep learning kernels onto overlays at runtime and also for FPGA based

database query processing where hardware needs to be changed rapidly for each

new query. One important point to note is that the kernel benchmarks used in

this thesis are feed-forward compute kernels extracted from compute intensive ap-

plications and represented as directed acyclic graphs (DAGs). To support kernels

with feedback paths on spatially configured overlays is an area for future research.

6.4 Summary

We have presented an approach for compiling a high level description of compute

kernels onto coarse-grained overlays for improving accelerator design productivity.

The methodology benefits from the high level of abstraction afforded by using the

OpenCL programming model, while the mapping to overlays offers fast compila-

tion, even on an embedded processor. We demonstrate an end-to-end compile flow

6 Mapping Tool for Compiling Kernels onto Overlays 145

with resource aware mapping of kernels to the overlay. Using a typical worksta-

tion, the overlay place and route is ≈1200 times faster than the FPGA place and

route using Vivado 2014.2. We successfully installed the pocl infrastructure on the

Zedboard to support execution of OpenCL applications, and demonstrated place

and route onto the overlay running entirely on the Zynq.

7
Conclusions and Future Research

Directions

Coarse-grained FPGA overlays have emerged as one possible solution to virtualize

FPGA resources, offering a number of advantages for general purpose hardware ac-

celeration because of software-like programmability, fast compilation, application

portability, and improved design productivity. These architectures allow rapid

hardware design at a higher level of abstraction, but at the cost of area and

performance overheads due to limited consideration for the underlying FPGA ar-

chitecture. This thesis explores coarse grained overlays designed using the flexible

DSP48E1 primitive on Xilinx FPGAs, allowing pipelined execution of compute ker-

nels at significantly higher throughput without adding significant area overheads

147

148 7 Conclusions and Future Research Directions

to the functional unit. Our experimental evaluation shows that the proposed over-

lays exhibit an achievable frequency which is close to the DSP theoretical limit on

the Xilinx Zynq. We also present a methodology for compiling high level language

(C/OpenCL) descriptions of compute kernels onto DSP block based coarse-grained

overlays, rather than directly to the FPGA fabric. Our mapping flow provides a

rapid, vendor independent mapping to the overlay, raising the abstraction level

while also reducing compile times significantly, hence addressing the design pro-

ductivity issue. We map several benchmarks, using our mapping tool, and show

that the proposed overlay architectures deliver better throughput compared to

Vivado HLS generated fully pipelined RTL implementations. This chapter draws

conclusions from the different contributions described in this thesis and outlines

areas for future research.

7.1 Summary of Contributions

7.1.1 Adapting the DySER Architecture as an FPGA

Overlay

In chapter 3, we evaluated an open source overlay architecture, DySER, mapped

on the Xilinx Zynq SoPC and demonstrated that DySER suffers from a significant

area and performance overhead due to limited consideration for the underlying

FPGA architecture. We then proposed an improved functional unit architecture

using the flexibility of the DSP48E1 primitive which results in a 2.5 times fre-

quency improvement and 25% area reduction compared to the original functional

unit architecture. We demonstrated that this improvement results in the routing

architecture becoming the bottleneck in performance. Our adapted version of a

6x6 16-bit DySER was implemented on a Xilinx Zynq by using a DSP block as the

compute logic, referred to as DSP-DySER, providing a peak performance of 6.3

GOPS with an interconnect area overhead of 7.6K LUTs/GOPS. We also quanti-

fied the area overheads by mapping a set of benchmarks to the DSP-DySER and

7 Conclusions and Future Research Directions 149

directly to the FPGA fabric using Vivado HLS. DSP-DySER suffers from 25×

hardware performance penalty compared to the HLS generated hardware imple-

mentations.

7.1.2 Throughput Oriented FPGA Overlays Using DSP

Blocks

In chapter 4, we designed and implemented FPGA targeted overlay architectures

(DISO and Dual-DISO) that maximize the peak performance and reduce the in-

terconnect area overhead through the use of an array of DSP block based fully

pipelined FUs and an island-style coarse-grained routing network. A scalability

analysis of DISO on the Xilinx Zynq device shows that the Zynq fabric can accom-

modate an 8×8 DISO overlay, achieving a peak performance of 65 GOPS (10×

better than DSP-DySER) with an interconnect area overhead of 430 LUTs/GOPS

(18× better than DSP-DySER).

We then presented an analysis of a wide variety of compute kernels using a

DSP48E1 aware data flow graph based approach to ascertain the suitability of

mapping multiple instances of kernels to the overlay and observed that the dual-

DSP block based overlay is most suitable for our benchmark set. We then pre-

sented a prototype of an enhanced version of DISO (referred to as Dual-DISO)

which uses two DSP blocks within each FU and shows a significant improvement

in performance and scalability, with a reduction of almost 70% in the overlay

tile requirement compared to existing overlay architectures and an operating fre-

quency in excess of 300 MHz. A scalability analysis of Dual-DISO on the Xilinx

Zynq device shows that Zynq fabric can accommodate an 8×8 Dual-DISO over-

lay, achieving a peak performance of 115 GOPS (18× better than DSP-DySER)

with an interconnect area overhead of 320 LUTs/GOPS (24× better than DSP-

DySER). We demonstrated that this improvement results in better exploitation

of the performance provided by the DSP blocks available on the FPGA fabric.

150 7 Conclusions and Future Research Directions

We then mapped several benchmark kernels onto the proposed overlays and

demonstrated that the proposed overlays can deliver better throughput compared

to Vivado HLS generated fully pipelined RTL implementations. Our experimental

evaluation demonstrated that the DISO overlay delivers kernel throughputs of up

to 21.6 GOPS (33% of the peak theoretical throughput of the DISO overlay) while

the Dual-DISO overlay delivers kernel throughputs of up to 57.6 GOPS (50% of the

peak theoretical throughput of the Dual-DISO overlay) and provides an average

throughput improvement of 40% over Vivado HLS for the same implementations

of the benchmark set. Using the Dual-DISO overlay, we demonstrated that it is

possible to map multiple instances of the benchmark kernels to the overlay au-

tomatically, resulting in more efficient utilization of overlay resources, without

resorting to reconfiguring the FPGA fabric at runtime. We have demonstrated

that architecture-focused FPGA overlays can better exploit the raw performance

of the DSP blocks, with better resource utilization and significantly improved

performance metrics, compared to other overlays.

7.1.3 Low Overhead Interconnect for DSP Block Based

Overlays

As the island-style interconnect of the DISO overlay is still somewhat excessive,

and negates many of the advantages of overlays, we next explored novel inter-

connect architectures to further reduce the interconnect area. Crucially, the in-

terconnect flexibility provided by these overlay architectures is normally over-

provisioned for accelerators based on feed-forward pipelined data paths, which in

many cases have the general shape of inverted cones. Thus in chapter 5, we pro-

posed DeCO, a cone shaped cluster of FUs utilizing a simple linear interconnect.

The DeCO architecture reduces the area overheads for implementing compute ker-

nels extracted from compute-intensive applications represented as directed acyclic

dataflow graphs, while still allowing high data throughput. We performed design

space exploration by modelling the programmability overhead as a function of

the overlay design parameters, and compared to island-style overlays. The 16-bit

7 Conclusions and Future Research Directions 151

DeCO, when implemented on a Xilinx Zynq, achieves savings in the LUT require-

ments of 96% and 87%, compared to 16-bit DSP-DySER[177] and 16-bit DISO[78],

respectively for our benchmark set of compute kernels. 16-bit DeCO achieves a

frequency of 395 MHz and provides a peak performance of 23.7 GOPS (3.8× better

than DSP-DySER) with an interconnect area overhead of 58 LUTs/GOPS (130×

better than DSP-DySER), and with just a 1.5× hardware performance penalty

compared to HLS generated hardware implementations. We have demonstrated

that the use of an architecture-focused FU and low overhead interconnect can

result in an efficient overlay architecture with significantly lower area and perfor-

mance overheads compared to other overlays.

7.1.4 Mapping Tool for Compiling Kernels onto Overlays

In chapter 6, we presented a methodology for compiling high level language

(C/OpenCL) descriptions of compute kernels onto DSP block based coarse-grained

overlays, rather than directly to the FPGA fabric. Our mapping flow provides a

rapid, vendor independent mapping to the overlay, raising the abstraction level

while also reducing compile times significantly, hence addressing the design pro-

ductivity issue. We demonstrate an end-to-end compilation flow with resource

aware mapping of kernels to the overlay. Using a typical workstation, the overlay

place and route time is 1200× faster than the FPGA place and route using Vivado

design suite. The methodology benefits from the high level of abstraction afforded

by using the OpenCL programming model, while the mapping to overlays offers

fast compilation in the order of a few milliseconds, even on an embedded proces-

sor. We successfully installed the pocl infrastructure on the Zedboard to support

execution of OpenCL applications, and demonstrated place and route onto the

overlay running entirely on the embedded processor of the Zynq device.

152 7 Conclusions and Future Research Directions

7.2 Future Research Directions

We have shown that architecture centric FUs can be designed using the dynamic

mode control feature of DSP Blocks for improving the performance of FPGA

overlays. As a next step, we plan to release the overlays and tool-flow discussed

in this thesis as open source for use by other researchers. In addition to this, we

have identified a number of possible extensions to the different aspects of the work

presented which can be explored in future research.

7.2.1 Using DSP Blocks for Building Time-multiplexed

Overlays

The coarse-grained overlays proposed in this thesis can deliver maximum perfor-

mance by executing one computation iteration every clock cycle (that is they have

an II of one), but with the requirement of one FU for each operation in the compute

kernel. Alternatively, a time-multiplexed overlay with its reduced FPGA resource

requirements may be a feasible alternative allowing the remainder of the FPGA

fabric to be utilized for other purposes. However, the exact architecture needs

to be carefully analysed taking into account the characteristics of the application

kernels and the underlying FPGA architecture.

Some of the area efficient overlays utilize a simple linear interconnect structure,

which can reduce to a simple direct connection between FUs by allocating DFG

nodes from the same scheduling time step to the individual FUs. For example,

Figure 7.1 shows the medical imaging ‘gradient’ benchmark [62], while Figure 7.2

shows the resulting data flow graph (DFG). By using a simple ASAP schedule,

we can allocate the nodes in each stage to a different FU which in this example

results in 4 stages, with the FU in each stage being time-multiplexed among stage

operations using a direct (non-programmable) connection between FUs. That is,

the first stage would contain four subtract operations which would execute on the

first FU, the second stage would contain four multiplication operations executing

on the second FU, and so on. Thus, for the example shown in Figure 7.2, the

7 Conclusions and Future Research Directions 153

II would be 11, consisting of 5 cycles for data entry, 4 cycles for the 4 subtract

operations, 1 cycle for data output and 1 cycle to flush the pipeline. Note that

multiplexing the kernel operations of the DFG in Figure 7.2 to a single FU would

result in an II of 17 (consisting of 5 load, 11 operation and 1 store, assuming

best case execution without NOP insertions), while a spatially configured overlay

would require 11 FUs with an II of 1.

Figure 7.1: C code section for the ‘gradient’ benchmark

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

Figure 7.2: DFG for the ‘gradient’ benchmark

Furthermore, this means that only a small subset of all possible instructions needs

to be stored in each FU, resulting in a very small memory requirement over-

coming the problem of the large area overheads due to the instruction storage

requirements in existing time-multiplexed overlays. This can be further assisted

by using a simple low resource, but highly pipelined, FU (similar to the iDEA

soft core processor [124]). We presented some of the preliminary work towards

time-multiplexing the FU within an overlay in [82]. Additionally, apart from the

DSP48E1 block used in this thesis for developing overlays, more advanced DSP

154 7 Conclusions and Future Research Directions

blocks, such as the DSP48E2 and the Altera floating point DSP, could be used for

supporting overlays on more advanced FPGA fabrics.

7.2.2 Interfacing Overlays to a Host Processor

In a heterogeneous computing platform, where the overlays can be used to acceler-

ate compute intensive tasks of an application, the major concern is the integration

of the overlay with the host processor and the efficiency of the software-hardware

communication. Managing software-hardware communication is normally one of

the processor’s many tasks, and hence this must be done in a way that does not

degrade overall system performance. Low latency and high bandwidth are the

key requirements to enhance the efficiency of the overall system. Overlays can be

integrated with the host processor over many different types of communication

interfaces, such as PCIe, Ethernet and AXI. However, it is necessary to develop

a memory subsystem around the overlay to manage the transportation of data

to and from the overlay via the communication interfaces. We presented some of

the preliminary work towards the interfacing of an overlay with a host processor

in [83, 84].

7.2.3 OpenCL Driver and Runtime for Overlays

Recently, FPGA vendors have been exploring explicitly parallel languages, such

as OpenCL, in order to bridge the gap between the expressiveness of sequential

languages and the parallel capabilities of the hardware [178]. In OpenCL, par-

allelism is explicitly specified by the programmer, and compilers can use system

information at runtime to scale the performance of the application by executing

multiple replicated copies of the application kernel in hardware [179]. OpenCL also

has the benefit of being portable across architectures, such as FPGAs, GPUs, and

other parallel compute resources without requiring changes to algorithm source

code [180]. This is a key capability of OpenCL that makes it a promising pro-

gramming model for heterogeneous platforms.

7 Conclusions and Future Research Directions 155

Specifically, the introduction of heterogeneous system on chip (SOC) platforms,

or hybrid FPGAs, provide a more energy efficient alternative to high performance

CPUs and/or GPUs within the tight power budget required by high performance

embedded systems. Hence techniques for mapping OpenCL kernels to FPGA

hardware have attracted both academic and industrial attention in the last few

years [181, 182, 183]. Altera OpenCL [178] and Xilinx SDAccel are new tools that

allow compilation and offloading of OpenCL kernels onto FPGA fabric. The tool-

flow presented in Chapter 6 of this thesis can be used to compile OpenCL kernels

onto the proposed overlays. However, it is necessary to develop an OpenCL driver

and runtime for the offloading of OpenCL kernels to the proposed overlays.

Bibliography

[1] J. Nickolls and W. J. Dally. The GPU computing era. IEEE micro, 30(2):56–

69, 2010.

[2] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:

A unified graphics and computing architecture. IEEE micro, 28(2):39–55,

2008.

[3] B. D. de Dinechin, D. V. Amstel, M. Poulhies, and G. Lager. Time-critical

computing on a single-chip massively parallel processor. In Proceedings of

the Design, Automation and Test in Europe Conference (DATE), pages 97:1–

97:6, 2014.

[4] B. D. de Dinechin, R. Ayrignac, P. Beaucamps, P. Couvert, B. Ganne, P. G.

de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, et al. A clus-

tered manycore processor architecture for embedded and accelerated appli-

cations. In Proceedings of the International Conference on High Performance

Extreme Computing Conference (HPEC), 2013.

[5] L. Gwennap. Adapteva: More flops, less watts. Microprocessor Report,

6(13):11–02, 2011.

[6] A. Varghese, B. Edwards, G. Mitra, and A. P. Rendell. Programming the

Adapteva Epiphany 64-core network-on-chip coprocessor. In Parallel Dis-

tributed Processing Symposium Workshops (IPDPSW), pages 984–992, May

2014.

157

158 BIBLIOGRAPHY

[7] X. Zhang and K. K. Parhi. High-speed VLSI architectures for the AES algo-

rithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

12(9):957–967, 2004.

[8] L. Liu, N. Chen, H. Meng, L. Zhang, Z. Wang, and H. Chen. A VLSI

architecture of JPEG2000 encoder. IEEE Journal of Solid-State Circuits,

39(11):2032–2040, 2004.

[9] A. Hodjat, D. D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede. A 3.84

gbits/s AES crypto coprocessor with modes of operation in a 0.18-µm CMOS

technology. In Proceedings of the ACM Great Lakes symposium on VLSI,

pages 60–63. ACM, 2005.

[10] L. Liu, H. Meng, L. Zhang, and Z. Wang. An ASIC implementation of

JPEG2000 codec. In Proceedings of the Custom Integrated Circuits Confer-

ence, pages 691–694. IEEE, 2005.

[11] A. Hodjat and I. Verbauwhede. A 21.54 gbits/s fully pipelined AES processor

on FPGA. In IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM), pages 308–309. IEEE, 2004.

[12] A. Descampe, F. Devaux, G. Rouvroy, B. Macq, and J. Legat. An efficient

FPGA implementation of a flexible JPEG2000 decoder for digital cinema.

In European Signal Processing Conference, pages 2019–2022. IEEE, 2004.

[13] O. T. Albaharna, P. Y. K. Cheung, and T. J. Clarke. On the viability

of FPGA-based integrated coprocessors. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 206–215, 1996.

[14] S. Paul and S. Bhunia. A survey of computing architectures. In Computing

with Memory for Energy-Efficient Robust Systems, pages 11–27. Springer,

2014.

[15] R. Tessier, K. Pocek, and A. DeHon. Reconfigurable computing architec-

tures. Proceedings of the IEEE, 103(3):332–354, 2015.

BIBLIOGRAPHY 159

[16] S. M. Trimberger. Three ages of FPGAs: A retrospective on the first thirty

years of FPGA technology. Proceedings of the IEEE, 103(3):318–331, 2015.

[17] A. DeHon. Fundamental underpinnings of reconfigurable computing archi-

tectures. Proceedings of the IEEE, 103(3):355–378, 2015.

[18] A. George, H. Lam, and G. Stitt. Novo-G: at the forefront of scalable recon-

figurable supercomputing. Computing in Science Engineering, 13(1):82–86,

2011.

[19] K. Compton and S. Hauck. Reconfigurable computing: a survey of systems

and software. ACM Computing Survey, 34:171–210, June 2002.

[20] G. Brebner and W. Jiang. High-speed packet processing using reconfigurable

computing. IEEE Micro, 34(1):8–18, 2014.

[21] D. V. Schuehler and J. W. Lockwood. A modular system for FPGA-based

TCP flow processing in high-speed networks. In Proceedings of the Inter-

national Conference on Field Programmable Logic and Applications (FPL),

pages 301–310. Springer, 2004.

[22] H. Parandeh-Afshar and P. Ienne. Highly versatile DSP blocks for improved

FPGA arithmetic performance. In IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 229–236, 2010.

[23] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

26(2):203–215, 2007.

[24] K. Gaj and P. Chodowiec. FPGA and ASIC implementations of AES. In

Cryptographic engineering, pages 235–294. Springer, 2009.

[25] B. Varma, K. Paul, and M. Balakrishnan. Accelerating 3D-FFT using hard

embedded blocks in FPGAs. In Proceedings of the International Conference

on VLSI Design and Embedded Systems, pages 92–97. IEEE, 2013.

160 BIBLIOGRAPHY

[26] M. Jacobsen, P. Meng, S. Sampangi, and R. Kastner. FPGA accelerated

online boosting for multi-target tracking. In IEEE Symposium on FPGAs

for Custom Computing Machines (FCCM), pages 165–168. IEEE, 2014.

[27] B. Varma, K. Paul, M. Balakrishnan, and D. Lavenier. Fassem: FPGA based

acceleration of de novo genome assembly. In IEEE Symposium on FPGAs

for Custom Computing Machines (FCCM), pages 173–176. IEEE, 2013.

[28] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz. Reconfigurable computing

in next-generation automotive networks. IEEE Embedded Systems Letters,

5(1):12–15, 2013.

[29] S. Neuendorffer and F. Martinez-Vallina. Building Zynq accelerators with

Vivado High Level Synthesis. In Proceedings of the International Symposium

on Field Programmable Gate Arrays (FPGA), pages 1–2, 2013.

[30] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,

S. Brown, and T. Czajkowski. LegUp: high-level synthesis for FPGA-based

Processor/Accelerator systems. In Proceedings of the International Sympo-

sium on Field Programmable Gate Arrays (FPGA), pages 33–36, 2011.

[31] Y. Liang, K. Rupnow, Y. Li, D. Min, M. N. Do, and D. Chen. High-level

synthesis: Productivity, performance, and software constraints. Journal of

Electrical and Computer Engineering, 2012:1–14, January 2012.

[32] W. Najjar and J. Villarreal. FPGA code accelerators - the compiler perspec-

tive. In Proceedings of the Design Automation Conference, 2013.

[33] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular

hardware accelerators in C with ROCCC 2.0. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 127–134, 2010.

[34] G. Stitt. Are field-programmable gate arrays ready for the mainstream?

IEEE Micro, 31(6):58–63, 2011.

[35] J. Daniels. Server virtualization architecture and implementation. Cross-

roads, 16(1):8–12, September 2009.

BIBLIOGRAPHY 161

[36] K. L. Kroeker. The evolution of virtualization. Commun. ACM, 52(3):18–20,

March 2009.

[37] S. Nanda and T. Chiueh. A survey of virtualization technologies. Technical

report, Stony Brook, NY, 2005.

[38] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art

and research challenges. J Internet Serv Appl, 1(1):7–18, May 2010.

[39] A. DeHon. DPGA utilization and application. In Proceedings of the In-

ternational Symposium on Field-Programmable Gate Arrays (FPGA), pages

115–121, 1996.

[40] S. Trimberger, D. Carberry, A. Johnson, and J. Wong. A time-multiplexed

FPGA. In IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 22–28, 1997.

[41] M. Hubner, D. Gohringer, J. Noguera, and J. Becker. Fast dynamic and

partial reconfiguration data path with low hardware overhead on Xilinx FP-

GAs. In IEEE International Symposium on Parallel Distributed Processing,

Workshops and PhD Forum (IPDPSW), pages 1–8, 2010.

[42] K. Vipin and S. A. Fahmy. Architecture-aware reconfiguration-centric floor-

planning for partial reconfiguration. In Proceedings of the International Sym-

posium on Applied Reconfigurable Computing (ARC), pages 13–25, 2012.

[43] K. Vipin and S. A. Fahmy. Automated partitioning for partial reconfig-

uration design of adaptive systems. In Proceedings of IEEE International

Symposium on Parallel Distributed Processing, Workshops (IPDPSW) – Re-

configurable Architectures Workshop (RAW), 2013.

[44] K. Vipin and S. A. Fahmy. A high speed open source controller for FPGA

partial reconfiguration. In Proceedings of International Conference on Field

Programmable Technology (FPT), pages 61–66, 2012.

162 BIBLIOGRAPHY

[45] G. Brebner. A virtual hardware operating system for the Xilinx XC6200. In

Field-Programmable Logic Smart Applications, New Paradigms and Compil-

ers, pages 327–336. Springer-Verlag, 1996.

[46] G. Brebner. The swappable logic unit: a paradigm for virtual hardware.

In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 77–86, April 1997.

[47] C. Huang and F. Vahid. Transmuting coprocessors: Dynamic loading of

FPGA coprocessors. In Proceedings of the Design Automation Conference,

2009.

[48] H. Kalte and M. Porrmann. Context saving and restoring for multitasking

in reconfigurable systems. In Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL), pages 223–228, 2005.

[49] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada. A novel mechanism for

effective hardware task preemption in dynamically reconfigurable systems.

In Proceedings of the International Conference on Field Programmable Logic

and Applications (FPL), 2010.

[50] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and H. Takada. Com-

parison of preemption schemes for partially reconfigurable FPGAs. IEEE

Embedded Systems Letters, 4(2):45–48, 2012.

[51] J. M. P. Cardoso and Markus Weinhardt. XPP-VC: a C compiler with tem-

poral partitioning for the PACT-XPP architecture. In Field-Programmable

Logic and Applications: Reconfigurable Computing Is Going Mainstream,

pages 864–874. Springer-Verlag, January 2002.

[52] K. M. G. Purna and D. Bhatia. Temporal partitioning and scheduling data

flow graphs for reconfigurable computers. IEEE Transactions on Computers,

48(6):579–590, 1999.

BIBLIOGRAPHY 163

[53] C. Steiger, H. Walder, and M. Platzner. Operating systems for reconfigurable

embedded platforms: online scheduling of real-time tasks. IEEE Transac-

tions on Computers, 53(11):1393–1407, November 2004.

[54] H. K. H. So, A. Tkachenko, and R. Brodersen. A unified hardware/soft-

ware runtime environment for FPGA-based reconfigurable computers using

BORPH. In Proceedings of the International Conference on Hardware/Soft-

ware Codesign and System Synthesis (CODES+ISSS), pages 259–264, 2006.

[55] K. Rupnow. Operating system management of reconfigurable hardware com-

puting systems. In Proceedings of the International Conference on Field-

Programmable Technology (FPT), pages 477–478, 2009.

[56] S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan, and R. Wit-

tig. A 16-nm multiprocessing system-on-chip field-programmable gate array

platform. IEEE Micro, 36(2):48–62, 2016.

[57] C. Kachris, D. Soudris, G. Gaydadjiev, H. Nguyen, D. S. Nikolopoulos, A. Bi-

las, N. Morgan, C. Strydis, C. Tsalidis, J. Balafas, R. Jimenez-Peris, and

A. Almeida. The VINEYARD approach: Versatile, integrated, accelerator-

based, heterogeneous data centres. In International Symposium on Applied

Reconfigurable Computing, pages 3–13. Springer, 2016.

[58] A. Madhavapeddy and S. Singh. Reconfigurable data processing for clouds.

In IEEE Symposium on FPGAs for Custom Computing Machines (FCCM),

pages 141–145. IEEE, 2011.

[59] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,

J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al. A

reconfigurable fabric for accelerating large-scale datacenter services. In Pro-

ceedings of the International Symposium on Computer Architecture (ISCA),

pages 13–24, 2014.

[60] G. Estrin, B. Bussell, R. Turn, and J. Bibb. Parallel processing in a re-

structurable computer system. IEEE Transactions on Electronic Computers,

pages 747–755, December 1963.

164 BIBLIOGRAPHY

[61] M. Belwal, M. Purnaprajna, and T. S. B. Sudarshan. Enabling seamless

execution on hybrid CPU/FPGA systems: Challenges & directions. In Pro-

ceedings of the International Conference on Field Programmable Logic and

Applications (FPL), pages 1–8. IEEE, 2015.

[62] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou. A fully pipelined and

dynamically composable architecture of CGRA. In IEEE Symposium on

FPGAs for Custom Computing Machines (FCCM), 2014.

[63] N. W. Bergmann, S. Shukla, and J. Becker. QUKU: a dual-layer reconfig-

urable architecture. ACM Transactions on Embedded Computing Systems

(TECS), 12:63:1–63:26, March 2013.

[64] E. Mirsky and A. DeHon. MATRIX: a reconfigurable computing architecture

with configurable instruction distribution and deployable resources. In IEEE

Symposium on Field-Programmable Custom Computing Machines (FCCM),

pages 157–166, April 1996.

[65] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - reconfigurable

pipelined datapath. In Field-Programmable Logic Smart Applications, New

Paradigms and Compilers, pages 126–135. Springer-Verlag, 1996.

[66] H. Singh, M. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.

Chaves Filho. MorphoSys: an integrated reconfigurable system for data-

parallel and computation-intensive applications. IEEE Transactions on

Computers, 49(5):465–481, 2000.

[67] C. Liang and X. Huang. SmartCell: an energy efficient coarse-grained re-

configurable architecture for stream-based applications. EURASIP Journal

on Embedded Systems, 2009(1):518–659, June 2009.

[68] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. ADRES:

an architecture with tightly coupled VLIW processor and coarse-grained

reconfigurable matrix. In Field Programmable Logic and Application, pages

61–70, January 2003.

BIBLIOGRAPHY 165

[69] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The Garp architecture and

C compiler. Computer, 33(4):62–69, April 2000.

[70] P. M. Heysters and G. J. M. Smit. Mapping of DSP algorithms on the

MONTIUM architecture. In Parallel and Distributed Processing Symposium,

2003.

[71] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and

S. Hauck. SPR: an architecture-adaptive CGRA mapping tool. In Pro-

ceedings of the International Symposium on Field programmable gate arrays

(FPGA), pages 191–200, 2009.

[72] R. Polig, H. Giefers, and W. Stechele. A soft-core processor array for

relational operators. In Proceedings of the International Conference on

Application-Specific Systems, Architectures and Processors (ASAP), pages

17–24, 2015.

[73] G. Stitt and J. Coole. Intermediate fabrics: Virtual architectures for near-

instant FPGA compilation. IEEE Embedded Systems Letters, 3(3):81–84,

September 2011.

[74] D. Capalija and T. S. Abdelrahman. A high-performance overlay architec-

ture for pipelined execution of data flow graphs. In Proceedings of the Inter-

national Conference on Field Programmable Logic and Applications (FPL),

pages 1–8, 2013.

[75] J. Benson, R. Cofell, C. Frericks, C. H. Ho, V. Govindaraju, T. Nowatzki,

and K. Sankaralingam. Design, integration and implementation of the

DySER hardware accelerator into OpenSPARC. In International Sympo-

sium on High Performance Computer Architecture (HPCA), 2012.

[76] B. Ronak and S. A. Fahmy. Efficient mapping of mathematical expressions

into DSP blocks. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), 2014.

166 BIBLIOGRAPHY

[77] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER

architecture with DSP blocks as an overlay for the Xilinx Zynq. SIGARCH

Computer Architecture News, 43(4):28–33, April 2016.

[78] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient Overlay architecture

based on DSP blocks. In IEEE Symposium on FPGAs for Custom Comput-

ing Machines (FCCM), 2015.

[79] A. K. Jain, D. L. Maskell, and S. A. Fahmy. Throughput oriented FPGA

overlays using DSP blocks. In Proceedings of the Design, Automation and

Test in Europe Conference (DATE), 2016.

[80] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. DeCO: a

DSP block based FPGA accelerator overlay with low overhead interconnect.

In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 1–8, 2016.

[81] A. K. Jain, D. L. Maskell, and S. A. Fahmy. Are coarse-grained overlays

ready for general purpose application acceleration on FPGAs? In Proceed-

ings of the International Conference on Pervasive Intelligence and Comput-

ing. IEEE, 2016.

[82] X.i Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy. An area-efficient FPGA

overlay using DSP block based time-multiplexed functional units. arXiv

preprint arXiv:1606.06460, 2016.

[83] K. D. Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell. Mi-

crokernel hypervisor for a hybrid ARM-FPGA platform. In Proceedings of

the International Conference on Application-Specific Systems, Architecture

Processors (ASAP), 2013.

[84] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell. Virtual-

ized execution and management of hardware tasks on a hybrid ARM-FPGA

platform. Journal of Signal Processing Systems, 77(1–2):61–76, Oct. 2014.

BIBLIOGRAPHY 167

[85] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh,

J. Park, and D. Sheffield. Efficient embedded computing. Computer,

41(7):27–32, 2008.

[86] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.

Storaasli. State-of-the-art in heterogeneous computing. Scientific Program-

ming, 18(1):1–33, 2010.

[87] Z. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: a high-

performance architecture with a tightly-coupled reconfigurable functional

unit. In Proceedings of the International Symposium on Computer Architec-

ture (ISCA), pages 225–235, 2000.

[88] R. Laufer, R. R. Taylor, and H. Schmit. PCI-PipeRench and the SwordAPI:

a system for stream-based reconfigurable computing. In IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 200–208.

IEEE, 1999.

[89] J. Babb, R. Tessier, and A. Agarwal. Virtual wires: overcoming pin limi-

tations in FPGA-based logic emulators. In IEEE Workshop on FPGAs for

Custom Computing Machines (FCCM), pages 142 –151, April 1993.

[90] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level

specifications. In ACM and IEEE International Conference on Formal Meth-

ods and Models for Co-Design, pages 69–70. IEEE, 2004.

[91] K. Eguro. SIRC: an extensible reconfigurable computing communication

API. In IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), pages 135–138, 2010.

[92] M. Jacobsen and R. Kastner. RIFFA 2.0: A reusable integration framework

for FPGA accelerators. In Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL), pages 1–8, September

2013.

168 BIBLIOGRAPHY

[93] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: an in-fabric memory ar-

chitecture for FPGA-based computing. In Proceedings of the International

Symposium on Field programmable gate arrays (FPGA), pages 97–106, 2011.

[94] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer. Leap

scratchpads: automatic memory and cache management for reconfigurable

logic. In Proceedings of the International Symposium on Field programmable

gate arrays (FPGA), pages 25–28, 2011.

[95] M. Vuletic, L. Righetti, L. Pozzi, and P. Ienne. Operating system support

for interface virtualisation of reconfigurable coprocessors. In Proceedings of

the Design, Automation and Test in Europe (DATE), pages 748–749, 2004.

[96] H. Walder and M. Platzner. Reconfigurable hardware operating systems:

From design concepts to realizations. In Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Architectures

(ERSA), pages 284–287, 2003.

[97] X. Changqing, W. Mei, W. Nan, Z. Chunyuan, and H. K. H. So. Extending

BORPH for shared memory reconfigurable computers. In Proceedings of

the International Conference on Field Programmable Logic and Applications

(FPL), pages 563 –566, August 2012.

[98] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and

C. Plessl. ReconOS: an operating system approach for reconfigurable com-

puting. IEEE Micro, 2013.

[99] E. Lübbers and M. Platzner. ReconOS: multithreaded programming for

reconfigurable computers. ACM Transactions on Embedded Computing Sys-

tems (TECS), 9(1):8, October 2009.

[100] J. H. Kelm and S. S. Lumetta. HybridOS: runtime support for reconfig-

urable accelerators. In Proceedings of the International Symposium on Field

programmable gate arrays (FPGA), pages 212–221, 2008.

BIBLIOGRAPHY 169

[101] X. Iturbe, K. Benkrid, A. T. Erdogan, T. Arslan, M. Azkarate, I. Martinez,

and A. Perez. R3TOS: a reliable reconfigurable real-time operating system.

In Proceedings of the NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), pages 99–104, 2010.

[102] D. Gohringer, S. Werner, M. Hubner, and J. Becker. RAMPSoCVM: runtime

support and hardware virtualization for a runtime adaptive MPSoC. In

Proceedings of the International Conference on Field Programmable Logic

and Applications (FPL), 2011.

[103] K. Vipin and S. A. Fahmy. ZyCAP: Efficient partial reconfiguration man-

agement on the Xilinx Zynq. IEEE Embedded Systems Letters, January

2014.

[104] K. Vipin and S. A. Fahmy. Mapping adaptive hardware systems with partial

reconfiguration using CoPR for Zynq. In Proceedings of the NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pages 1–8, June 2015.

[105] R. Hartenstein. A decade of reconfigurable computing: a visionary retro-

spective. In Proceedings of the conference on Design, automation and test

in Europe (DATE), pages 642–649, 2001.

[106] Zain-ul-Abdin and B. Svensson. Evolution in architectures and programming

methodologies of coarse-grained reconfigurable computing. Microprocessors

and Microsystems, 33(3):161–178, May 2009.

[107] B. D. Sutter, P. Raghavan, and A. Lambrechts. Coarse-grained reconfig-

urable array architectures. In Handbook of Signal Processing Systems, pages

553–592, January 2013.

[108] K. Compton and S. Hauck. Totem: Custom reconfigurable array generation.

In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 111–119, 2001.

170 BIBLIOGRAPHY

[109] T. Miyamori and K. Olukotun. REMARC: reconfigurable multimedia array

coprocessor. IEICE Transactions on Information and Systems, 82(2):389–

397, 1999.

[110] T. Makimoto and Y. Sakai. Evolution of low power electronics and its fu-

ture applications. In International symposium on Low power electronics and

design, pages 2–5. ACM, 2003.

[111] C. H. Ho, P. H. W. Leong, W. Luk, S. J. E. Wilton, and S. Lopez-Buedo.

Virtual embedded blocks: A methodology for evaluating embedded elements

in FPGAs. In IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 35–44, 2006.

[112] Z. Kwok and S. J. E. Wilton. Register file architecture optimization in a

coarse-grained reconfigurable architecture. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 35–44, 2005.

[113] K. Eguro and S. Hauck. Issues and approaches to coarse-grain reconfigurable

architecture development. In IEEE Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), pages 111–120, 2003.

[114] C. Plessl and M. Platzner. Zippy - a coarse-grained reconfigurable array

with support for hardware virtualization. In Proceedings of the Interna-

tional Conference on Application-Specific Systems, Architecture Processors

(ASAP), pages 213–218, 2005.

[115] R. Enzler, C. Plessl, and M. Platzner. System-level performance evaluation

of reconfigurable processors. Microprocessors and Microsystems, 29(23):63–

73, April 2005.

[116] C. Plessl and M. Platzner. Virtualization of hardware - introduction and

survey. In Proceedings of the International Conference on Engineering of

Reconfigurable Systems and Algorithms (ERSA), pages 63–69, 2004.

BIBLIOGRAPHY 171

[117] T. Wiersema, A. Bockhorn, and M. Platzner. An architecture and design

tool flow for embedding a virtual fpga into a reconfigurable system-on-chip.

Computers & Electrical Engineering, 2016.

[118] R. Kirchgessner, G. Stitt, A. George, and H. Lam. VirtualRC: a virtual

FPGA platform for applications and tools portability. In Proceedings of

the International Symposium on Field Programmable Gate Arrays (FPGA),

pages 205–208, 2012.

[119] M. Jacobsen, Y. Freund, and R. Kastner. RIFFA: a reusable integra-

tion framework for FPGA accelerators. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 216–219, May

2012.

[120] S. Shukla, N. W. Bergmann, and J. Becker. QUKU: a coarse grained

paradigm for FPGA. In Proc. Dagstuhl Seminar, 2006.

[121] R. Lysecky, K. Miller, F. Vahid, and K. Vissers. Firm-core virtual FPGA

for just-in-time FPGA compilation (abstract only). In Proceedings of the

International Symposium on Field-programmable gate arrays, pages 271–271,

2005.

[122] A. Brant and G. G. F. Lemieux. ZUMA: an open FPGA overlay architecture.

In IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 93–96, 2012.

[123] M. Hubner, P. Figuli, R. Girardey, D. Soudris, K. Siozios, and J. Becker.

A heterogeneous multicore system on chip with run-time reconfigurable vir-

tual FPGA architecture. In IEEE International Symposium on Parallel and

Distributed Processing Workshops (IPDPSW), 2011.

[124] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell. iDEA: A DSP block based

FPGA soft processor. In Proceedings of the International Conference on

Field Programmable Technology (FPT), pages 151–158, 2012.

172 BIBLIOGRAPHY

[125] A. Severance and G. G. F. Lemieux. Embedded supercomputing in FPGAs

with the VectorBlox MXP matrix processor. In Proceedings of the Inter-

national Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 1–10, 2013.

[126] C. Liu, H. C. Ng, and H. K. H. So. Automatic nested loop acceleration on

fpgas using soft cgra overlay. In Proceedings of the International Workshop

on FPGAs for Software Programmers (FSP), 2015.

[127] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G. F.

Lemieux. VEGAS: soft vector processor with scratchpad memory. In Pro-

ceedings of the International Symposium on Field Programmable Gate Arrays

(FPGA), pages 15–24. ACM, 2011.

[128] P. Yiannacouras, J. G. Steffan, and J. Rose. Vespa: Portable, scalable, and

flexible fpga-based vector processors. In Proceedings of the International

Conference on Compilers, Architecture and Synthesis for Embedded Systems,

2008.

[129] J. Yu, G. G. F. Lemieux, and C. Eagleston. Vector processing as a soft-core

cpu accelerator. In FPGA, pages 222–232, 2008.

[130] A. Severance and G. G. F. Lemieux. VENICE: a compact vector processor

for fpga applications. In FPT, pages 261–268, 2012.

[131] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-

alingam, and C. Kim. Dyser: Unifying functionality and parallelism special-

ization for energy-efficient computing. IEEE Micro, 32(5):38–51, 2012.

[132] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,

M. Wrighton, and A. DeHon. Packet switched vs. time multiplexed FPGA

overlay networks. In IEEE Symposium on Field-Programmable Custom Com-

puting Machines, (FCCM), 2006.

BIBLIOGRAPHY 173

[133] S. Shukla, N. W. Bergmann, and J. Becker. QUKU: a two-level recon-

figurable architecture. In IEEE Computer Society Annual Symposium on

Emerging VLSI Technologies and Architectures, 2006.

[134] S. Shukla, N. W. Bergmann, and J. Becker. QUKU: a FPGA based flexible

coarse grain architecture design paradigm using process networks. In Parallel

and Distributed Processing Symposium (IPDPS), pages 1–7, 2007.

[135] D. Capalija and T. S. Abdelrahman. Tile-based bottom-up compilation of

custom mesh-of-functional-units FPGA overlays. In Proceedings of the Inter-

national Conference on Field Programmable Logic and Applications (FPL),

pages 1–8, Sept 2014.

[136] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for circuit

portability and fast placement and routing. In Proceedings of the Inter-

national Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), pages 13–22, October 2010.

[137] A. Landy and G. Stitt. A low-overhead interconnect architecture for virtual

reconfigurable fabrics. In Proceedings of the International Conference on

Compilers, Architectures and Synthesis for Embedded Systems, pages 111–

120, 2012.

[138] J. Coole and G. Stitt. Fast, flexible high-level synthesis from OpenCL using

reconfiguration contexts. IEEE Micro, 34(1), 2014.

[139] V. Govindaraju, C. H. Ho, and K. Sankaralingam. Dynamically specialized

datapaths for energy efficient computing. In International Symposium on

High Performance Computer Architecture (HPCA), 2011.

[140] A. Brant. Coarse and fine grain programmable overlay architectures for

FPGAs. Master’s thesis, University of British Columbia, 2013.

[141] C. Liu, C. L. Yu, and H. K. H. So. A soft coarse-grained reconfigurable ar-

ray based high-level synthesis methodology: Promoting design productivity

174 BIBLIOGRAPHY

and exploring extreme FPGA frequency. In IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 228–228, 2013.

[142] C. Liu and H. K. H. So. Automatic soft cgra overlay customization for

high-productivity nested loop acceleration on fpgas. In IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 101–101,

2015.

[143] C. Liu, H. C. Ng, and H. K. H. So. QuickDough: a rapid fpga loop ac-

celerator design framework using soft CGRA overlay. In Proceedings of the

International Conference on Field Programmable Technology (FPT), 2015.

[144] R. Rashid, J. G. Steffan, and V. Betz. Comparing performance, productivity

and scalability of the TILT overlay processor to OpenCL HLS. In Proceedings

of the International Conference on Field Programmable Technology (FPT),

2014.

[145] K. Paul, C. Dash, and M.S. Moghaddam. reMORPH: a runtime reconfig-

urable architecture. In Euromicro Conference on Digital System Design,

2012.

[146] M. K. Papamichael and J. C. Hoe. CONNECT: re-examining conventional

wisdom for designing nocs in the context of FPGAs. In Proceedings of the In-

ternational Symposium on Field Programmable Gate Arrays (FPGA), pages

37–46, 2012.

[147] Y. Huan and A. DeHon. FPGA optimized packet-switched NoC using split

and merge primitives. In Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL), pages 47–52, 2012.

[148] N. Kapre and J. Gray. Hoplite: building austere overlay NoCs for FPGAs.

In Proceedings of the International Conference on Field Programmable Logic

and Applications (FPL), pages 1–8, 2015.

BIBLIOGRAPHY 175

[149] C. Hilton and B. Nelson. PNoC: a flexible circuit-switched noc for fpga-based

systems. IEE Proceedings-Computers and Digital Techniques, 153(3):181–

188, 2006.

[150] J. Gray. GRVI Phalanx: A massively parallel RISC-V FPGA accelerator

accelerator. In IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 17–20, 2016.

[151] C. Y. Lin, N. Wong, and H. K. H. So. Operation scheduling for fpga-based

reconfigurable computers. In Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL), pages 481–484. IEEE,

2009.

[152] A. Fell, Z. E. Rákossy, and A. Chattopadhyay. Force-directed scheduling for

data flow graph mapping on coarse-grained reconfigurable architectures. In

Proceedings of the International Conference on ReConFigurable Computing

and FPGAs (ReConFig), pages 1–8, 2014.

[153] L. Chen and T. Mitra. Graph minor approach for application mapping

on cgras. ACM Transactions on Reconfigurable Technology and Systems

(TRETS), 7(3):21, 2014.

[154] R. Rashid. A Dual-Engine Fetch/Compute Overlay Processor for FPGAs.

PhD thesis, University of Toronto, 2015.

[155] S. J. Jie and N. Kapre. Comparing soft and hard vector processing in fpga-

based embedded systems. In Proceedings of the International Conference on

Field Programmable Logic and Applications (FPL), 2014.

[156] J. Coole and G. Stitt. Adjustable-cost overlays for runtime compilation.

In IEEE Symposium on FPGAs for Custom Computing Machines (FCCM),

pages 21–24, 2015.

[157] D. Capalija and T.S. Abdelrahman. Towards synthesis-free JIT compilation

to commodity FPGAs. In IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 202–205, 2011.

176 BIBLIOGRAPHY

[158] A. Marquardt, V. Betz, and J. Rose. Timing-driven placement for fpgas.

In Proceedings of the International Symposium on Field Programmable Gate

Arrays (FPGA), pages 203–213, 2000.

[159] L. McMurchie and C. Ebeling. Pathfinder: a negotiation-based performance-

driven router for FPGAs. In Proceedings of the International Symposium on

Field Programmable Gate Arrays (FPGA), 1995.

[160] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell. The iDEA DSP

block-based soft processor for FPGAs. ACM Transactions on Reconfigurable

Technology and Systems (TRETS), 7(3):19:1–19:23, 2014.

[161] C. K. HB and N. Kapre. Hoplite-DSP: Harnessing the Xilinx DSP48 multi-

plexers to efficiently support NoCs on FPGAs. In Proceedings of the Inter-

national Conference on Field Programmable Logic and Applications (FPL).

IEEE, 2016.

[162] B. Ronak and S. A. Fahmy. Mapping for maximum performance on FPGA

DSP blocks. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 35(4):573–585, 2016.

[163] T. Mudge. The specialization trend in computer hardware: Techincal per-

spective. Commun. ACM, 58(4):84–84, March 2015.

[164] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,

H. Hoffman, P. Johnson, J. W. Lee, W. Lee, et al. The raw microprocessor:

A computational fabric for software circuits and general-purpose programs.

Micro, IEEE, 22(2):25–35, 2002.

[165] S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michel-

son, M. Oskin, and S. J. Eggers. The wavescalar architecture. ACM Trans-

actions on Computer Systems (TOCS), 25(2):4, 2007.

[166] D. Burger, S. W. Keckler, K. McKinley, M. Dahlin, L. K. John, C. Lin, C. R.

Moore, J. Burrill, R. G. McDonald, and W. Yoder. Scaling to the end of

silicon with EDGE architectures. Computer, 37(7):44–55, 2004.

BIBLIOGRAPHY 177

[167] C. H. Hoy, V. Govindarajuz, T. Nowatzki, R. Nagaraju, Z. Marzecy, P. Agar-

wal, C. Frericks, R. Cofell, and K. Sankaralingam. Performance evaluation

of a dyser fpga prototype system spanning the compiler, microarchitecture,

and hardware implementation. In IEEE International Symposium on Per-

formance Analysis of Systems and Software (ISPASS), pages 203–214. IEEE,

2015.

[168] Z. Marzec. Detailed performance evaluation of data-parallel workloads on

the dyser prototype system, 2012.

[169] C. H. Hoo and A. Kumar. An area-efficient partially reconfigurable cross-

bar switch with low reconfiguration delay. In Proceedings of International

Conference on Field-Programmable Logic and Applications (FPL, 2012.

[170] K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt. Ef-

ficient implementation of virtual coarse grained reconfigurable arrays on FP-

GAS. In Proceedings of the International Conference on Field Programmable

Logic and Applications (FPL), pages 1–8, 2013.

[171] V. Betz and J. Rose. VPR: A new packing, placement and routing tool

for FPGA research. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pages 213–222, 1997.

[172] K. Eguro and S. Hauck. Armada: timing-driven pipeline-aware routing

for FPGAs. In Proceedings of the International Symposium on Field Pro-

grammable Gate Arrays (FPGA), pages 169–178. ACM, 2006.

[173] L. N. Pouchet. Polybench: The polyhedral benchmark suite (2011), version

3.2, 2011.

[174] M. Stojilović, D. Novo, L. Saranovac, P. Brisk, and P. Ienne. Selective

flexibility: Breaking the rigidity of datapath merging. In Proceedings of the

Conference on Design, Automation and Test in Europe, pages 1543–1548,

2012.

178 BIBLIOGRAPHY

[175] S. Govindarajan and R. Vemuri. Cone based clustering for list scheduling

algorithms. In Proceedings of the European Design and Test Conference,

pages 456–462, 1997.

[176] S. Govindarajan and R. Vemuri. Improving the schedule quality of static-

list time-constrained scheduling. In Design, Automation and Test in Europe

Conference and Exhibition, page 749, 2000.

[177] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell. Adapting the DySER

architecture with DSP blocks as an Overlay for the Xilinx Zynq. In In-

ternational Symposium on Highly Efficient Accelerators and Reconfigurable

Technologies (HEART), 2015.

[178] D. P. Singh, T. S. Czajkowski, and A. Ling. Harnessing the power of FP-

GAs using altera’s OpenCL compiler. In Proceedings of the International

Symposium on Field Programmable Gate Arrays (FPGA), pages 5–6. ACM,

2013.

[179] S. Gao and J. Chritz. Characterization of OpenCL on a scalable FPGA

architecture. In Proceedings of the International Conference on ReConFig-

urable Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2014.

[180] D. Chen and D. Singh. Invited paper: Using OpenCL to evaluate the effi-

ciency of CPUs, GPUs and FPGAs for information filtering. In Proceedings

of the International Conference on Field Programmable Logic and Applica-

tions (FPL), pages 5–12. IEEE, 2012.

[181] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos. Synthesis of

Platform Architectures from OpenCL Programs. In IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 186–193,

May 2011.

BIBLIOGRAPHY 179

[182] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,

D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh. From opencl to high-

performance hardware on FPGAs. In Proceedings of the International Con-

ference on Field Programmable Logic and Applications (FPL), pages 531–

534, August 2012.

[183] K. Shagrithaya, K. Kepa, and P. Athanas. Enabling development of OpenCL

applications on FPGA platforms. In Proceedings of the International Con-

ference on Application-Specific Systems, Architecture Processors (ASAP),

pages 26–30, June 2013.

[184] N. Kavvadias and K. Masselos. Automated synthesis of FSMD-based accel-

erators for hardware compilation. In Proceedings of the International Con-

ference on Application-Specific Systems, Architectures and Processors, pages

157–160. IEEE, 2012.

[185] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong pro-

gram analysis & transformation. In International Symposium on Code Gen-

eration and Optimization, pages 75–86. IEEE, 2004.

[186] P. Jääskeläinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and

H. Berg. pocl: A performance-portable OpenCL implementation. Interna-

tional Journal of Parallel Programming, 43(5):752–785, 2015.

	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Organization
	1.5 Publications

	2 Background and Literature Review
	2.1 FPGAs in Heterogeneous Computing Platforms
	2.1.1 Raising the Level of Programming Abstraction
	2.1.2 Communication Interfaces and Runtime Management

	2.2 Key Barriers to Mainstream Use of FPGAs
	2.3 Coarse-Grained Reconfigurable Architectures
	2.4 Coarse-Grained FPGA Overlays
	2.5 Time-multiplexed Coarse-Grained Overlays
	2.5.1 Nearest-neighbor Style Interconnect Based
	2.5.2 Customized Topology Based

	2.6 Spatially-configured Coarse-Grained Overlays
	2.6.1 Nearest-neighbor Style Interconnect Based
	2.6.2 Island Style Interconnect Based

	2.7 Summary

	3 Adapting the DySER Architecture as an FPGA Overlay
	3.1 Introduction
	3.2 The DySER Architecture
	3.2.1 DySER Switch
	3.2.2 DySER Functional Unit

	3.3 DSP Block Based DySER (DSP-DySER)
	3.3.1 DSP48E1 Based Functional Unit
	3.3.2 Analysis of Performance Improvement

	3.4 Scalability Analysis
	3.5 Area Overhead Quantification
	3.6 Summary

	4 Throughput Oriented FPGA Overlays Using DSP Blocks
	4.1 Introduction
	4.2 DSP Block Based Island-Style Overlay (DISO)
	4.2.1 Island-style Interconnect Architecture
	4.2.2 DSP Block Based Functional Unit
	4.2.3 Architectural Optimization and Design Issues
	4.2.4 Mapping to the FPGA Fabric and Resource Usage

	4.3 Analysis of Compute Kernels
	4.4 Dual-DSP Block Based Island-Style Overlay (Dual-DISO)
	4.4.1 Dual-DSP Block Based Functional Unit
	4.4.2 Resource Usage when Mapped to the FPGA Fabric
	4.4.3 Discussion

	4.5 Evaluating Kernel Mapping
	4.5.1 DISO
	4.5.2 Dual-DISO

	4.6 Summary

	5 Low Overhead Interconnect for DSP Block Based Overlays
	5.1 Introduction
	5.2 Interconnect Architecture Analysis
	5.2.1 Programmability Overhead Modeling
	5.2.2 Set-specific Overlay Design

	5.3 The DeCO Architecture
	5.3.1 The 32-bit Architecture
	5.3.2 The 16-bit Architecture

	5.4 Experimental Evaluation
	5.4.1 Overlay Comparison and Analysis for Benchmark Set
	5.4.2 Mapping Additional Compute Kernels on to the DeCO

	5.5 Summary

	6 Mapping Tool for Compiling Kernels onto Overlays
	6.1 Introduction
	6.2 Compiling Kernels to the Overlays
	6.2.1 DFG Extraction From a Kernel Description
	6.2.2 DFG Mapping onto the Overlay
	6.2.2.1 DFG to FU-aware DFG Transformation
	6.2.2.2 Resource-aware FU Netlist Generation From FU-aware DFG
	6.2.2.3 Placement and Routing of the FU Netlist to the Overlay
	6.2.2.4 Latency Balancing
	6.2.2.5 Configuration Generation

	6.3 Experiments
	6.4 Summary

	7 Conclusions and Future Research Directions
	7.1 Summary of Contributions
	7.1.1 Adapting the DySER Architecture as an FPGA Overlay
	7.1.2 Throughput Oriented FPGA Overlays Using DSP Blocks
	7.1.3 Low Overhead Interconnect for DSP Block Based Overlays
	7.1.4 Mapping Tool for Compiling Kernels onto Overlays

	7.2 Future Research Directions
	7.2.1 Using DSP Blocks for Building Time-multiplexed Overlays
	7.2.2 Interfacing Overlays to a Host Processor
	7.2.3 OpenCL Driver and Runtime for Overlays

	Bibliography

