Automatic Code-Generation for Accelerating

Structured-Mesh-Based Explicit Numerical Solvers
on FPGAs

Beniel Thileepan
Department of Computer Science
University of Warwick
Coventry, United Kingdom
beniel.thileepan@warwick.ac.uk

Abstract—Structured-mesh-based stencil computations are a
common motif in many numerical algorithms, such as for solving
PDEs. Recent work has shown promising runtime performance
and energy efficiency when mapping these applications to FPGAs.
However, this requires significant manual effort with hardware-
specific optimizations and customization. We present a new code-
generation framework that automates the mapping of stencil
applications to FPGAs. From a domain-specific declaration, the
framework applies radical, ad-hoc, and dynamic optimizations,
including a novel window-buffer chaining scheme, and an on-chip
loopback pipeline approach that minimizes memory transaction
overhead. We show that the generated code is able to match or
exceed the performance of hand-tuned state-of-the-art designs.
A range of stencil solvers benchmarked, including non-trivial
multi-stencil solvers, on two FPGAs, demonstrating performance-
portability. Comparisons to best-in-class solvers on an Nvidia
H100 GPU indicate competitive performance with 2-19x energy
savings.

Index Terms—Stencil Applications, Field Programmable Gate
Arrays, Automatic Code Generation, Domain Specific Languages

I. INTRODUCTION

Recent work has demonstrated the significant utility of Field
Programmable Gate Arrays (FPGAs) for numerical simula-
tions in scientific and high-performance computing (HPC).
Their energy efficiency is of particular note due to their
slower clock frequencies and spatial on-chip communication.
Modern FPGAs also demonstrate enhanced performance for
floating point computations through more capable DSP blocks
and spatial processor arrays [1]. Work has been shown in
the solution of partial differential equations (PDEs) [2]-[4],
Multilevel Monte Carlo Methods (MLMC) [5], [6] and for
more specific applications such as weather simulation [7],
[8] and financial computing [9]-[12]. However, the dataflow
model necessary to build FPGA accelerators and the low-level
hardware expertise required have limited their wider adoption.
The introduction of high-level synthesis (HLS) tools that can
translate programs written in standard high-level languages
such as C/C++ or SYCL has somewhat lowered the barrier
to entry. However, achieving high performance still requires

Suhaib A. Fahmy
King Abdullah University of
Science and Technology (KAUST)
Thuwal, Saudi Arabia
suhaib. fahmy@kaust.edu.sa

Gihan R. Mudalige
Department of Computer Science
University of Warwick
Coventry, United Kingdom
g.mudalige@warwick.ac.uk

significant manual low-level design iteration through a long-

winded development process.

One solution is to exploit the key characteristics of a class
of applications, to develop domain-specific abstractions which
can be used by developers to describe a specific problem,
and apply automated translation and compilation of optimized
parallel implementations. Such a strategy targeting a specific
class of applications, for instance, using Domain Specific
Languages (DSLs), has long been effective in HPC. In this
paper, we investigate and develop such automatic translation
techniques for a stencil DSL and demonstrate effective code
generation for FPGAs.

We focus on the structured-mesh-based application class,
characterized by stencil computations. This parallel pattern is
a widely used motif, particularly in solvers for PDEs. The
main feature is looping over a rectangular multi-dimensional
set of mesh points using one or more sfencils to process
data. In explicit solvers, one or more of these stencil loops
are wrapped within an iterative time-marching loop, leading
to what are called iterative stencil loops (ISLs). Indeed, a
number of previous works have explored automatic code-
generation for FPGAs targeting these applications [7], [8],
[13]-[16]. However, specialized optimizations applied by these
frameworks are limited, resulting in reduced performance and
restricting them to simpler stencil applications.

We present an alternative code-generation strategy that
builds upon these works, applying previously demonstrated
as well as novel optimizations in a flow that uses the OPS
structured mesh DSL [17] as its front-end. Specifically, we
make the following contributions:

1) We develop a new code generator for OPS, based on
LLVM/Clang LibTooling and dynamic skeleton templates
to produce FPGA HLS code. It allows the modularization
and reuse of optimized code components with dynamic
customization and incorporates progressive optimizations
in an ad-hoc manner based on the target.

2) Two novel optimization approaches are applied: (1) a new
Window Buffer Chaining Algorithm automates the creation
of optimal memory buffers between stencil points. With

5

Plane 2

Widen Buffer
(x line size)

Plane 1

Widen Buffer
(xy plane size;

pa R
. Widen Buffer

R1 | R2

Plane 3

(x line size;

; R13 R14 Widen Buffer
Cyclic Buffer xy plane size;

(xy plane size)

Cyclic Butfer
(xline size)

Cyclic Buffer
(xline size)

Cyclic Buffer
(xy plane size)

(a) Buffers for 7pt 3D stencil (b) Cell parallelism

Cyclic Buffer
(x line size)

Cyclic Buffer [>
x line size) |

—> output

cu cu
PE2

(c) Step parallelism

Fig. 1: Architecture optimizations for implementing stencil accelerators.

this algorithm, any generic stencils defined can be trans-
lated to an effective FPGA stencil computational architec-
ture, and (2) a novel On-Chip Loopback Pipeline design
that optimizes memory read-write overhead on FPGAs for
small and medium mesh sizes.

The new code-generator is used to automatically generate
FPGA HLS code for a range of applications, including a
non-trivial multi-stencil solver, targeting the AMD Alveo
U280 and AMD Versal VCK5000 data center FPGA accel-
erators. Throughput, bandwidth, and energy are compared
to state-of-the-art hand-coded and manually tuned solutions
from [2], [3]. We further compare FPGA performance to
optimized code for the same applications on an Nvidia
H100 GPU, the best-in-class traditional architecture for
such solvers.

3)

Results indicate that the OPS code-generated solvers closely
match or exceed the performance of hand-coded designs and
those reported in previous works that automatically generate
HLS code for FPGAs, even without applying batching (com-
bining multiple smaller mesh computations together to im-
prove throughput) or spatial-blocking/tiling (computing larger
meshes by breaking them into smaller spatial blocks) (see
Table I). Our tool can also target different FPGA architecture
generations and capacities. We also see comparable throughput
to GPU but with over 4x better energy efficiency on the
FPGAs.

The design space that needs to be explored to gain even
decent performance on FPGAs is vast, much larger than for
CPUs/GPUs. Our framework automates this process, eliminat-
ing the need for a user to write any HLS code, significantly
reducing development time, and outperforming the state-of-
the-art. Both window-buffer chaining and on-chip loopback are
novel optimizations that boost performance. Their theoretical
limitations have been analytically modeled in this paper, and
their application detailed, with potential impact beyond this
domain.

II. BACKGROUND

Unlike traditional architectures (CPUs/GPUs), FPGAs do not
have a fixed architecture but comprise basic circuit elements,
such as look-up tables (LUTSs), registers, a significant number
of digital signal processing (DSP) arithmetic blocks, and
small on-chip block memories (BRAM/URAM). An extensive

TABLE I: Comparing our generated designs to previous work.
(": handcoded, : automatic/code-gen, *: single batch, ™: multi-
batch, ! tiled). Platforms - AMD: U280, VCK5000, and ADM-
KU3. Intel: GX1150, GX2800

Work Best Kernel (GFLOP/s) Platform
Kamalakkannan et al. [2]® Poisson2D® 735.00 U280
Poisson2D™ 922.00 U280
Waidyasooriya et al. [3]" Jacobian2D%® 874.00 GX1150
StencilFlow [T]** Poisson2D 568.20 GX2800
SODA [15]24s Heat3D 13491 ADM-KU3
Jacobian2D 90.04 ADM-KU3
Jacobian3D 83.98 ADM-KU3
Stencil-HMLS [8]*° PW-Advection 38.15 U280
This paper® Poisson2D* 984.61 U280
Jacobian2D® 814.20 U280
Jacobian3D® 75273 U280
Heat3D* 967.37 U280
PW-Advection® 27146 VCKS5000

routing fabric allows these elements to be composed to create
spatial datapath accelerators. Contemporary large FPGAs, such
as one of the AMD models targeted in this paper, can also
comprise multiple in-package dies, called Super Logic Regions
(SLRs), connected via a silicon interposer. Data bandwidth
between components within a die is extremely high (TB/s),
while inter-SLR bandwidth is more limited. This is crucial to
consider in larger FPGA accelerator designs.

Accelerators are built by decomposing a complex com-
putation into arithmetic and data-storing primitives, which
are physically composed together using the flexible routing
architecture, allowing data to move directly between datapath
elements with low latency. This lack of reliance on register/-
cache/memory for data movement between arithmetic opera-
tions is a key factor in spatial architectures’ energy efficiency.
The datapath is customized for a specific application, resulting
in a deep pipeline, which can ideally accept new data every
clock cycle and produce results with a latency equal to the
pipeline depth.

A. Implementing Stencil Codes on FPGAs

We begin with a specific example of an iterative stencil loop
(ISL) and explore its optimal FPGA implementation. Equation
(1) details an ISL for the solution of a 2D finite-difference
scheme for the explicit solution of a generic PDE:

UL, =aUl_1,+bUl] +cUL L +dUl L +eUl b (1)

z,y—

where U is a 2D discretization of a regular rectangular domain.
Each mesh point is updated every time step, ¢, using the value
of its 4 neighbors and itself at time step ¢ — 1, giving a 5-
point stencil. The time-step iteration continues until a steady-
state solution is achieved. The scheme extends naturally to
3D or higher dimensions (e.g., see Table II). More complex
applications (see Section V) consist of multiple such stencil
loops within the time-marching loop. In an explicit scheme
such as the above, each mesh point could be computed in
parallel, as there are no data dependencies, but time-step
iterations must be done in order.

Previous work on mapping stencil applications to FPGAs
has identified a number of strategies for optimizing perfor-
mance; we present a brief overview from Kamalakkannan et
al. [2], which summarizes these for both 2D and 3D, in-
cluding multidimensional mesh elements and multiple stencil
loops. The key baseline optimizations required to obtain high
performance are (1) transformations enabling pipelining and
(2) unrolling loops by replicating computational units (CUs).
These lead to the following specific transformations to the
stencil code:

1) Unrolling multi-dimensional nested stencil loops, creating
longer pipelines. Each stage of unrolling carries out the
computation for one of the X, y, and z dimensions of a
mesh point (Fig. 1a).

2) Replicating multiple pipelines for the same computa-
tion (i.e., loop body or kernel)—called the cell-parallel
method [4]-allows computation of the stencil on multiple
mesh points simultaneously. Each replica CU, when exe-
cuted in parallel, leads to a vectorized operation (Fig. 1b).

3) Unrolling the outer, iterative time-marching loop—called
the step-parallel method [4], allows results from a previous
iteration to be fed to the next iteration through fast on-chip
memory, without writing back to slower external memory
(Fig. Ic).

Transformation 1 enables the optimal data reuse path. A chain

of on-chip FIFO buffers is used to cache data for seamless

streaming of mesh elements. The amount of buffering depends
on the order and dimensionality of the stencil. In a 2D
application, a D-order stencil requires buffering D rows, while
in a 3D application, the D-order stencil necessitates buffering

D planes, and each plane requires buffering of D rows. In

this technique, referred to as window buffering in [2], the total

number of mesh elements that must be buffered is determined
by the maximum number of mesh elements between any two
stencil points. An illustration of this perfect data reuse path

for a 3D, 2nd order stencil is shown in Fig. 1.

Fig. 1b shows an implementation of Transformation 2 with
a factor of 2, where the vectorization factor indicates the
number of mesh points updated simultaneously. However, the
resource capacity in an FPGA can restrict the number of
feasible parallel units.

Fig. 1c illustrates unrolling the outer iterative loop leading
to 2 “compute modules” (Transformation 3). This technique
boosts throughput without needing extra external memory
bandwidth, but the unrolling factor is again limited by FPGA

resources and on-chip memory capacity. Reduced external
memory access also improves power efficiency, but the longer
computational pipeline can significantly affect performance for
small meshes due to under-utilization of resources in the deep
pipeline [2]. The novel loopback design proposed in this paper
addresses this issue (as discussed in Section IV-B).

The runtime (latency in clock cycles) of the above designs
for 2D and 3D stencil applications for ng., iterations can
be modeled, based on the mesh size (m X n or m X n X [),
vectorization factor (V') and iterative loop unroll factor (p) as
detailed in [2]:

Latency ,p = (Niter /p) - [m/V] - (n+pD/2) 2
Latencygp = (iter/p) - [m/V]-nx (I+pD/2) (3)

Considering the 2D case, [m/V] is the total latency taken to
process a row from a mesh sized m x n (assuming each row
is padded to be a multiple of V' if required). If the order of the
stencil is D, the compute pipeline will process n + D /2 rows,
as there are D/2 different rows between the current stencil
update mesh point and the farthest mesh point required for the
stencil computation. In FPGA design, initiation interval (I) =
1 is ideal, allowing the CU to accept an input every cycle.
Higher II values, caused by PE complexity, reduce throughput
by accepting inputs only every N cycles. Our model assumes
II=1. It similarly extends to 3D. We generalize this model
further in Section IV-B.

Furthermore, the model incorporates limitations on the
vectorization factor (V'), and the unroll factor p. Vectorization
must satisfy the following condition:

BW channet > 2V fsizeof(t) (4)

where the bandwidth of the data channel, i.e., port connected
to the device memory, is BW .pannel, the operating frequency
of the FPGA is f and the size in bytes of a mesh element is
sizeof(t). The maximum p that can be chosen is limited by
the minimum of pgs, OF Ppyem, defined as:

Pdsp = FPGAdsp/(VGdsp))

N
Pmem = FPGA e /(sizeof () D(] [m)) (6)

i=1
Where G 45, is the number of DSP blocks required for a single
mesh element computation, FPGAy,, is the total number
of DSP blocks available in the FPGA, D is the order of
the stencil, FPGA e is the total on-chip FPGA memory
(BRAMs and URAMSs) and m; is the mesh size in ¢-th

dimension.

In addition to the above, spatial blocking optimizations
to implement solutions for larger meshes and batching of
multiple meshes to increase throughput of the pipeline are
discussed in [2], enabling more complex applications to be
developed while retaining high performance. Our objective in
this paper is to generate the above designs automatically for
non-trivial applications through code generation.

B. Related Work

Previous research on automatic code-generation targeting FP-
GAs includes work on image processing, such as Hipacc [18]
and HeteroCL [19]. Several domain specific language frame-
works have also been proposed: SDSLc [13], SODA [15],
StencilFlow [7] and Stencil-HMLS [8] for stencil codes.
SDSLc uses PolyOpt/HLS [14] as the optimization backend
and a later implementation by Natale et al. [20] introduces
polyhedral optimizations to generate FPGA code from high-
level syntax to support multi-FPGA deep pipeline kernel
solutions. However, both these tools do not achieve high
performance; SDSLc under-performs hand-written code by
11x in some cases [13].

SODA [15] develops a DSL with source-to-source transla-
tion providing a custom compiler front-end. It addresses both
spatial and temporal blocking optimization of a single deep
pipeline of kernels as well as iterative stencil loops (ISLs).
HeteroCL [19], an image processing DSL leverages the SODA
backend for image processing-related stencil computations,
which are single deep pipelines of kernels. SODA proposes an
optimal microarchitecture generated from the DSL. However,
it underperforms due to significant routing congestion arising
from the design of a single deeply pipelined processing
element (PE). This single PE design fails to support more
modern FPGAs with multiple SLR regions, where inter-SLR
communication limits scalability.

StencilFlow [7] is a declarative DSL built on top of the
DaCe [16] backend framework that focuses on dataflow op-
timizations. Stencilflow demonstrates promising performance
from code generated targeting a single FPGA and for multiple
FPGAs. It is designed to support both ISL and non-iterative
deep pipelines and performs heuristic dataflow optimizations.
Though StencilFlow is versatile enough to support non-
traditional multi-stencil systems with good performance in
general, the design itself does not incorporate more novel opti-
mizations relevant for ISL applications and thus comparatively
underperforms hand-coded designs such as those in [2], [3].
Additionally, StencilFlow does not incorporate the outer loop
in the generated FPGA architecture for ISL settings which
leads to multiple kernel calls and blocking buffer copies for an
ISL application with a large number of iterations (p < Nter),
due to kernel call overheads.

More recently, Stencil-HMLS [8] uses MLIR-based code
translation via a custom HLS dialect to optimize a weather
application. The HLS dialect captures hardware optimizations
that are provided by Vitis HLS and thus can apply bet-
ter optimizations. Stencil-HMLS claims 14-100x improved
performance over the DaCe implementation of a weather
application (PW-Advection). However, the authors indicate it
as a work in progress pending further benchmarking.

In contrast to the above works, in this paper, an ISL is
declared using the OPS DSL. OPS (Oxford Parallel library
for Structured mesh solvers) [21] is a high-level embedded
domain specific language for writing multi-block structured
mesh algorithms, and the corresponding software library and

Listing 1 ISL of eq (1) declared with the OPS API

1 void sten5pt(const ACC<float> &u@, ACC<float> &ul) {
2 ul(0,0) = a*ud(-1,0) + b*xu@(1,0) + c*ud(02,-1) + d*u(0,1) +
— e*xu(0,0);}
void copy(const ACC<float> &u@, ACC<float> &ul) {
ud(0,0) = ul(0,0);}

ops_block block = ops_decl_block(2,"blockd");
int size[] = {size_x, size_y}; int halo_neg = {-1,-1};
9 int halo_pos = {1,1}; int base = {0,0};

3
4
5
6 void main(){
7
8

11 float* data@, datal;

12 ops_dat dat@ = ops_decl_dat(block, 1, size, base, halo_neg, halo_pos,
< data@, "float”, "dat0");

13 ops_dat datl = ops_decl_dat(block, 1,
— datae@, "float”, "dat1");

size, base, halo_neg, halo_pos,

15 int s2D_0o[] = {0,03};

16 ops_stencil S2D_00 = ops_decl_stencil(2,1,s2D_00,"00");

17 int s2D_5pt[] = {o,-1, -1,0, 0,0, 1,0, 1,13};

18 ops_stencil S2D_5pt = ops_decl_stencil(2,5,s2D_5pt, "5pt");

20 unsigned int N = 100;
21 int rangel[] = {0, size_x, 0, size_y};
22 #pragma ISL "isl_0" N
23 for (int iter = 0; iter < N; iter++) {

25 ops_par_loop(stencil5pt, "Spt-sten”, block, 1, range,
26 ops_arg_dat(date, 1, S2D_5pt, "float”, OPS_READ),
27 ops_arg_dat(datl, 1, S2D_00, "float”, OPS_WRITE));
28

29 ops_par_loop(copy, "copy”, block, 1, range,

30 ops_arg_dat(dat1, 1, S2D_0@, "float”, OPS_READ),

31 ops_arg_dat(date, 1, S2D_0@, "float”, OPS_WRITE));
32 1}

code translation tools to enable automatic parallelization on
multi-core and many-core architectures. We develop a code-
generator based on LLVM/Clang LibTooling to parse/analyze
source code, extract problem parameters, and automatically
generate FPGA high-level synthesis code. The generated
code incorporates best-in-class optimizations that have been
encoded in dynamic skeleton templates. The resulting deep
pipelined loopback circuit design allows small/medium-sized
meshes to execute with high throughput. As we will show in
the rest of this paper, it produces HLS code for a specified
target FPGA, resulting in better throughput in ISL applica-
tions, compared to the state-of-the-art. A summary comparison
is given in Table I. Poisson2D, Laplace2D, Jacobian2D, and
Heat3D in this table are specified in detail in Table II. We also
implemented PW-Advection with OPS using the specification
in [8] and compared performance.

III. A CODE-GENERATOR FOR FPGAS

An ISL can be declared using OPS with its C/C++ APIL
For example, the stencil computation in Eq (1) can be
declared within an ISL as detailed in Listing 1. Here, two
stencils are declared (lines 15-18), S2D_00@ and S2D_5pt,
a “self” stencil and a 5-point stencil, respectively, which
are used to access several 2D data meshes holding FP32
(float) data, dat@, dat1, etc. The loops over the mesh
are declared using the ops_par_loop call (lines 25-27 and
lines 29-31). The computation for Eq (1) is declared as an
elemental kernel sten5pt (lines 1-2) and used as function
pointer argument in ops_par_loop (lines 25-27). Similarly,
the copy operation is defined in copy (lines 3—4). The OPS
API was first developed for declaring block-structured mesh

’ E

‘ PHASE 1: AST Generation and AST matchin with LLVM Clang Cindex ilinx Host Code

PHASE 2: Dataflow Optimization ‘]
Xilinx Device
Code

o
<
Q
F
I
e

PHASE 8: Target Specific code generation

Target
specific Configurations

Fig. 2: High level view of OPS code generator for FPGAs.

c
2
k]
L
a
o
<
7
o
o

Target specific OPS Library
components

Target specific Jinja2
templates

Xilinx V4++
Configurations

Listing 2 Sample AST of the ISL region in Listing 1.

|- CursorKind.FOR_STMT

| |- CursorKind.DECL_STMT

| | ~- CursorKind.VAR_DECL iter

| “- CursorKind.INTEGER_LITERAL

"int” @

| ~- CursorKind.COMPOUND_STMT

| | | ~- CursorKind.OVERLOADED_DECL_REF ops_par_loop
| | |- CursorKind.DECL_REF_EXPR stencil5pt

| | - CursorKind.OVERLOADED_DECL_REF ops_par_loop
| |- CursorKind.DECL_REF_EXPR copy

applications in [21], [22]. As these works demonstrate, the API
is sufficient for a loop-by-loop translation to generate parallel
code for multi-core, many-core, and cluster systems using a
range of parallel programming languages (CUDA, HIP, MPI,
etc.). However, the main challenge of targeting FPGAs, in
contrast to traditional CPU and GPU systems, is the creation
of a dataflow architecture, requiring cross-loop analysis of the
ISL. To support this, we introduce a #pragma ISL (line 22)
“marker” to delineate ISLs of interest. Then, for FPGA targets,
we parse the ISL region and reason about the dataflow of the
ops_par_loops chain. The optimized dataflow representation
can then be used to generate FPGA HLS code. The high-level
overview of these steps is detailed in Fig. 2.

A. AST Generation and Matching

The OPS code-generator’s parser supports the extraction of
individual stencil loop parameters, their order, and the data
used in the loops by inspecting the abstract syntax tree
(AST) generated by the Clang compiler using LLVM’s tooling
library (libtooling) API. The process, based on techniques
developed in [23] involves traversing the AST, checking if
AST nodes match OPS API nodes. For a matched node,
we extract the node’s information and that of its children.
For our example in Listing 1, the portion of the AST for
the stencil5pt ops_par_loop and its related data is illus-
trated in Listing 2. ops_decl_block and ops_decl_dat etc.,
declarations are matched by searching for FUNCTION_DECL
nodes. The #pragma ISL region is matched by searching for
FOR_STMT nodes, within which ops_par_loop will be matched
with OVERLORDED_DEC_REFs. Similarly, the arguments within
an ops_par_loop, can be matched, but additionally, type
checking is done for dats used in the loop (wrapped as
ops_arg_dats) by searching for their declarations which ap-
pear as FUNCTION_DECLs inside the scope. The stencil used and
access mode OPS_READ etc., is similarly extracted. Finally, one
of the crucial components of the parallel loop, the range, is
passed as a DECL_REF_EXPR where the AST matcher searches
for the original VAR_DECL AST to verify the array.

< START)
——

Fig. 3: Dataflow Optimizations (a), (b) Before and after copy
detection. (c), (d) Before and after buffer propagation, (e)
chained PEs dataflow after buffer propagation.

B. Dataflow Optimizations

The extracted information can now be used to build a dataflow
graph of the ISL region, which is suitable for FPGA synthesis.
This is an extra step that is critical for obtaining an optimized
FPGA implementation compared to other platforms. We use
the Rustworkx Python API [24] to implement these transfor-
mations. An ISL region can be represented as a dataflow graph
with ops_par_loops as vertices and ops_dats as edges, which
act as buffers through which data is communicated from one
loop to another. For example, the dataflow graph for Listing 1
is given in Fig. 3a.

The dataflow graph is synthesized as a single PE where
each ops_par_loop vertex is a dataflow task within the PE.
In FPGA canonical dataflow regions—FPGA sub-regions that
adhere to the principles of dataflow computing, buffers are
converted to streams, where data flows continuously from
a single producer (source of data) to a single consumer
(processing or sink element). The solid black edges in the
graph represent these streams. Multiple PEs can be chained
together (implementing step-parallelism) by connecting the
output buffers of one PE to the input buffers of the next,
creating dataflow between PEs. We apply several optimizations
over the initial vanilla dataflow graph before synthesis:

Copy kernel detection: A copy kernel simply loops over each
mesh point in an ops_dat and copies it to another ops_dat
(e.g., copy kernel in Listing 1). On an FPGA, it is optimal to
map the input buffer to the output buffer directly and remove
the kernel. Such kernels can be easily detected by analyzing
the data access patterns of the ops_par_loop’s kernel. The
dataflow graph after eliminating the copy kernel in Listing 1

Listing 3 Consecutive kernels for buffer propagation.

void kernel_1(const ACC<float>& a, const ACC<float> &d@, ACC<float> &d1)
— { d1(2,0) = a(0,0) * do(0,0);
void kernel_2(const ACC<float>& b, const ACC<float> &d@, const
—s ACC<float> &d1, ACC<float> &d2) {
d2(0,0) = b(0,0) * d1(0,0) + do(0,0); }
void copy(const ACC<float> &d@, ACC<float> &d2) { d@(0,0) = d2(0,0);}

is given in Fig. 3b. Here, the edge connection in red indicates
an internal memory copy.

Buffer propagation: The input and output buffers of each
vertex must be analyzed and the edges of the dataflow graph
must be reconfigured to support optimal global memory move-
ment. For example, consider the three consecutive kernels in
Listing 3. Its single PE dataflow graph is given in Fig. 3c.
However, this graph cannot be synthesized as multiple PEs
due to (1) d@ being accessed by both kernels (i.e. multiple
accesses from external global memory within the same ISL
region) and (2) a and b also being accessed directly from
global memory. In the first case, it is optimal to read d@ once,
input it to kernel_1, and forward the same d@ to kernel_2.
This reconfiguration is illustrated in Fig. 3d. In the second
case, to chain multiple PEs, a and b should be read once into
the first PE, and this read-only data should be passed on to the
following PEs. Fig. 3d again shows the reconfiguration needed
in blue, and multiple PE chaining can be seen in Fig. 3e.
Mesh boundary data propagation with dependency anal-
ysis: Recall that an ops_dat can have a halo around its
boundary (e.g. see halo_pos and halo_neg in Listing 1).
When ops_dats are directly connected as memory streams,
the values in the halos could get overwritten by garbage/unini-
tialized values from a different ops_dat. For example, the
copy kernel in Listing 3 directly connects d2 to do, where
d2 has been updated in the previous kernel (kernel_2).
However, kernel_2 does not read d@, and only the internal
(non-halo) mesh points in d2 are updated. Thus, uninitialized
values in the halo regions of d2 overwrite the original values
of d@ in the copy kernel. With the above example, one
solution would be to propagate the halo data of d@ via an
additional stream connection from kernel_1 to kernel_2
to copy kernel. However, this would consume more FPGA
resources and could cause performance and routing issues.
Our approach utilizes existing intermediate stream connections
to propagate halo data with internal mesh point values. The
dataflow layer performs a dependency analysis to generate
a dependency graph. With the knowledge from dependency
analysis, in this example, we can propagate the d@ halo
via either do(start)—d1—d2 or do(kernel_1)—d2. In a
practical problem, the cardinality of non-intermediate buffers,
| B, ier| (such as d@ and d2) will be much larger, and finding
an appropriate path becomes a complex task compounded by
the need to find a suitable mutually exclusive path for each
non-intermediate buffer. However, read-only non-intermediate
buffers B, _ony do not need to retain the halo transferred via
other intermediate buffers. Theoretically, if we can show each
non-intermediate-non-read-only buffer b can have a mutually
exclusive path P,(S,E) from start(S) to end(F) then the
halo propagation can be done without needing any additional

Inputpeg®— INPUtsyeam

Cyclic Buffer H
E
E AXIS Module
: SLR1 SLR2

(x line size)
i I1 HLS-S
‘ AXIS
(a) (b)
Fig. 4: (a) Window buffer chaining for a 7pt 3D stencil. (b)
End-to-end solver pipeline for loopback FPGA design.

Cyclic Buffer |
-_(xy plane size)

Loopback
connection

Write H
Module AXIS |

=1
Pel-re]] |

Listing 4 Generated HLS snippet for an ops_par_loop.

1

2 inline void k1_core(const int* cst@, float rego, ...){...}

3 class Stencil_k1 : public ops::hls::StencilCoreV2<...>{

4 void stencilRun(...){ ...; kl_core(...); 3
— ’

5 void kernel1_PE(...){ Stencil_k1 stkl; stkl.stencilRun(...); }

stream connection to pass the halo (Eq 7).

Vb € (Bipter N By_oniy); IP(S, E) such that
Vb/ € (Bgnter N B;’—(mly) \ {b}v Pb(Sa E) N Pl:/(Sﬂ E) - @

)

However, this problem is a variation of the edge-disjoint short-
est path problem, an NP-hard problem to solve. Therefore, we
select two heuristic approaches to select suitable paths: (1)
Dijkstra’s shortest paths algorithm to find the shortest path
between the buffer-pair. For our example scenario, we can
decide to go with do(kernel_1)—d2 based on the shortest
path. (2) Jaro-Winkler string comparison metric [25] to select
between paths with the same path size, assuming that the users
will name buffers meaningfully. If a suitable path cannot be
found heuristically, the OPS translator can add a dedicated
stream for halo propagation.

C. Target Specific Code-Generation

For generating multiple parallelizations for traditional tar-
gets, OPS uses the ideas developed in [23] where each
ops_par_loop’s information (including the elemental kernel
function) is used to populate a template or a “skeleton” that
encodes the optimized state-of-the-art implementation for a
given architecture and a parallel programming model. For
example, to generate CUDA target code for NVIDIA GPUs,
skeleton code written in CUDA is used with placeholders
to expand/replace the text based on the elemental kernel,
number of arguments, their access mode, dimensions, etc., of
a candidate ops_par_loop. Essentially, the skeleton provides
boilerplate for the best CUDA parallelization for implementing
a structured-mesh/stencil loop. In [23], skeletons were writ-
ten in C++ and expanded/replaced using Clang Libtooling’s
refactoring tool, which can apply replacements to the source
code based on the AST of the skeleton. However, to simplify
maintenance and re-usability, we use skeletons written in
Jinja2 and refactor them with Python.

Extending the above for generating HLS targeting FPGAs is
considerably more involved, requiring multiple skeletons for

Listing 5 Generated HLS snippet for a PE.

Listing 6 Host wrapper and CPU host function.

1

2 void PE(..., <inter_PE_stream_connection_args>){
3 #pragma HLS DATAFLOW

4 ::hls::stream<..> k1_k2_argl_interconnect;

5

6 kernel1_PE(..., k1_k2_argl_interconnect, ...);
7 kernel2_PE(k1_k2_argl_interconnect, ...);

9 kérnelN_PE(. L)
0 3}

12 void PE_chain(<inter_PE_connection_args>){

13 for (int i = 0; i < iter_par_factor; i++) {

14 #pragma HLS UNROLL factor=iter_par_factor

15 PE(arg0_streams[i], arg@_streams[i+1], ...);

16 }

17 3}

18

19 void PE_func_top(const int num_iter,<const args...>,
< <config_args...>, <AXIS_stream_args..>){

20
21 for (int i = 0; 1 < num_iter; i++){

22 ops::hls::axis2stream<...>(...); ...
23 PE_chain(..);

24 ops::hls::stream2axis<...>(...); ...
25 }

26 }

different components — ops_par_loop kernels, PEs, memory
read/write modules, host driver code, and configurations to
achieve valid synthesis. More crucially, it requires the fine
handling of stream connections between each of these com-
ponents, including between PEs that may be synthesized in
different SLRs on larger FPGAs.

The OPS code-generator builds up the HLS code by first
producing Vitis C++ for each of the ops_par_loops in the
ISL region by instantiating and expanding on a loop skeleton,
which specifies the creation of the circuit components for
each candidate loop in a PE. Listing 4 illustrates the basic
structure. k1_core (line 2) is the outlined elemental kernel.
However, the dataflow arrangement requires the loops to be
fused as established in the dataflow graph from Phase 2. A
skeleton for fused loops is used, which utilizes the per loop
code generated together with specifying stream connectivity
between loops. Listing 5, lines 1-10, illustrate the key structure
of the generated HLS code.

For the next level, a skeleton is used to generate HLS for
PEs. At this level, the stream connectivity between both inter-
and intra-SLR PEs is specified (see Listing 5 lines 12-17).
Additionally, read/write modules are generated (not shown
here) with two special skeletons and their streams connected
to the PE chain. The PE chain and the read-write module code
are wrapped under a host-side visible function for the full ISL
region (see Listing 6 lines 1-23). The kernel (m_kernelName)
and data-mover module (m_rwName) (see line 3) are set. These
are enqueued to run by passing arguments from the host via
OCL (lines 9-21). A skeleton for the wrapper enables this code
generation. The outer loop with #pragma ISL in the high-level
program is replaced by a call to the wrapper function detailed
in lines 24-29.

Finally the host (CPU) code is generated, consisting of the
original high-level OPS API code (such as in Listing 1) but
with modifications to call the wrapper code generated above.
The changes to the code are done by direct text replacement

1 class Wrapper_ISL: public ops::hls::Kernel{

2 public:Wrapper_ISL():Kernel("ISL"),

3 m_kernelName ("PE_func_top"), m_rwName("PE_rw_func_top") {

4 OCL_CHECK(err, m_kernel = cl::Kernel(m_fpga->getProgram(),
< m_kernelName.c_str(), &err));

6 OCL_CHECK(err, m_rw = cl::Kernel(m_fpga->getProgram(),
— m_rwName.c_str(), &err));

3 void run(...){

10 OCL_CHECK(err, err = m_kernel.setArg(<arg_id>, ...)
11 S

12 OCL_CHECK(err, err = m_rw.setArg(<arg_id>, ...);
13 L.

14

15 OCL_CHECK(err, err = m_fpga->getCommandQueue() .
16 enqueueTask(m_rw, ...));

17 OCL_CHECK(err, err = m_fpga->getCommandQueue() .
18 enqueueTask(m_kernel, ...));

19

20

21 m_fpga->getCommandQueue() .wait();

22 }

23 }

25 void ops_iter_par_loop(int num_iter, int* range,

26 ops_arg(...), ...){

27 Wrapper_ISL() wrap_instance;

28 wrap_instance.run(range, num_itr, <ops_args...>);
29 }

of AST nodes similar to [23].

IV. FPGA ACCELERATOR DESIGN
A. Window-Buffer Chaining

The FPGA stencil accelerator design in Kamalavasan et.al [2]
uses multiple cyclic buffers as illustrated in Fig. la. This
“window buffer” technique boosts the pipeline performance
of the stencil computation by storing data in on-chip memory
more efficiently. The buffer sizes are allocated based on the
maximum mesh sizes for a problem. However, in [2], the
connectivity between buffers and the registers in the datapath
pipeline was manually chained, requiring careful handling
depending on the complexity of the stencil for each FPGA
hardware platform. An example linking of buffers to registers
is illustrated in Fig. 4a where the red arrows show the chaining
of the components together. In our framework, we automate
this window buffer chaining step with a new algorithm outlined
in Alg. 1. It takes as input the sorted mesh points of the stencil.
For example, the sorted ordering of points in the 7-point stencil
in Fig. 4a is given by the subscripts of pg,pi,...,ps. The
algorithm loops over each point and checks whether the next
point is streaming from a cyclic buffer or is shifted from a
register. If the next point (given by p;; in Alg. 1) is on the
same row of the mesh, then it is linked to a register (lines 10,
11). If the next point is in the adjacent row but on the same
plane, then a buffer with a size equal to the maximum row
size times the distance between the points in the y-dimension
is created and added (lines 15, 16). If the next point is in a
different plane then the buffer size is multiplied further by
the number of planes between the points in the z-dimension
(lines 13, 14). For HLS synthesis, chaining links must be in the
correct order to satisfy dataflow. Therefore, the algorithm not
only defines the connection between registers/buffers but also

Algorithm 1 Window Buffer Chaining Algorithm

1: INPUT: Sorted mesh-points (sp)

2: chain.add(regin, streami;n)

3: prev_buf < NULL, prev_reg < NULL

4: for all p € sp do

5: if p = last_point then

6: chain.add(p, regin)

7: if prev_buf # NULL then

8: chain.add(prev_buf.pop(), prev_reg.pop())
9: end if

10: else if p1.row = p.row then

11: chain.add(p, p+1)

12: else

13: if +1.plane = p.plane then

14: curr_buf < rowbuf[sizeof((p.y — p+1.y) X

y_size))]
15: else
16: curr_buf+ planebuf[sizeof((p.z — p4+1.2) X
z_size))]

17: end if

18: chain.add(p, curr_buf)

19: if prev_buf # NULL then
20: chain.add(prev_buf.pop(),prev_reg.pop())
21: end if
22: prev_reg.push(py1)
23: prev_buf.push(curr_buf)
24: end if
25: end for

produces link pairs in the correct order (starting from the final
register) as illustrated in the numbers in orange in Fig. 4a. The
algorithm is novel compared to previous work [3], [4], [15],
requiring no programmer intervention to create buffers from
any OPS stencil definition.

B. Loopback Pipeline and Memory Model

The baseline latency models (2) and (3) developed in [2] and
measured in clock cycles can be generalized for a mesh with
N dimensions:

Niter
p

N—-1
Latency yp = ([ml—‘ . H mi~(mN—|—D><p)>+L
v i=2
®)
Here, m is the size of the mesh in dimension ¢ with a stencil of
order D. Assuming initiation interval /I = 1 and the latency
of a single PE is L pg then the total latency of a deep pipeline
of p chained PEs is given by L = pLpg (neglecting small
stream connection latency).

However, the end-to-end (Latency,,,) solution time also
includes latency due to data movement to and from external
(DDR or HBM) memory at the start and end of the PE chain
(see Fig. 4b):

La’tencytot_cmp = LatenCyND + (niteT/p)Latencymem_rw

©))
This memory overhead becomes more significant for small
meshes. This was mitigated in [2] by batching multiple
independent meshes for processing. In our framework, we
introduce an additional optimization that allows the output of
a PE chain to be looped back to the start of the chain within
the FPGA, thereby avoiding costly external memory access.

This has the advantage of increasing performance, even when
processing a single mesh.

The key idea for the loopback pipeline is to retain the
full mesh within the memory elements of the deep pipeline,
consisting of the stream connections, registers, and on-chip
memory Fig. 4b). Vitis HLS implements AXI-Stream (AXIS)
buffers for memory access at the top level of the design and
HLS-stream buffers for more lightweight streaming connec-
tions between components. Within the deep pipeline, each
PE holds a fraction of data in registers and window buffers
composed from on-chip memory. For loopback to work, the
total number of vectorized mesh elements, F = (vazl m;)/V
must fit entirely in on-chip memory.

Each PE can be considered as a buffer as it can hold a
number of vectorized elements. The buffer depth is equal to
the latency of the PE (assuming II=1), and the total depth
contribution from all PEs is then Lenpr = pLpg. Within
an SLR, each PE is connected to others via HLS-stream
connections that have total buffer length Len;,terpr, Which is
dependent on the depth of the HLS-streams connecting PEs,
lhis, the number of PEs in each SLR, pgrr, and the total
number of SLRs used, Ngyr. Additionally, across SLRs, PEs
are connected via AXIS buffers, contributing a total buffer
length of Len;ntersrr, Which is proportional to the AXIS
interconnect buffer size, [,.;s, and the number of SLRs. If
the FPGA platform is a single SLR, then this component is
not included. As shown in Fig. 4b, the PE chain connected
to data read-write modules via AXIS, contributes Len gy to
the total buffer length. Then the total length (Leny) of the
loopback pipeline is given by:

Lent = Lenrw + Lenintersir + Lenpg + LeninterpE,
where LeninteTSLR - (NSLR - 1)lawis

Leninterpe = Nspr(Psir — 1)lns
(10)

Users can control the length of stream buffers, l;s and 445
by overriding default values in the OPS configurations. With
the maximum grid size given, whether to use the loopback
design or not can be determined by the conditions:

N .
Hi:l mlmaz

L@’ILT > Ema:m Emam = Vv

(1)

0.85 x Lent > F 0z (12)

where m;__ is the maximum mesh size in the ith dimension
and F,,,, is the total vector elements in the maximum grid
that need to be supported. For a practical synthesized design, a
good rule-of-thumb is not to exceed approximately 85% of this
limit (Eq 12), to allow for the AXI/HLS stream connections
space to stall and starve. The AXI-stream interconnections and
HLS-stream buffer sizes can be defined as an OPS-translator
configuration.

V. EVALUATION

We evaluate the performance of our code-generated designs
on AMD Alveo U280 and Versal VCK5000 FPGA cards.

TABLE II: Stencil benchmarks overview.

Benchmark Computation FLOPs/cell
Black-Scholes 1D [9] [26] k1, - Ul_y + k2; - Uf + k3; - Uy, 5
Poisson 2D [2] L (Ul + Uiy + Ul + Ul 1) + 0.5 U 6
Laplace 2D [3] i . (Uf,j—l + Uzt—l,j + Uit+1,j + Uit,j+1) 4

Jacobian 9pt 2D [3]
k8- Ul + k9 Ubyy i

Diffusion 3D [27]

Jacobian 7pt 3D [2]

k1-Uf) 1+ k2 Ul +k3-Ubyyj 1+ k4-Uf oy j+k5-Ulj+k6-Ufyy j+k7T-Uly 0+ 17

K1-Uf e+ k2 (Ul j oy + Ul e + Ul e + Ul e UL e + Ul eg1) 10
K1-Ufj o+ k2-Ul 1 +k3-Ufj 1 o+ k4 Ul o+ k5 Ul jn+k6-Uf 1 +k7-Ul i 13

TABLE III: System specifications.

FPGA Alveo U280 [28] Versal VCK5000 [29]
Technology 16nm Tnm

SLRs 3 1

DSP Blocks 9024 1968

LUTs 1,304K 899.84K
Registers 2,607K 1,779K
BRAMs 2016 (9MB) 967 (4.35MB)
URAMs 960 (34.5MB) 463 (16.67TMB)
HBM 8GB, 32ch, 460GB/s N/A

DDR 32GB, 38GB/s 16GB, 102.4GB/s
Platform Vitis 2022.2 Vitis 2022.1
Host AMD EPYC 7763 (64 cores), 514 RAM
GPU Nvidia H100 PCle [30]

Global Mem. 80GB HBM2e, 2.0TB/s

Host 2xAMD EPYC 9334 (32 cores), 384GB RAM

Compilers, OS CUDA 12.3, NVHPC 24.3 SDK, Debian GNU/Linux 12

The VCKS5000 has faster floating point capable DSP blocks.
Performance is compared to optimized CUDA code, generated
by OPS for an NVIDIA H100 GPU. Hardware specifications
are noted in Table III. Eight stencil codes are benchmarked,
including the multi-stencil applications. Computations are
summarized for all applications in Table II and Alg 2. Model
parameters for the FPGA designs are summarized in Table IV.
Our application development workflow with automatic code-
generation consists of the following process: (a) Determine
whether to use the loopback pipeline based on the condition
in (12), which is the case for all 1D and 2D applications
used. (b) Setting the vectorization factor (V) to 8 (or a
reduced number for large applications) based on (4). (c) Using
software emulation-based resource estimates to set p and
adjust it until the generated design reaches the DSP block
or on-chip memory capacity (5,6), or in some cases, routing
congestion prevents hardware implementation. (d) Fine-tuning
the hardware design if it does not reach the target frequency by
adjusting 1,45, Lpis- All above workflow tuning was done via
configurations passed to the code generator. The end-to-end
code generation and optimization passes are fully automated.

For GPU implementations, higher batch sizes were also
tested, indicated by 10B/100B in results, to achieve higher
GPU utilization, as in [2]. We evaluate throughput based on
FLOPS/s, a metric used in previous works [4], [7], [15], but
also compute achieved bandwidth on the FPGAs and the GPU
similar to [2], [11], where we consider data movement via
streams in computing FPGA bandwidth. We also measured
the energy draw of the platforms using the Xilinx xbutil tool

TABLE IV: Baseline model parameters. U: U280, V:
VCK5000, H: handcoded, C: code-generated, p superscripts:
D: DSP bounded, B: Memory bounded.

Application Dependent User Defined
Freq Gasp Lpe p lazis Unis
UH 276 13 21 667 - -
D
Black.Scholes UC 282 13 21 GGB 1024 10
V-H 300 3 11 48 - =
V-C 300 3 11 485 16384 10
UH 257 8 28 78 - —
Poisson2D U-C 284 8 28 81B 8192 10
V-H 300 3 10 54 B —
V-C 300 3 10 550 16384 10
Laplace2D U-C 300 9 24 90P 4096 50
P V-C 300 4 10 56° 16384 10
U-H 300 43 37 217 - -
D
Jacobian2D U-C 300 43 37 21D 4096 360
V-H 300 12 14 18 - =
V-C 300 12 16 187 16384 10
U-H 253 33 30 245 - -
B
Diffusion3D U-C 300 15 40 485 1024 10
V-H 300 9 16 24 —
V-C 300 6 14 34P 2048 10
UH 251 14.5 30 278 - =
D
Jacobian3D U-C 300 33 33 27B 1024 10
V-H 300 5.4 14 14 - -
V-C 300 9 19 220 8192 10
PW-Adv3D V-C 300 48 23 4P 16 10

for the FPGAs, and the nvidia-smi CLI tool for the H100
GPU.

A. 1-Dimensional Black-Scholes-3pt

The Black-Scholes European option pricing iterative solver
uses a 1D 3-point 2nd-order stencil based on the implemen-
tation in [9]. The VCK5000 had lower G5, and Lp. due to
the more capable DSP blocks. Generated designs matched or
outperformed the hand-coded baselines.

Fig. 5a compares throughput, showing the code-generated
designs outperforming the hand-coded versions, with the high-
est throughput on the U280, of 637.94 GFLOP/s achieved
for a mesh size of 30000. The H100 (50B) outperforms the
U280 only for mesh sizes above 10000, reaching a maximum
bandwidth of 138.53 GB/s (4.1% of peak). This is due to
the low arithmetic intensity of this application. In practice, a
5k mesh size is beyond the practical size for iterative Black-
Scholes [9], [31]. The U280 is also shown to be 6x as energy
efficient as H100 (50B).

1000 — 20
. m c_U280 >
2 ool[ee hu2so o 182

1 wn
o = VCK o o o o o t15 @
i 725 hVCK 1,5
© 6007 H100_50B =
*é_ H100_1B | t10 x
= 4001 U280 energy lg 2
g VCK5000 energy Bop 3
9] O H100 energy x0 é 5 o
s 2000 — —— — =" /\ =
< X o
] &t | N
1
ol e = O ; 7 Al BV =)
150 200 500 1000 2000 5000 10000 20000 30000
Mesh Size
(a) Black-Scholes-3pt 1D
50

1000 | [c_U280 H100_1B ¢ vCK5000 energy -
E mm ¢ VCK A U280 energy O H100 energy fo) v
g H100_1008 4073

4]
T <
O F30 42
~ ©
= fos)
~
& 20—
= 5
3 o
= 10
<

= i

o Lo

100x100 200x100 200x200 300x150 300x300 400x200 400x300 400x400
Mesh Size
(c) Laplace-5pt 2D (no hand-coded)

500

1200 mmm c_U280 777 h_VCK U280 energy —_
E @0 h_U280 H100_10B VCK5000 energy o g
o . VCK H100_1B O H100 energy 400"
QO 1000 = =]
T <
O 800 >300%
) [an]
2 600 | I L B LEE 12002
S BV | B B | B h;
£ sl Al ERlEER
= S ER B | R | A T

XO Inial | N6 | A0 | 18

w

o

o
W

1003 150° 2003 2503
Mesh Size
(e) Heat Diffusion-7pt 3D

70
__1200{(m== c U280 777 h_VCK U280 energy (o) .
u oo h_U280 H100_100B VCK5000 energy r60 X2
% 1000 { | c_VCK H100_1B O H100 energy "
t50 ©
—
ey
L
800 || || — S
e 7] 1] :?3 40 @
g OB ok B, | 2
3 600 o b7 1 7 Eap ~
‘ = g] =
o B2 B B B BY 5
400 = o A BY BA B 02
3 B ER B B B B (P8
£ &7 SN BT BT B 2
€ 200 ®7 B | B | BA | B 10
%7 B | AL R A (&
Al Al K& NG A |
LA 4 NN) N SN =\ g
100x100 200x100 200x200 300x150 300x300 400x200 400x300 400x400
Mesh Size
(b) Poisson-5pt 2D
2000 45
s c_Uu280 777 h_VCK U280 energy 0=
Q 17501 coor h U280 mmm c_VCK VCK5000 energy iy
o L
S 15001 mm c_U280 H100_100B H100 energy fo) 35
| = c_VCK H100_1B v
L 1250 1305
[G] 1 o
= t25 ©
+ 10001 o
Q r20 X
—~
£ 750
o 15
S 500 1102
= 9]
< c
2501 I s w
ol
Mesh Size
(d) Jacobian-9pt 2D
1400
— W c_u280 /7. h_VCK U280 energy | —~
Y 12001 (00 h_U280 H100_10B % VCK5000 energy o 4002
% 10001 mm c VCK H100_1B O H100 energy 3
e 13005
2 goo] ®
2 m
_8. 600 2008
= .
2 3
o r100 b
i< c
= i

303 50° 100° 150° 200° 250° 3003
Mesh Size
(f) Jacobian-7pt 3D

Fig. 5: Throughput (y-axis, higher is better) and Energy (y2-axis, lower is better) for different applications with increasing mesh sizes —

h_: hand-coded, c_: code-generated.

B. 2-Dimensional Stencils

We implemented three 2D applications with loopback enabled:
Poisson-5pt, Laplace-5pt, and Jacobian-9pt. Poisson-5pt and
Jacobian-9pt are compared to hand-coded versions from [2],
[4], while Laplace-5pt was only code-generated.

Poisson-5pt, consists of a 5-point 2nd-order cross stencil.
Code-generation packed higher p on the U280 than the hand-
coded version due to better balanced resource usage, though
limited by routing congestion. With more PEs, the loopback
design maintained 31% higher throughput on average. On the
VCKS5000, the code-generated design marginally outperforms
the hand-coded design due to better on-chip memory use.
The U280 can leverage higher bandwidth HBM for loopback,
thereby outperforming the VCK5000 (Fig. 5(b)). On the U280,
985 GFLOP/s throughput was achieved for a 300575 mesh,
outperforming the H100 (100B), on average by 155% while
being, on average, 19x as energy efficient. The H100 achieved
1039 GB/s bandwidth (31% of peak).

Laplace-S5pt is a 5-point 2nd-order stencil with lower

FLOPS per cell than Poisson-5pt. However, it consumes more
DSPs on both platforms, likely to maintaining II=1. The initial
performance of the generated code was lower when the stencil
was expressed as a compound operation as in Table II, but
splitting it into two simpler expressions resulted in a 20%
boost (Lpg = 24) on the U280. DSP usage limits p on both
platforms.

The H100, limited by memory bandwidth due to low com-
pute intensity, peaked at 312.9 GFLOP/s, reaching a bandwidth
of 729 GB/s (21.1% of peak). In contrast, the U280 achieved
773 GFLOP/s for a 300x520 mesh with {,;;s = 4096,
reaching 1023.35 GB/s bandwidth, outperforming the GPU
by 109% on average with 7.3 the energy efficiency.

Jacobian-9pt, a more compute-intensive 9-point 2nd-order
stencil [4], is ideal for GPU-FPGA comparison. On the U280,
the code-generated design achieves the same G5, and Ly, as
the hand-coded design and packs similar p. On the VC5K000,
the code-generated version achieves almost identical perfor-
mance to the hand-coded version. On the U280, with loopback,

Algorithm 2 RTM Forward-Pass [2], [33]

1: for all i =0, i< njter, i++ do do

2 K1 = fpmi(Yaspt, p,p) X dt; T =Y + K1/2
3 Ko = fpmi(Tospt, p,p) X dt; T =Y + Kz/2
4 Kz = fpmi(Tospt, ppp) X dt; T =Y 4 K3

5. Ka= fomi(Tospt, p,p) x dt

6 Y=Y +K/6+K:/3+K3/3+ K4/6

7: end for

lazis = 4096 and l;s = 360, without any frequency loss, per-
forming 20% better on average than the hand-coded version.
Code-generation achieves 798 GFLOP/s for a 300x300 mesh
and 375.94 GB/s bandwidth (see Fig. 5(d)). The H100 GPU
(100B) outperforms the U280 by 64% in terms of throughput,
achieving 1242.5 GFLOP/s with 892 GB/s bandwidth (26.7%
of peak), but the U280 and VCK5000 are 2.1x and 3.1x as
energy efficient, respectively.

C. 3-Dimensional Stencils

We implemented two 3D benchmarks and compared them to
manual versions from [27] and [2].

Heat Diffusion-7pt solves the classic heat equation using a
7-point stencil. The hand-coded version, based on [2], took
several weeks to implement and optimize to achieve the
parameters in Table IV. The initial code-generated version,
completed in under a week, had lower G4;5,(17.375) and
higher L, (53) compared to the hand-coded version. Breaking
the kernel into multiple simpler terms, improved G g5, and Ly,
by 13.7% and 24.5% respectively, allowing higher p, boosting
performance by 50-120%. On the U280, the code-generated
design achieves 31-86% better performance compared to
hand-coded, which could not be improved despite diligent cod-
ing. This highlights the advantage of code-generation, which
avoids design pitfalls. On the U280, the generated version
outperforms the H100 (10B) due to GPU memory bottlenecks
(see Fig. 5(e)), and delivers 16x the energy efficiency. The
H100 reached a maximum of 1029 GB/s bandwidth (30.7%
of peak).

Jacobian-7pt is another 3D 7-point solver. The code-
generated design uses more DSPs than the hand-coded designs
from [2], [32]. However, the hand-coded designs only achieve
II=2 on both platforms, demonstrating sensitivity to toolchain
changes. The code-generated designs achieve II=1 at 300 MHz
(both U280 and VCK5000), trading higher G4, and Ly, for
higher performance, with identical p on U280 but higher p on
VCK5000 due to balanced resource use. The code-generated
design outperforms the hand-coded designs by 119% on the
U280 and 181% on the VCK5000. Conversely, the H100 (10B)
outperformed the U280 by an average of 19.2%, especially for
mesh sizes between 1003 — 1503. Like Jacobian-2D, this app
exploits the GPU better due to higher computational intensity.
The H100 reaches 1013.83 GFLOP/s throughput with 1068
GB/s bandwidth (31.9% of peak). Still, the U280 is 9x as
energy efficient.

D. Multi-Stencil Applications

We implemented two multi-stencil applications, which are
more industrially relevant and representative.

fun
=)
o
o
[=)]
o
o

o

—~ 14001 c_U55c H100_1B o VCK5000 energy

§ = c VCK A U55c energy O H100 energy 500
& 120077722 h_vCK

Z 1000 400

w
o
o
Energy: 100 Batches (kJ)

N
o
o

r100

Throughput (

1003 150° 2003 2503

A
303 302x50502x16502x30 503
Mesh Size

Fig. 6: RTM-FP : Throughput (y-axis, higher is better) and Energy
(y2-axis, lower is better) — h_: hand-coded, c_: code-generated.

RTM-FP (Reverse Time Migration—Forward Pass) is an
industry-level application based on the algorithm in [33]
modified as Alg. 2, that uses 3D meshes (Y, T', K1..K4), each
with six-dimensional elements. Except Y, all are intermediate
meshes updated via the fpm! using a 25-point, 4th-order 3D
stencil. Scalars p and p are also 3D. We used OPS with
multidimensional meshes (multidim-2). Due to tool issues,
only AMD Vitis 2022.1 would build this application, and
we had to target the AMD Alveo U55c¢ instead of the U280
(identical as a device, save for the 16GB HBM and no DDR
memory). The hand-coded designs from [2], [32] would only
build for the VCKS5000. Like Jacobian-3D, the hand-coded
version only reached II=2 due to tool issues. The code-
generated design outperformed the hand-coded design by 48%
on the VCKS5000 (Fig. 6), peaking at 463 MPts/s throughput
with 224 GB/s bandwidth. Note the VCK5000 does not have
HBM. The H100 achieved 2x the throughput (1072 MPts/s)
with 491 GB/s bandwidth (14.6% of peak). The VCK5000 is
more energy efficient than the H100.

PW-Advection, a 27-point 2nd-order multi-stencil solver
was implemented solely with code-generation on the
VCK5000 for comparison with previous work [8]. We were
able to pack p = 4, limited by DSP resources. the generated
design achieves 271.46 GFLOP/s (4762.43 MPts/s) for a 2503
mesh-over 7x as fast as the design in [8](see Table I). The
H100 achieved 1036.41 GFLOP/s throughput with 787.06
GB/s bandwidth (23.5% of peak), due to the application’s high
compute intensity (57 FLOPs per mesh point).

E. Observations and Design-Space Exploration

Across applications, the code-generated FPGA designs achieve
comparable or better performance than hand-coded designs,
and outperform state-of-the-art published work, as detailed in
Table I. Code-generation was also shown to be effective in
porting to the newer VCK5000 architecture. For 3D stencils,
the gains are higher, as the hand-coded versions struggle to
achieve II=1. Manual tuning for each hand-coded application
took 2 to 4 days, for example, when targeting the VCK5000
instead of the U280. Code generation only requires a config-
uration file change to switch the target platform, resulting in
a suitable design within a few hours. Furthermore, manual
tuning of hand-coded designs sometimes fails to achieve
balanced resource usage, resulting in increased area or a subse-
quent build failure. Systematic dataflow optimizations through

TABLE V: Resource Usage % Heatmap. Absolute values reported in the artifacts

U280 VCK5000
= =

2 2

= R £ = = £

S 5 & 2 £ & 3 S 5 = 2 5

Application -) 2 = =) = < - - [8 <«
BlackScholes H | 56.1 26.8 453 132 83 [763" 276 159 1.0 208 65 300
BlackScholes C | 60.8 34.6 420 18.8 0.0 | 76.1 282 184 216 214 72 300
Poisson-2D H 70.1 | 155 537 11.3 [650 55.6 175 1.0 23.1 300
Poisson-2D C 732 | 18.1 548 569 00 593 284 21.0 3.0 257 300
Laplace-2D C 675 216 487 284 39.6 739 | 300 145 6.0 167 300
Jacobian-2D H = 46.1 4.0 374 113 17.5 [804 300 7.1 32 109 300
Jacobian-2D C = 46.3 42 367 195 10.8 [80.6 300 8.1 34 149 300
Diffusion-3D H | 50.7 9.4 36.2 154 [80.0° 70.9 129 6.8 147 300
Diffusion-3D C | 65.5 204 479 512 00 | 67.1 | 300 140 7.1 154 300
Jacobian-3D H ~ 38.1 44 27.8 22.0 [675 351 300 7.4 1.7 89 300
Jacobian-3D C 464 92 363 238 225 [80.9 300 119 55 192 300

code-generation show significant benefits for the multi-loop
application, enabling fast design space exploration. Overall,
the loopback pipeline is effective for smaller mesh sizes;
however, it can adversely affect frequency. The U280 generally
outperforms the VCK5000 due to its much larger resource
capacity and HBM. Still, for applications with higher compute
intensity, the VCKS5000 matches or even exceeds the U280’s
performance due to the denser DSP block capabilities. On a
larger Versal architecture device, code-generated designs are
expected to compete more strongly with the GPU due to the
more capable DSP blocks enabling higher p in the same area,
compared to the U280.

Though the automated Domain Space Exploration (DSE)
is out of the scope of this work, our systematic approach
to fine-tuning on top of the initial estimation of a single
p achieved balanced resource utilization with better perfor-
mance. The resource usage results indicate that DSPs are the
most critical, followed by on-chip memory, as reflected in
both platforms (see Table V). One notable resource imbalance
in code-generated designs is low usage of URAM. However,
this can be fixed simply by the user through the setting
"supported_internal_storage” : ["uram”, .] in the
configuration JSON file. Since thecode-generated designs were
not limited by internal memory in this case, this was not
significant. The hand-coded Jacobi-3D app used significantly
fewer DSP blocks due to not meeting II=1.

VI. CONCLUSION

In this paper, we presented a new DSL-based framework
that automates the generation of high-level synthesis code for
structured-mesh-based stencil applications targeting modern
FPGAs. HLS code for FPGAs is generated from a high-
level declaration in the OPS DSL, combining state-of-the-art
techniques and new optimizations. Key features include (1) the
use of a new LLVM/Clang LibTooling-based source-to-source
translation process to generate optimized FPGA source with
radical, ad-hoc, and dynamic optimizations, (2) a new window-

buffer chaining algorithm to automate the creation of optimal
memory buffers between stencil points, and (3) a novel deep-
pipeline loopback design to reduce HBM read/write overhead,
hence improving throughput. The framework was used to
generate code for several applications, including non-trivial
multi-stencil solvers, targeting AMD Alveo U280 (and a U55¢
for RTM-FP), and Versal VCK5000 FPGAs. Performance of
the generated designs was compared with hand-tuned versions
as well as with optimized GPU implementations on an Nvidia
H100 GPU. Across all applications, code-generated designs
outperformed hand-coded designs by 15-56% on the U280
and 3-60% on the VCKS5000. In most cases, code-generated
designs outperform the H100 GPU in lower compute-intensity
settings. For applications where the H100 performs better,
generated designs on the FPGA are more energy-efficient:
minimum 4x and 3x, average 14x and 10x on the U280
and VCKS5000 respectively. The code generation approach
enables rapid design space exploration with different resources
and configurations that would otherwise consume significant
time if performed manually. Future work will investigate
incorporating batching, tiling (for solving large mesh sizes),
and application to implicit solvers. The FPGA and GPU source
code developed in this paper are available as open-source
software at [34].

ACKNOWLEDGMENTS

We are grateful to Kamalavasan Kamalakkannan for his advice
in evaluating and comparing the hand-coded designs.

REFERENCES

[1] M. Bouaziz and S. A. Fahmy, “Benchmarking floating point perfor-
mance of massively parallel dataflow overlays on AMD Versal compute
primitives,” in IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2025, pp. 99-103.

[2] K. Kamalakkannan, G. R. Mudalige, I. Z. Reguly, and S. A. Fahmy,
“High-level fpga accelerator design for structured-mesh-based explicit
numerical solvers,” in [EEE International Parallel and Distributed
Processing Symposium (IPDPS), 2021, pp. 1087-1096.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

H. M. Waidyasooriya and M. Hariyama, ‘“Multi-fpga accelerator archi-
tecture for stencil computation exploiting spacial and temporal scalabil-
ity,” IEEE Access, vol. 7, pp. 53 188-53201, 2019.

H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “OpenCL-
based FPGA-platform for stencil computation and its optimization
methodology,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 5, pp. 1390-1402, 2017.

C. Brugger, C. de Schryver, N. Wehn, S. Omland, M. Hefter, K. Ritter,
A. Kostiuk, and R. Korn, “Mixed precision multilevel monte carlo
on hybrid computing systems,” in IEEE Conference on Computational
Intelligence for Financial Engineering Economics (CIFEr), 2014, pp.
215-222.

S. Omland, M. Hefter, K. Ritter, C. Brugger, C. De Schryver, N. Wehn,
and A. Kostiuk, Exploiting Mixed-Precision Arithmetics in a Multilevel
Monte Carlo Approach on FPGAs, 2015, pp. 191-220.

J. De Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D. Hofer, and
T. Hoefler, “StencilFlow: Mapping large stencil programs to distributed
spatial computing systems,” in IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), Feb. 2021, pp. 315-326.
G. Rodriguez-Canal, N. Brown, M. Jamieson, E. Bauer, A. Lydike, and
T. Grosser, “Stencil-HMLS: A multi-layered approach to the automatic
optimisation of stencil codes on FPGA,” in Proceedings of the SC
’23 Workshops of the International Conference on High Performance
Computing, Network, Storage, and Analysis (SC-W), 2023, p. 556-565.
E. Laszl6, Z. Nagy, M. B. Giles, I. Reguly, J. Appleyard, and P. Szolgay,
“Analysis of parallel processor architectures for the solution of the
Black-Scholes PDE,” in 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), 2015, pp. 1977-1980.

T. Becker, O. Mencer, S. Weston, and G. Gaydadjiev, Maxeler Data-
Flow in Computational Finance. Springer International Publishing,
2015, pp. 243-266.

K. Kamalakkannan, G. R. Mudalige, I. Z. Reguly, and S. A. Fahmy,
“High throughput multidimensional tridiagonal system solvers on FP-
GAs,” in International Conference on Supercomputing (ICS), Jun. 2022.
M. Bouaziz, M. Samet, and S. A. Fahmy, “A dataflow overlay for Monte
Carlo multi-asset option pricing on AMD Versal Al Engines,” in ISC
High Performance Research Paper Proceedings, 2025.

P. Rawat, M. Kong, T. Henretty, J. Holewinski, K. Stock, L.-N. Pouchet,
J. Ramanujam, A. Rountev, and P. Sadayappan, “SDSLc: a multi-target
domain-specific compiler for stencil computations,” in International
Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing(WOLFHPC), 2015.

L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
2013, p. 29-38.

Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA: Stencil with opti-
mized dataflow architecture,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2018, pp. 1-8.

T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler,
“Stateful dataflow multigraphs: a data-centric model for performance
portability on heterogeneous architectures,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2019.

I. Z. Reguly, G. R. Mudalige, M. B. Giles, D. Curran, and S. McIntosh-
Smith, “The ops domain specific abstraction for multi-block structured
grid computations,” in Fourth International Workshop on Domain-
Specific Languages and High-Level Frameworks for High Performance
Computing (WOLFHPC), 2014, pp. 58-67.

0. Reiche, M. A. Ozkan, R. Membarth, J. Teich, and F. Hannig, “Gen-
erating fpga-based image processing accelerators with hipacc: (invited
paper),” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2017, pp. 1026-1033.

Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong, and
Z. Zhang, “HeteroCL: A multi-paradigm programming infrastructure
for software-defined reconfigurable computing,” in ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays (FGPA), 2019,
p. 242-251.

G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto, and M. D.
Santambrogio, “A polyhedral model-based framework for dataflow im-
plementation on FPGA devices of iterative stencil loops,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2016,

pp. 1-8.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

OPS DSL Documentation (Latest). Accessed: 2024-09-13. [Online].
Available: https://ops-dsl.readthedocs.io/en/latest/

I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-
scale stencil codes at run-time with ops,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 4, pp. 873-886, 2018.

G. Balogh, G. Mudalige, I. Reguly, S. Antao, and C. Bertolli, “Op2-
clang: A source-to-source translator using clang/llvm libtooling,” in
IEEE/ACM Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC), 2018, pp. 59-70.

M. Treinish, I. Carvalho, G. Tsilimigkounakis, and N. S4, “rustworkx:
A high-performance graph library for python,” Journal of Open Source
Software, vol. 7, no. 79, p. 3968, 2022.

W. E. Winkler, “String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage,” in Proceedings of
the Section on Survey Research, American Statistical Association, 1990.
G. Dura and A.-M. Mosneagu, “Numerical approximation of black-
scholes equation,” Analele stiintifice ale Universitdtii “Alexandru loan
Cuza” din lagi. Matematicd (Serie noud), vol. 56, pp. 39-64, 2010.

S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick,
“Implicit and explicit optimizations for stencil computations,” in Work-
shop on Memory System Performance and Correctness (MSPC), 2006,
p- 51-60.

(2023, June) Alveo U280 Data Center Accelerator Card Data
Sheet (DS963) (v1.7). [Accessed 07-06-2024]. [Online]. Available:
https://docs.amd.com/r/en-US/ds963-u280/Alveo-Product-Details
(2024) VCK5000 Versal Development Card. [Accessed 13-01-
2025]. [Online]. Available: https://www.xilinx.com/products/boards-
and-kits/vck5000.html

(2023) NVIDIA HI100 Tensor Core GPU. [Accessed 13-01-2025].
[Online]. Available: https://www.nvidia.com/en-gb/data-center/h100/
M. Nurul Anwar and L. Sazzad Andallah, “A Study on Numerical
Solution of Black-Scholes Model,” Journal of Mathematical Finance,
vol. 08, no. 02, pp. 372-381, 2018.

(2023) StencilsOnFPGA: Modularised HLS(Vivado C/C++) based
implementation of contrasting stencil applications targeting
Xilinx ~ FPGAs. Accessed: 2025-02-18. [Online]. Available:
https://github.com/OP-DSL/StencilsOnFPGA

R. Clayton and B. Engquist, “Absorbing boundary conditions for acous-
tic and elastic wave equations,” Bulletin of the Seismological Society of
America, vol. 67, pp. 1529-1540, Dec. 1977.
(2025) OPS-HLS repository.
https://github.com/beniel T/OPS

[Online]. Available:

APPENDIX
A. Abstract

This artifact evaluation appendix contains details of the
workflow, artifacts, and the details of the result data artifacts.
Evaluators require an Nvidia H100 GPU and one of the U280
or VCK5000 hardware to verify the results.

B. Artifact check-list (meta-information)

o Algorithm: OPS - DSL for generating code for both GPU,
FPGA platforms, containing AST generation, AST matching,
’Window buffer chaining algorithm’, optimization iterations,
and an automated end-to-end build workflow for the user
applications.

o Compilation: Python 3 > 3.8. For H100 - Require NVHPC
23.7 toolkit, GNU Make, and OPS-DSL (NOTE: OPS and
OPS_batched are packed as sub-modules in the artifacts).

For FPGAs (U280, VCK5000) - Require Vitis 2022.2 or Vitis
2022.1 with compatible runtime, GNU C++ 9.4(or compatible
GNU C++)

« Transformations: Artifact contains OPS, OPS_batched (only
used for GPU batched applications) translator. Installation
guidelines provided. OPS translators require Python, and setup
instructions and a script are given.

o Binary: H100 Binaries - Require Compatible runtime with

CUDA 12.6/NVHPC 23.7. Results produced on a Debian 6
environment with NVidia Driver 560.35.03 (binaries should be
cross executable in a compatible Linux environment).
FPGA Binaries - Apps contains prebuilt XCLBIN files for both
code-generated designs and hand-coded designs, and host-side
binaries. XCLBINSs are specific for specific targets. Details can
be found in codegen_apps/README.md.

¢ Run-time environment: set OPS_HLS_ARTIFACT_DIR as
the extracted artifacts directory. For H100 - NVHPC-23.7
toolkit (or compatible NVHPC toolkit). Linux-based OS (tested
on Debian 6 amd_64).

For FPGA - Vitis 2022.1 or 20222
ment with Xilinx license. Specific
xilinx_u280_gen3x16_xdma_1_202211_1 for U280 and
xilinx_vck5000_gen4x8_xdma_2_202210_1. (Optional)
xilinx_u55¢c_gen3x16_xdma_3_202210_1 for U55c, which is
used only for RTM.

o Hardware: NVidia H100 required. Either AMD(Xilinx) Alveo
U280 or AMD(Xilinx) Versal VCKS5000 is required (require
both platforms for full evaluations). AMD(Xilinx) Alveo U55¢c
- Optional.

o Execution: Strongly recommend running the applications as an
exclusive user of the hardware to evaluate profile data. FPGA
environment, the user needs exclusive access to the hardware.
NOTE: No need for sudo privilege to run applications.

o Metrics: Runtime(us) and energy usage(kJ). Expected values
are available in each app under the directory profile_data.
Makefiles have options to switch the runtime, power profiling.

e Output: CSV files with runtime and power usage will be
generated inside the profile_data directory.

« Experiments: Experiment flow is detailed in the README.md
files. Make sure the generated FPGA design achieves similar
clock performance.

+ How much disk space is required: 2 GB for artifacts. Building
an FPGA design using Vitis requires 100GB+.

o How much time is needed to prepare workflow (approx-
imately): If hardware, runtime requirements are met, (10
minutes) for modifying the environment source scripts.

« How much time is needed to complete experiments: GPU-
H100 - requires 5-10 minutes for each app to run. Build

environ-
platforms

instantly. FPGAs require 5-10 minutes for each app to run.
Build takes 5-10 hours each app.

o Publicly available: Yes.
https://github.com/beniel T/ops-hls-pact25-artifact
https://doi.org/10.5281/zenodo.16785478

o Code licenses: Artifact licensed under MIT License and un-
derlying OPS, OPS_batched are licensed under BSD 3-Clause.

o Workflow automation: Makefile together with run_scripts.sh
connected with other bash scripts provides automated experi-
mentation and result generation for multiple parameters.

o Archived: https://doi.org/10.5281/zenodo.16785478

Github:
Zenodo:

C. Description

1) How to access:

o Download the archived artifact. The estimated size is
around 900 MB.

o Clone git sub-modules inside the artifact folder (check
README.md). - Detailed instructions are available.

o If the required hardware is not available, you can try
requesting access from AMD Heterogeneous Accelerated
Compute Clusters (link: https://www.amd-haccs.io/).

2) Hardware dependencies: NVIDIA H100 is required for
GPU apps. AMD (Xilinx) Alveo U280, AMD (Xilinx) Ver-
sal VCKS5000 are required for FPGA designs. AMD(Xilinx)
Alveo U55c is optional.

3) Software dependencies: python3 (>3.8), GNU Make.
Additional for H100: NVHPC 23.7 toolkit and supported
runtime, drivers. Additional for FPGAs: Vitis 2022.1 or 2022.2
toolkit, GNU C++ 9.4 compiler (or compatible GNU com-
piler).

D. Installation

Detailed instructions are available in README.md. Addi-
tional setup for GPU apps in gpu_apps/README.md and for
FPGA apps in codegen_apps/README.md.

E. Experiment workflow

Check app execution workflow in the main README.md
file for details.

F. Evaluation and expected results

Each app has already generated runtime and power
profiles under the profile_data directory. Additionally uni-
fied_data_artifacts folder contains data used in the publication.
Check the generated results after the experiment run and
compare with the results initially given in the artifacts. NOTE:
’make clean’ will remove existing results. Therefore, make
sure you have a copy before ’clean’

G. Experiment customization

Each app has a run_script.sh or run_hls_script.sh, which
will be working with Makefile. You can customize parameters
there for experiment customization.

H. Methodology

Submission, reviewing and badging methodology:

« https://www.acm.org/publications/policies/artifact-
review-and-badging-current

o https://cTuning.org/ae

