A Dataflow Overlay for Monte Carlo Multi-Asset
Option Pricing on AMD Versal Al Engines

Mohamed Bouaziz
KAUST
Thuwal, Saudi Arabia
mohamed.bouaziz@kaust.edu.sa

Abstract—Monte Carlo simulations are widely used for fi-
nancial applications, particularly in option pricing. Multi-asset
option pricing has not been as widely investigated as single-asset
problems and presents specific challenges. This paper presents an
efficient way to design a dataflow overlay for multi-asset option
pricing on AMD Versal AI Engines by leveraging their SIMD
capabilities and the high-performance interconnect network link-
ing them. The proposed dataflow overlay achieves a highly
scalable parallelized implementation that can utilize nearly the
totality of the available AI Engines on the AMD Versal VCKS5000
accelerator. We also show that it achieves up to 25.7x speedup
over a traditional FPGA programmable logic implementation
using the Vitis Quantitive Finance Library, a specialized AMD
library for quantitative finance on FPGAs, and up to 13.41x
speedup over a highly parallelized CPU implementation over
128 threads. We show that although an Nvidia RTX A6000 GPU
implementation has 0.73 x the execution time of our design, our
design achieves 1.82x the energy efficiency.

Index Terms—Domain-Specific Accelerator,
ACAP, Option Pricing, Monte Carlo Simulation,
Performance Quantitative Finance.

AMD Versal
High-

I. INTRODUCTION

Quantitative finance is critical in applied scientific comput-
ing and industry [1] and requires fast and accurate numerical
methods. Various acceleration means, including FPGAs, multi-
core CPUs, and GPUs, have been employed to allow the accel-
eration of quantitative finance applications [2]. In particular,
option pricing requires computationally intensive operations.
Options are financial derivatives that give their owner the right,
but not the obligation, to buy or sell an underlying asset (or
multiple assets) at a predetermined strike price on or before a
specific maturity date. Determining the fair value of an option
is a core task in quantitative finance [3].

In the financial literature, the time evolution of asset prices
is modelled using stochastic differential equations (SDEs) [4].
For risk management purposes, the parameters of these SDEs
must be calibrated to market data, possibly multiple times a
day [5]. During this calibration, practitioners determine the
parameters that consistently reflect the observed prices on the
market for different values of maturity dates and strike prices.
Hence, a large number of options have to be evaluated for
different parameters (strike prices and maturity dates), which
can be computationally prohibitive if the price evaluation is
not sufficiently fast [6]. This raises the need to meet industrial
demands by leveraging reduced latency accelerators [7], [8].

Michael Samet
RWTH Aachen University
Aachen, Germany
samet@uq.rwth-aachen.de

Suhaib A. Fahmy
KAUST
Thuwal, Saudi Arabia
suhaib.fahmy @kaust.edu.sa

Multi-asset options have become instrumental in risk mit-
igation in fixed-income, foreign exchange, and energy mar-
kets [9]. They present a cheaper alternative for investors to
hedge against the combined associated risk of multiple assets.
However, due to their complex valuation, as they mostly do
not admit closed-form formulas, analytical approximations
have been explored [10], [11]. The downside of such ap-
proximations is that they are typically specific to a particular
model and payoff, i.e. the profit of the option. In contrast,
numerical approximations are more applicable for various
payoffs and models. Given the existing infrastructures and
literature in hardware acceleration for numerical applications,
the acceleration of the numerical methods for option pricing
can be well supported and achievable.

There are four main approaches in the option pricing liter-
ature [12], partial differential equation (PDE) approach [13],
transform methods [14], Monte Carlo (MC) simulation meth-
ods [15], and the more recent deep learning approaches [16].
The PDE approach relies on formulating the pricing problem
as a PDE [17] and appropriately discretising and approxi-
mating it [18]. The shortcoming of this approach is that its
computational cost grows exponentially with the number of
underlying assets. Hence, the problem becomes intractable for
multi-asset options, typically with more than three assets [13],
a phenomenon known as the curse of dimensionality [19].
Transform methods address the problem by mapping it from
the direct space of prices to an image space via an integral
transform (e.g. Fourier [20]). This has been achieved through
various techniques, such as sparse grid quadrature [21], adap-
tive sparse grid quadrature [22], and quasi-Monte Carlo [23].
These methods have been shown to alleviate the curse of
dimensionality [24], [25]. However, empirical evidence shows
that while these methods reduce the impact of dimensionality
and outperform traditional MC methods, they tend to become
slow with larger problem sizes [21], [22].

MC methods compute the option price by approximating
the expected value of its payoff via the simulation of M
independent paths of the stochastic price process and aver-
aging their outcome to deduce the result [15]. Nevertheless,
the convergence rate is considered to be rather slow [26],
which motivated the development of several variance reduction
techniques, such as control variates, importance sampling [26]
or the multilevel MC (MLMC) method [27]. On the other

hand, option pricing using the MC method has been subject to
acceleration using CPUs [28], GPUs [29], and FPGAs [30], as
it is inherently a parallel process of simulating multiple inde-
pendent paths. The independence of path simulations allows
the parallel scaling of the processing and allows it to scale
spatially, given its reduced data communication characteristic.

Recent literature has increasingly focused on using deep
neural networks (DNNs) for option pricing and calibration to
overcome the curse of dimensionality [16], [31]. A significant
advantage of this approach is that after a computationally
intensive offline training phase—which often involves MC
simulations—option prices can be computed very rapidly
during the online forward pass. However, a notable drawback
is the complexity involved in controlling the error of DNNs.
In contrast, the MC method allows for cheap computation of
a probabilistic error estimate [26]. As a result, the MC simu-
lations are not only still required to generate the training data
but are also still employed to benchmark their performance
and verify their accuracy [16], [31]. This makes the need for
acceleration of the MC for option pricing inevitable.

For the asset dynamics, we consider the multivariate ge-
ometric Brownian motion (GBM), which is the multivariate
extension of the Nobel prize-winning Black-Scholes-Merton
model [32]. Over the past two decades, more sophisticated
models such as jump-diffusion models [33], stochastic volatil-
ity models [34], and non-Markovian rough volatility mod-
els [35] have been developed. Despite these advancements,
geometric Brownian motion (GBM) model remains the most
commonly used model for benchmarking the performance of
pricing methods in the financial literature [9], [10], [16], [17],
[22], [31], [36]. Hence the importance of building a framework
for acceleration of said model.

Emerging reconfigurable dataflow architectures, such as
Groq [37], SambaNova [38], and AMD Versal AIE [39],
present an exciting platform for accelerating a variety of
compute-intensive applications. By combining massive par-
allelism with programmable functional units connected via
a general interconnect network, these architectures address
von Neumann data movement challenges, enabling enhanced
parallelism and unrolling of dataflow computations.

In this work, we propose a massively parallel dataflow
design for MC multi-asset option pricing. We implement the
dataflow as an overlay tailored specifically to the AMD Versal
Al Engines (AIEs). As illustrated in Fig. 1, the AMD Versal
architecture comprises an array of configurable AIE cores
running computation and communicating through configurable
high-performance stream interconnects. This high degree of re-
configurability allows the implementation of efficient dataflow
designs. The AIE cores are highly optimized processors for
parallel and vectorized operations, allowing the native support
of processing in parallel MC independent path simulations
for multi-asset options. The closeness and connectivity of the
AIE cores through the stream interconnects allow offloading
composing kernels that enable the pricing model calculation on
different AIEs for load balancing. Besides, the spatial scaling
of the AIE processors over an array of 400 = 8 x 50 cores can

Y
=)
Al|E A|gE> |
Engine 2 Engine 9 g S £
< Qo g
A A A A 1] Q 1<
2
ri_ﬁi < g g &
7 ARy v 5 £ |5
<
> > I o
S| Al S Al (—)E S I
GE> Engin g Engin < g
gine 8| Engine T

AXI4-
Interconnects

<> AIE memory
acess

<> Cascade stream

Fig. 1: AMD Versal System-on-Chip architecture.

be leveraged to tile multiple acceleration units, given that the
simulations of the independent paths are completely decou-
pled. These factors enable the design of a massively parallel
dataflow overlay. The AIE array interfaces with Programmable
logic (PL) (i.e. traditional FPGA fabric) that can be used
to communicate with the host system and implement further
custom logic.

In this work, we propose a bottom-up dataflow overlay
design targeting the acceleration of the MC multi-asset option
pricing using the AMD Versal AIEs following these steps:

o We analyze the computational requirements of the GBM
model in generating normal random variables, simulat-
ing path price, and calculating the resulting payoff and
demonstrate how to efficiently map these operations to
the SIMD operations supported by the AIEs.

o We pipeline the pricing steps over multiple AIEs op-
erating concurrently while communicating via the high-
performance AXI4-Interconnect network.

o We show how to scale the design spatially using multiple
compute units over nearly the totality of the AIE array,
how to hierarchically broadcast the problem parameters
across the cores, and how to stream the data in and out
through the PL.

o We propose an automated framework to run simulations
with different parameters, i.e. number of assets, indepen-
dent paths, and time steps.

e We compare the performance of the proposed design to a
parallel dataflow implementation on the PL implemented
using the Vitis Quantitative Finance Library [30] (a spe-
cialized library for quantitative finance applications for
AMD FPGAs), a similar highly parallel multi-threaded
CPU implementation, and a highly parallel GPU im-
plementation. We showcase significant speedup against
the FPGA and CPU, and competitive performance and
improved energy efficiency against the GPU.

o We open-source this work to the broader community on
this GitHub repository [40].

—>
RNG ——{ MC simulation |— Pricing —
—> —>]

Fig. 2: Generic MC option pricer flow.

II. MULTI-ASSET OPTION PRICING FLOW

A financial option gives its owner the right (but no obli-
gation) to exchange, by buying or selling, an (or multiple)
underlying asset(s) on or before a limit date 7', called the
maturity date, for a predefined price K, called the strike price.
For an option on an asset with stochastic price process S(t) to
be profitable, its strike price should be lower than the actual
price on the maturity date S(T") in case of buying, and higher
in case of selling. The payoff, that is the profit an option can
earn, given these parameters, is given as in Eq. 1.

Payoff = max{0,S(T) — K} (D)

Determining an option’s strike price at 7" involves predict-
ing the underlying asset’s price S(t) in the future. Partial
differential equations are used to model price evolution in
time, such as in the GBM model. In GBM, the price of
the underlying asset S(¢) is assumed to follow a geometric
Brownian motion characterized by a constant drift » and
volatility o. Mathematically, this is described by the following
stochastic differential equation:

dS(t) = r S(t)dt + o S(t) AW (),

where W (t) denotes a Brownian motion, i.e. a stochastic
process that follows the normal distribution of mean 0 and
variance t. The solution to this differential equation is:

S(T) = S(0) exp <[r — ;OQ] T + UW(T)) ,

where 5(0) is the known initial stock price. Since W (T) is a
Brownian motion, and therefore normally distributed, the stock
price S(T') can be expressed in terms of a normal random
variable Z as follows:

2

For the multi-asset, the GBM model generalizes to:

S(T) = S(0) exp <[r - 102} T+ aﬁz) .

where {S;}¢_; is the set of the prices of the assets, which
leads to the multi-dimensional formulation for the multi-
option problem with independent W;(t) given in Eq. 2 where
(L;,j)1<i,j<a represent a matrix that correlates the indepen-
dent Brownian motions.

d
1
Si(T) = S;(0) exp [r - 203} T+oNTY Li;Z
Jj=1

2

MC simulation is commonly used to model price evolution
over time. The simulation engine, illustrated in Fig. 2, is
called the option pricer. To simulate prices {Si}le using the
GBM model, univariate independent normal random variables
{Zi}?:l are generated and transformed into multivariate ran-
dom variables {Z?Zl L;, Zj}j:r

The SIMD capabilities of AIE cores enable vectorized,
parallel generation of independent normal random variables
{Zi}le and their correlation into multivariate random vari-
ables {Z?Zl L;;Z; }j: > as detailed in Sections III-Al
and III-A2. The MC simulation engine then independently
calculates the asset price for each path at maturity 7', S(T).
Finally, the pricing stage averages these prices to determine
the option’s payoff, as given in Eq. 1.

In terms of parameters, the accuracy of MC simulations
depends primarily on the number of simulated paths M and
time steps IV per path. Increasing M reduces statistical error,
improving the accuracy. Since all M paths are independent,
they can leverage vectorized operations and spatial parallelism
across a large number of cores. For each path, the option’s life-
time is discretized into N time steps. More time steps enhances
simulation granularity and accuracy. As each path’s simulation
is assigned to an AIE in our case, the IV timesteps are pipelined
across its pipeline stages. The problem parameters (M, N, K,
T,d, L ;, S;(0), r, o;) are broadcast to the compute units via
low-latency stream interconnect.

Finally, option pricing involves reducing the vector of asset
prices from each MC simulation path into a single value
before averaging across all paths to calculate the payoff.
The reduction method—average, minimum, or maximum—
depends on the option’s payoff. This work uses the minimum
reduction scheme defined in Eq. 3. The provided analysis
and parallelization techniques apply equally to other reduction
methods (maximum or average) that AIE operations support.

Payoff = max{0, mini<;<q(S:(T)) — K} 3)

The dataflow design is general, supporting a wide set
of parameters, including multiple reduction schemes with a
variable number of assets. The application of the required
changes is automated, as discussed in Section III-C.

III. MULTI-ASSET OPTION PRICING DATAFLOW DESIGN

This section details the multi-asset option pricing dataflow
overlay design tailored specifically for the Versal AIEs. Sec-
tion III-A details the architecture of a single Compute Unit
(CU) that implements the flow presented in Section II and
how each stage is mapped to the AIE resources. Subsequently,
Section III-B demonstrates how to scale the design to multiple
CUs that exploit near the totality of the AIE array. Finally,
Section III-C shows how to exploit the PL fabric for streaming
parameters into the CUs using the broadcasting feature of the
network of interconnects of the AIE array, receiving results,
and how the tiling of the simulation paths over the CUs with
a variable number of assets is automated on the host.

Inverse Path | AE | Al Engine
RNG Cumul. simulation Vemory tile
’ Correlation Pricing ‘ I:] Stage
Rnd States Corr. Ceoff. —> Stream

Fig. 3: Single Compute Unit architecture mapping to the AIEs.

A. Single CU Design

As discussed in Section II, the option pricing flow involves
an MC simulation of evolving asset prices over time. The
simulation runs on multiple independent paths starting from
random states, outputting simulated prices that are reduced
to one price per path. These reduced prices are averaged
to determine the option’s payoff. As noted in Section I,
quantitative finance typically uses up to three assets [13] due to
the compute-intensive nature of the problem. This accelerator
supports up to eight assets, enabling experimentation with
higher dimensions given the achieved speedups.

Fig. 3 shows a single CU accelerator design for multi-
asset option pricing using the GBM model (Eq. 2). The
MC simulation requires generating a correlated multivariate
random distribution, as discussed in Section II. One AIE
generates a vector of random numbers from a uniform distri-
bution using the Fast Mersenne Twister method [41], adapted
for AIEs, as discussed in Section III-Al. These numbers
are normalized to [0,1) and streamed to an adjacent AIE,
which transforms them into univariate normal distributions
using the Inverse Cumulative Gaussian method, as discussed in
Section III-A2. The same AIE then correlates the multivariate
vector using the correlation coefficients L; ; 1<, j<q. Finally,
the correlated vector is streamed to another AIE, where the
prices S;(T'), 1<i<q are simulated on multiple paths using the
GBM model, and the final price is determined, as discussed in
Section III-A3. Note that the stages in Fig. 3 mapped to the
same AIE tile are fused within the same kernel and occupy
the totality of the core’s runtime.

As shown in Fig. 3, data exchanges between AIEs are
enabled through the stream interconnect in the AIE Array.
The choice of stream processing follows the feed-forward
nature of the simulation. The stream interconnects ensure 32-
bit/cycle communication and are connected to AIEs through
FIFOs to have 128-bit 4-word/4-cycle or 32-bit 1-word/cycle
access [42]. These streams are accessed using API calls that
intrinsically chunk data to align with these access patterns.
Additionally, operations within each AIE are vectorized into
SIMD instructions, requiring a balance between production
and consumption rates to ensure that the vector size consumed
by one AIE matches the vector size produced by the preceding.
As shown in Fig. 1, the stream AXI4-interconnect network
supports bi-directional streaming through available switch
boxes and automatically manages back pressure between tiles
[42]. This enables flexible placement of compute kernels,
facilitating the scaling of the accelerator design to multiple
CUs, as discussed in Section III-B.

1) Porting SIMD Mersenne Twister to AIEs: The Mersenne
Twister (MT) [41] is a pseudorandom number generator
following the uniform distribution. It is used in the Vitis
Quantitative Finance Library [30] and QuantLib [43] for
option pricing. It is based on a linear feedback shift register
(LFSR) structure, which operates on an internal state array,
W10..Q — 1], consisting of @ binary words of fixed word
length, as is shown in the recursion in Eq. 4.

WI0] < W1, W[l] « W[2],..., WI[Q — 2] + WI[Q — 1]
WIN —1] <= g(W[0],..., W[Q — 1]) @
The MT method is defined by the recursion given in Eq. 5
where (W[0]|W]1]) represents the concatenation of the most
significant 32 —r bits (MSBs) of W 0] and the least significant
r bits (LSBs) of W0]. The matrix A is a 32 x 32-matrix,
chosen for efficient bitwise multiplication W - A, and R is an
integer such that 1 < R < . The @ operation represents
bitwise exclusive-or.

gWiol,..., WIN —1]) = (W[O][W[1]) - Ae WIR] (5)

This design utilizes the SIMD Fast Mersenne Twister
(SFMT) [41] for the uniform random number generation as
depicted in Algorithm 1. The SFMT is a vectorized version
of the MT over 128 bits, meaning that W[0..() — 1] are 128
bits regarded as 4 x 32-bit elements. This allows using the
AlEs optimized for efficient SIMD operations following the
methodology presented in [44].

g(Wlo],...,.W[Q—1]) =W[0]- Ae W[R] - B
ewWR-1]-Cow[Q-2]-D

(6)

Typically in SFMT, @ is 156 and the recursions given in
Eq. 6 are as follows:

e W-A= (W << 8)® W: shifts the 128-bit W 8 bits to
the left and applies XOR to itself.

« W-B=(W 3> 11)&(BFFFFFF6 BFFAFFFF
DDFECBTFDFFFFFEF): shifts every 32-bit
chunk of the W 11 bits to the right and applies a bitwise
AND operation to a mask. The mask has been randomly
chosen in [41], with a 7/8 probability of choosing 1 for
denser feedback.

o W-C = (W >> 8): shifts the 128-bit W 8 bits to the
right.

32
e W-D = (W << 18): shifts every 32-bit chunk of the
W 18 bits to the left.

Porting these operations to the AIE using the AIE-API
[45] presents two challenges. First, the AIE-API does not
support shifting operations on 128-bit. Using the AIE-API,
shifts are performed element-wise on the 4x32-bit vectors.
This complicates the operations W - A and W - C. Second,
while many data types are supported, there is no direct support

| bi27 -+ - bos I bos - - - bea I bes - - - baz I b3y -+ bo

Algorithm 1 SFMT Random Number Generation.

l l aie :: u[mmft(..p)l l 1: Input: d, N7 M
|hm 1,--~b%ll---()| bos—p -+ bea0---0 | bes—p - bga0---0 | bsi—p---bo0---0 4 MxN
aie :: shuffle_up_fill(., zeros, 1) 2: Initialize: blOCk_bound = I—%W
[bosbes | bk | bmb] 0.0 3: for block = 0 to block_bound do
] ! 7 | (r [I Z j{ I ! | 4: for i = 0 to) (or fewer for last block) do
)9 096)63 * * - b D31 -+ 032 0---0
F] - 5: rand_vec = perform_SFMT()
ferge : = aie::bi
Merg 6 rand_vec a%e bit_and(rand_vec, Ox7{ftffff)
aie :: bit_or(...) 7: rand_vec = aie::to_float(rand_vec, 31)
[biorbosp | bospbeasy bos—p - bszp | bsrpbo0:--0 | 8: aie::writeincr(rand_vec) > Output 4
Fig. 4: 128-bit vector shift left operation. single-precision floats in [0,1)
9: end for
10: end for
for unsigned integers, which are crucial to cast output values
into positive floating-point random numbers in [0, 1). [4] Uniform RN
Four operations are required to shift the 128-bit binary word % [w] ™1 [Univariate RN

stored in a 4x32-bit vector using the AIE-API, as illustrated [t2] [@@@ @ frv]
in Fig. 4. The elements are shifted to the left n bits using :@ EulEizEralE1d FrglFad ErlEag my] Univariate RN
aie::upshift. This zeros the n LSBs, and the goal is to ([E2dL2 L23||L24-L25 L2e L27]l-28 Concatenate
replace Fhem with the initial » MSBs of the adjacent elements o Mutiply and
to the right. For that, the elements of the vector are moved 5] accumulate

leftwise one element, and the right-most element is filled with
0 using aie::shuffle_up_fill. This step allows the
extraction of the n MSBs of the adjacent elements to the
right. In order to align them with the n zeros in LSBs of
each element, a shift to the right of each element by 32 — n
is performed using aie::downshift. Finally, since the
required values are aligned with the zeros of the LSBs, a
bitwise OR operation is performed, resulting in the desired
128-bit left shift operation needed for the W - A operation.
For the 128-bit right shift, the same steps apply oppositely.

As shown in Fig. 3, the initial states are stored and updated
in the AIE core internal memory whenever a new random
number is needed. The states are initialized by random seeds
as described in Section III-C.

Finally, as shown in Algorithm 1, the 4x32-bit vector
generated by SEMT undergoes a bitwise AND operation with
the mask Ox7fffffff to nullify the MSB. This ensures
the values are non-negative, as the AIE-API does not support
the unsigned integer data type (L6). The resulting vector is
transformed into four single-precision floating-point numbers
in [0,1) using aie: :to_float by specifying 31 (MSB) as
the position of the input decimal point (L7). Since the SFMT
generates 128-bit random numbers by looping throughout the
state array of @ elements, the generation process is done in
blocks of @ elements to generate the d x M x Nx 32-bit
random numbers required for the simulation (L2). This also
ensures that the timestep dependencies of this design can be
kept within the AIE and, therefore, do not require updating
the whole AIE graph for synchronization.

2) Multivariate Normal Distribution: Generating multivari-
ate normal distribution from a uniform distribution requires
two steps: using the Inverse Cumulative Normal Distribution
(ICND) to generate univariates and multiplying them by the
correlation coefficients L; ;1<; j<q4 as discussed in Section II.

The rational fraction approximation P, given in Eq. 7

Fig. 5: Generation of correlated normal random numbers.

(see coefficient in Table I), from [29] (adapted from [46]),
approximates the ICND. Unlike the Vitis Quantitative Finance
Library, which relies on the method in [47] that prevents vec-
torization due to varying computations across vector elements,
this approximation applies the same operation to all elements,
making it suitable for the SIMD capabilities of the AIEs.

(((((A1R? + A9) R? + A3)R? + Ay)R® + A5)R® + Ag)R
(((BiR? + B2)R? + B3)R? + B4)R?> 4+ Bs)R? + 1
, where R(X) =X —-05
(7

For a multivariate of 8 elements (recall that 8 is the maxi-
mum number of assets supported), the flow involves consum-
ing and concatenating two incoming 4 X single-precision (32-
bit) floating-point streams from the SEMT core, applying the
ICND approximation to generate the univariates {Z; }?:1, and
performing the multiply-and-accumulate operation to calculate
the multivariate components {Z?Zl L;;Z;}¢ |, as shown in
Fig. 5. The multivariate components are then streamed to the
path simulation and pricing stage.

3) Path generation and pricing: Recall the price evolution
of the GBM model for an asset .S; from Eq. 2

P(R(X)) =

d
1
Sz(T) = Sl(O) exp l:’/‘ - 20'l2:| T+ O'Z\/TZ Li,ij
j=1
For the path simulation, the only term that depends
on the correlated multivariate and evolves over time
is mﬁZ?ZlLi,ij. Hence, the simulation calculates

[r — %alﬂ once and keeps it constant while the evolving term
oVTY j=1Li,jZj is computed for each path. The simulation

for multiple assets is vectorized using SIMD operations.

TABLE I: Coefficients of fraction P in Eq. 7.

Coeff. Value | Coeff. Value
Al -39.696830286653757 | B1 -54.476098798224058
Ao 220.94609842452050 | Bo 161.58583685804089
As -275.92851044696869 B3 -155.69897985988661
Ay 138.35775186726900 | By 66.801311887719720
As -30.664798066147160 | Bs -13.280681552885721
Ag 2.5066282774592392

The exponential operation is required to calculate .S;(T'), but
since the AIEs do not natively support exponentiation [45],
a sequence of operations is used to emulate it. To avoid
overhead, the exponential operation is delayed until the pricing
phase where it is applied only to some values of S;. This is
because, as discussed in Section II, multi-asset pricing reduces
the final simulated asset prices to one price, typically the mean,
minimum, or maximum. This work uses the minimum price
per path, meaning that S(7') = min(S;), and not all values
of S; are needed for the pricing phase.

Recall that the payoff per path from Eq. 1

Payoff = max{0,S(T) — K}

This is equivalent to the payoff being zero if and only if
S(T) < K, which is in turn equivalent to Eq. 8.

log(S(T)) = log(min(S;)) < log(K)

, since log is a monotonically increasing function

Therefore, the payoff is calculated only if the condition
in Eq. 8 is satisfied. Since log is a monotonically increasing
function, then:

log(min(S;)) = min(log(S;))

where
1 d
log(S;) = log(S;(0)) + [r — 20?] T+ Ui\/TZLij
j=1

, which can be propagated up to the condition given in
Eq. 8. Therefore, the exponential calculation is only applied
to finalize the calculation of the value of .S; that corresponds
to the minimum price when the condition in Eq. 8 is satisfied.
This reduces the number of required exponential calculations
by a factor equal to at least the number of assets d (since not
all paths satisfy the condition).

Finally, the calculation of log(S;(0)) and log(K') are of-
floaded to the host, as they are only required once.

The same applies to the maximum reduction scheme, and
the preceding optimization can be performed similarly. The av-
erage reduction scheme, however, needs all values; therefore,
the optimization does not apply in that case.

Inverse Path
RhE Cumul. simulation
Correlation Pricing
Rnd States Corr. Ceoff.
:\3 x 16 = 48 columns _2colu 'r;{rls
Donooo.-0oooog
OO0 oOon;man.d O O O
Oig|aio|oic O|aiaja|t
o|ojo|o|ojal][] {m] {m] {m
g{Ooo(c (bt Ogig(.a)
d{Ooojco|fo)t Ogja(.)
aigjaig|oia d|Ooigja|t
a|igjaig|gia d|a|gja|t
results results results results

parameters parameters parameters parameters

Fig. 6: Dataflow overlay arrangement.

B. Mapping CUs to the AIE Array

The MC simulation is highly parallel (Section II), and path
simulation can be parallelized across multiple CUs. Scaling
the dataflow design from one CU (3 AIEs) to multiple CUs
increases the throughput.

The AIE array comprises 400 AIEs in an 8x50 grid,
interconnected by AXI4-interconnects. The dataflow design
scales by overlaying 133 CUs across 399 AlIEs, with 8 CUs
occupying 3 columns and 5 CUs occupying 2 columns for
maximum utilization. As shown in [48] and [49], broadcasting
efficiently uses the AXI4 network. Despite shared problem
parameters (M, N, K, T, d, L, ;, S;(0), r, 0;), each CU
cluster receives a stream containing the parameters separately
and broadcasts it over its CUs. This ensures that the parameters
streamed from the PL enter from a nearby PL interface tile,
reducing propagation delays and routing complexity.

C. Interfacing with PL and automated tiling on the host

The MC multi-option pricing dataflow design, running on
133 CUs (Section III-B), interfaces with the PL and host as
shown in Fig. 7. The host configures the communication and
computation kernels. As the PL is primarily used for data
movement and caching in the AIE literature [48], [S0]-[53],
it is mainly used in this design to stream the parameters and
the results. This is because offloading additional computation
to the PL would increase traffic at the PL-AIE interface,
degrading the overall performance. Besides, it limits the porta-
bility of the designs to AIE architectures without a PL (e.g.,
Ryzen-NPU). In this overlay design, the PL streams SFMT

random number seeds and problem parameters into the AIE
array. The seed generation represents the state initialisation
discussed in Section III-Al and is performed on the PL
to overlap state generation with communication to the AIE
buffers. Additionally, the AIE-PL interface connection can be
configured as a 32-bit or 128-bit stream. In this design, AIE-
PL is 32 bits wide, given the small amount of data movement
between AIE and PL. This is because 128-bit AIE-PL streams
consume 4x32-bit interconnects, overutilizing the available
interconnect for a small data transfer.

Eight seed generators on the PL are used in this design.
Each generator generates the seeds of a particular CU in
each cluster. This separation of the generators is used to
keep the PL kernels simple for faster implementation. The
eight generators, indexed by ¢, each receive a set of values
{seeds. = host_seedz(-c),i € [1,16]} from the host and stream

a 4 x N 32-bit sequence (ugf ’C)) defined in Eq. 9.

(i,¢) oy (85€) (0) .
(un)1,...,4><N Uy, host_seed,” +n x 1 ©)
Vi € [1,16],Vc € [1, 8]

Notice that every generator generates seeds for 16 x8 = 128
CUs.

Five smaller seed generators are used for the distinct 5-CU
cluster. The remaining five generators operate using (uﬁf ’C))
similarly except that i = 1, and ¢ € [1,5].

The rest of the parameters, i.e. the number of paths, time
steps, and assets, are similarly streamed through the PL to the
CUs, except that they require no additional computation. The
outputs of the CUs are streamed out through the PL, and their
mean is calculated on the host to determine the final result.

The host automates the launching for different values of
simulated paths M and assets d. As the paths are independent,
they are equally distributed across the CUs, with each CU
assigned m path. This distribution is arbitrary, as
the paths are independent, and their evolution depends on the
multivariate calculated at runtime within the same CU.

The number of assets is another parameter for automation.
Recall from Section I that three assets are typically considered
large [13]. This design supports up to 8 assets priced in
parallel using SIMD operations of the AIEs. To maintain the
SIMD structure, unused asset dimensions must not contribute
to the final payoff. Recall the payoff from Eq. 1 Payoff =
max{0, S(T)— K} where S(T) = min(S;(T)). Unused asset
dimension must not affect the value of S(T') = min(S;(T)).
With the minimum reduction scheme, large enough values of
S;(T),Vi € UnDim, where UnDim is the set of the unused
dimensions, ensure this. By looking at Eq. 2,

d
1
Sl(T) = 51(0) exp |:7" — 2022:| T+ O'Z\/Tz:l Li’ij
j=

, having a large enough S5;(0) eliminates the effect of
S;(T) in the reduction. However, this dimension could still
impact the other dimensions when calculating multivariate

[Automated tiling]

Params. | |Params. | ----- Params. | | Params.
seed seed | seed seed
gen. gen. gen. gen.

Oo0Odidodn O 0O OO0 O

Oogdoo O 0O OO

QjgiojoiQc oot

o|o|o|o|o|o] O|o|o|o|o

Qoo o) g]] .

Qoo Oo|ooioid

Qjgoigiafc Oo|ooioid

oo ot (I o]
Strm. Strm. | Strm. Strm.

outres. | | outres outres. | | outres.
Host Proglirgir:able Al zr;g;ne

Fig. 7: Tasks allocation on the Versal SoC.

TABLE II: Hardware accelerator configuration.

Component Description

Board Type AMD Versal ACAP VCK5000
Device XCVC1902-VSVD1760-2MP-E-S
AI Engine 400x 15¢ gen. AIE

Vitis Toolkit Vitis 2022.1

values 2?21 0i,;Z;. To eliminate this, the following con-
straint is employed: o; = 0,Vi € UnDim, which nullifies
oVT 25:1 L; jZ;. When the maximum reduction scheme is
employed, the same method is preserved while choosing small
enough S;(0),Vi € UnDim values. For the average reduction
scheme, it is sufficient to nullify S;(0), Vi € UnDim values.
These constraints are automatically tuned on the host, and the
final parameter values are sent to the CUs.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the MC multi-asset
option pricing dataflow design on the AIEs is compared
against a traditional parallel dataflow FPGA implementation,
multi-threaded parallel implementation on CPU, and GPU
implementation. The details of the AMD Versal platform used
to implement the AIE dataflow and the PL dataflow are given
in Table II. The system details used for the implementations
on the CPU and GPU are given in Table III.

The Vitis Quantitative Finance Library [30] is used to build
the parallel dataflow FPGA implementation on the PL as

TABLE III: System configuration.

Component Description

CPU AMD EPYC 7763 @2.45 GHz with 64-Core-128-Thread
Memory 8x 64 GB RDIMM DDR4 @3.2 GHz

GPU Nvidia Ampere RTX A6000

(0} Ubuntu Server 20.04
Compiler GNU C++ Compiler with OpenMP 4.5

TABLE IV: Used components from the Vitis Quant. Fin. Lib.

Component Layer Description

MT19937 L1 MT random number generator
inverseCumulativeNormalPPND7 L1 Inverse Cumulative transform using [47]
MT19937IcnRng L1 Univariate random number generator
MultiVariateNormalRng L1 Multivariate random number generator
mcSimulation L1 Monte-Carlo Framework implementation

detailed in Section I'V-A.

Besides, OpenMP is used for building a multi-threaded par-
allel implementation on the CPU, as detailed in Section IV-B.
Performance in speedup and differences in scaling to a higher
degree of parallelism are given.

Finally, the relative speedups of the AIEs over the PL, CPU,
and GPU are compared in Section IV-C.

A. Composing a Multi-Asset Option Pricer on Programmable
Logic Using Vitis Quantitative Finance Library

The Vitis Quantitative Finance Library [30] is a High Level
Synthesis (HLS) library designed to build complete FPGA
accelerators for quantitative finance applications in C++. It
is an open-source library that delivers components structured
at three levels. The foundational level (LL1) offers essential
modules and functions for statistical calculations, numerical
methods, and linear algebra that enable implementation of
models. This includes modules such as random number gen-
erators, MC simulations, singular value decomposition, and
matrix solvers. The middle level (L2) provides pre-defined
hardware kernels for feature pricing engines provided as
kernels for evaluating different financial derivatives, such as
equity, interest rate, foreign exchange, and credit products.
The top-level (L3) comprises software APIs that interact with
hardware overlays.

To implement the multi-option pricing dataflow for the
GBM model, the components detailed in Table IV and Table V
are employed. The components given in Table IV are imported
from the library as they are, while those in Table V are adapted
to build the missing components for the GBM model.

The components MT19937, inverseCumulativeNor—
malPPND7, MT19937IcnRng, and MultiVariateNor—
malRng are used to generate a correlated multivariate random
number generator by generating uniform random numbers,
transforming them into normal random numbers, building
independent univariates, and transforming them into correlated
multivariates respectively. Mult iAssetHestonPathGen—
erator allows multi-asset Heston path simulation. Its struc-
ture is adapted to design a similar component called Mul-
tiAssetGBMPathGenerator that enables path simulation

TABLE V: Adapted components from Vitis Quant. Fin. Lib.
Comp t/New Comp t Layer Description
MultiAssetHestonPathGenerator L1 Multi-asset Heston path
— MultiAssetGBMPathGenerator simulation engine
MultiAssetPathPricer L1 Prici .
— MultiAssetPathPricer_redEXP ficing engine
MCEuropeanEngine
L2 European option pricing engine

— MCMultiAssetEuropeanGBMEngine

TABLE VI: Resource utilization on FPGA PL.

1x CU dataflow 12 x CUs dataflow Scaling Factor

Slices 21K (18.68%) 108.8K (96.80%) 5.18x
FF 103.4K (5.75%) 528.8K (29.38%) 5.11x
LUT 90.6K (10.07%) 643.9K (71.56%) 711

BRAMs 46.5 (4.81%) 91.5 (9.46%) 1.96x

DSPs 82 (4.17%) 729 (37.04%) 8.9

Freq (MHz) 300 2114 0.7x

for the GBM model. MultiAssetPathPricer allows the
pricing of simulated paths. It is modified to a simpler com-
ponent MultiAssetPathPricer_redEXP that calculates
the payoff of the GBM model, while the reduction scheme is
pulled upstream to the MultiAssetGBMPathGenerator.
This allows the use of mcSimulation that composes all
these components to build the desired CU. Finally, MCEu—
ropeanEngine is a component that enables the European
option pricing by initializing all the components and launch-
ing them. It is modified to a new component MCMulti-—
AssetEuropeanGBMEngine to initialize and operate the
designed CU for the GBM model.

mcSimulation is designed to implement a dataflow of
parallel CUs. Table VI shows the resource utilization of the
two implementations. The first instantiates one CU, while
the second instantiates twelve parallel CUs. Although all the
scaling factors are below 12, the second implementation is
empirically the maximum achievable level of parallelism that
could be implemented on the PL due to high logic utilization.

Contrary to the AIEs, that maintain a constant frequency
of 1 GHz, the elevated congestion when parallelizing the PL
design results in a reduction in frequency by 30%, as shown
in Table VI. Despite this reduction, the parallelized dataflow
maintains a linear scaling with the number of simulated paths
and is, on average, 6.59x faster than the single-CU dataflow
accelerator, as illustrated in Fig. 8. Therefore, it is used for
comparison for the rest of the experimental results.

B. Parallel CPU-based Multi-Asset Option Pricer

The HLS design in C++ used to design the dataflow on the
PL using the Vitis Quantitative Finance Library, is based on
QuantLib for CPUs, detailed in Section IV-A. We refactored
this to implement a multi-threaded design for CPU using
OpenMP in C++.

Parallel CUs are now each assigned to a parallel thread, and
the instantiation and initialization of composing components
(as shown in Fig. 2) is pushed downstream to mcSimula-
tion. This ensures that by giving each thread a private copy
of the required parameters, there are no competing threads

w
2 10" f-W--1 x-CU- dataflow - J-----mrmmrmemee b T -
= -M- 12 x CUs dataflow ,_——’7\:';6—. Y e
c __m-mTTT VA
£ 1071 b g
] ®-"T -
QO | =
X
w T T T
A0 xOﬁ A0 A0
Simulated paths
Fig. 8: Execution time on PL implementation.
-m- A P
102 4 ~M- 1 x Thread _e”T A~ X767 -
— -M- 12 x Threads g ! Pt _
G -~ I - -
-~ —M- 48 x Threads x _ar Pt
£ 10'] _m- 96 x Threads Pani] x10.53 - |z
= -m- 128 x Threads .=~ y - P T
) L ord
E] B
] - 2z7
9 227
Q
X
w
'\-06 ’_06 '_01 '\Q% XQQ

Simulated paths

Fig. 9: Execution time on multi-threaded CPU.

reading from the same memory locations. The private copy of
parameters is ensured using the directive firstprivate in
the OpenMP pragma that defines the parallel region. Besides,
using the OpenMP directive reduct ion, the sum of payoffs
is reduced to one sum at the end of the threads execution.

The multi-threaded design runs over up to 128 parallel
threads, which is the physical limit of the CPU (Table III).
As shown in Fig. 9, the speedup is, on average, 10.53x from
a single thread design to a 12-thread design, which is a higher
speedup compared to the 1 x CU dataflow to 12 x CUs
FPGA implementation in Section IV-A. This is because CPU
frequency remains constant as the parallelism scales.

Finally, the speedup for the 128-thread CPU implementation
is, on average, 76.7 x over the single-threaded version. Scaling
with the number of simulated paths maintains a steady linear
increase starting from 106 paths. Therefore, this is used for
comparison for the rest of the experimental results.

C. Performance Evaluation

The MC simulation process independently launches mul-
tiple simulation paths, each over multiple time steps. This
represents linear complexity over the number of simulated
paths and over the number of time steps.

Fig. 10 and Fig. 11 demonstrate that our dataflow design,
built on the AIEs, scales linearly with the number of simulated
paths and time steps, respectively. Besides, they demonstrate
that our design is 12.9x and 25.7x faster than the dataflow
design on the PL built using the Vitis Quantitative Finance
Library when running on different numbers of simulated
paths and time steps, respectively. Moreover, our design is
10.66x and 13.41x faster than the parallel multi-threaded
CPU implementation over the same parameters.

TABLE VII: Performance comparison to existing works.

Volume .
Platform (Asset x Path x Step) Exec. time Rate
Tian et al. . 6
(2013) [54] Virtex-4 XV4FX100 I x1x1 133 ns 75.18-10
2;"‘5‘1’?) e[tjg‘]l Zynq ZC702 2 x 103 x 365 1694 ms 43.09 - 107
This work ~ AMD Versal 8 x 108 x 1 177.07 ms 45.17 - 108
AIEs
-®- AlEaccelerator -7 'I:
_. 109 -m- GPU accelerator PSSt ae |
n - -
b -M- PL accelerator /,J:,—/ PL: 25.7x |
€ —~M- CPU accelerator _emll-" ‘",- ‘_m
F 107! 4 Praetaas 1 ,—::’;
S == . ! P
s it ~&~"" cpu: 13.41::"{,143)(. GPU: ¢68x
=] - - /
g 1072 4 Lem T e T -~ v
] | s o \~\::>/
=~ MIt. GPU: 3.25x ——o=z======E=TT Avg. GPU: 0.73x
1073 §-fifpme =TT e s
—'—"v—é-_—-__— T T T

A& Xy ¢

Simulated paths

Fig. 10: Execution time of 1 timesteps over multiple paths.

We adapted a GPU implementation from [29] and [56] for
multi-asset option pricing using the GBM model and opti-
mized it by storing parameters in read-only constant memory
for efficient broadcasting to all threads. Our design is up to
3.25x faster for simulations with fewer than 107 paths. The
GPU requires 0.73x on average to 0.68x the time of our
dataflow design for the same paths and 0.45x for the same
timesteps, making it faster. However, power measurements
using NVIDIA Nsight Systems and post-routing reports of the
AlEs show our design is 1.82x more energy-efficient than the
GPU, as summarized in Table VIII.

Comparing speedup across designs with differing paral-
lelism levels provides insights into theoretical limits. This is
computed using

para_cu(design;)

maz_speedup,; = speedup X -
para_cu(design;)

, where para_cu represents the number of parallel compute

units: para_cu(AI Engines) = 133, para_cu(CPU) = 128,

para_cu(PL) = 12.

Using this model, the PL design speedups of 12.9x and
25.7x adjust to 1.16x and 2.32x. This shows that with a
larger PL fabric matching the number of CUs we implement on
the AIEs (assuming no further frequency drops), our dataflow
design remains 1.16x to 2.32x faster. For the multi-threaded
CPU, speedups of 10.66x and 13.41x adjust to 10.26x and
12.9x. This highlights our design’s efficiency against larger
PL resources or more CPU cores. As the GPU does not
implement parallel CUs as is the case with the other designs
due to the SIMT execution model, the model changes to
%ﬁg:%, where para_cores(GPU) = 10752, and
para_cores(Al Engines) = 3192. 10752 is the number of
CUDA cores while 3192 is the number of utilized AIE cores
multiplied by the number of SIMD lanes per core. This adjusts

1024 ~®- AIE accelerator ’5,—:5!
— -M- GPU accelerator _o=z27%" !
%] ~®- PLaccelerator e PL: 12.9% &
£ 1077 _m- cPU accelerator _oz27%" ! g,
% , ___=zBF77CPU: 10.66x _ go-"T =77
g 100y _oo=EF == w77 GPU:0.45x
g B r”::*"/
& 1071 4 ,—’::_.,—
102 L2 T T T
'_QQ '_0\' xQ’L '_03
Time steps

Fig. 11: Execution time of 10® paths over multiple time steps.

TABLE VIII: Energy efficiency comparison.

GPU AIEs
Power consumption (W) 279.1 103.2
Average energy consumption (J) 33.40 18.31
Energy efficiency 1x 1.82x

the GPU speedups of 0.45x and 0.68% to 1.52x and 2.29x,
showing a dataflow design on the AIEs with equivalent parallel
capacity would outperform the GPU. Note that with the same
size AIE array, finer pipelining of the computation could
further benefit performance. However, this would break the
modular design shape shown in Fig. 6, which is what enables
filling the grid of 50x8 AIE cores.

Finally, existing works on PL accelerators [54], [55] targeted
rather simpler models mainly by pricing multiple single-asset
options. Single-asset option pricing involves one option per
asset, whereas multi-asset pricing uses multiple assets to price
one option. The difference in their pricing is the correlation
of the multivariate, which only applies to the multi-asset case.
Table VII compares these simpler cases with our work using
the metric Volume = Asset x Path X Step, which characterizes
the simulation workload for a given execution time. The Rate,
defined as Emc‘ﬁﬁf‘;me, represents the simulation workload
processed per second. Despite their simpler tasks, our dataflow
design outperforms these works on the single-asset problem by
10.48x to 60.08x.

V. RELATED WORK

Several works have focused on accelerating option pric-
ing using MC simulations on CPUs and GPUs. [57] pro-
posed a parallel MC option pricing approach for European
and American options, leveraging heterogeneous many-core
architectures with CPUs and GPUs. Their model achieved
parallelism by distributing workloads across distributed com-
puting infrastructures using both multi-core CPUs and many-
core accelerators. Besides, [56] demonstrates CUDA-based
acceleration for exotic single-asset option pricing on Nvidia
GPUs, while [29] compares MC option pricing on GPUs using
manually optimized CUDA [58] and OpenCL [59] kernels
against HMPP [60] and OpenACC [61].

On FPGAs, MC simulation has been subject to many
studies [62]-[65] and used in many applications [66]-[80]
including financial applications [81]—[87]. For option pricing,
the acceleration of Quasi-MC option pricing on an Altera
Startix III for a limited number of time steps and paths for a
single stock option was explored in [88]. Parallel acceleration
on multiple Xilinx Virtex-4 FPGAs using MC and Quasi-MC
methods for a single stock option for American, European, and
Asian options was explored in [54], [89], [90]. An optimization
framework and domain-specific language, Contessa, were pro-
posed in [91]-[93] for automatic generation and optimization
of MC simulators on FPGAs for financial applications. An
implementation of MC integration using stratified sampling
for an Asian option on a single stock using a Virtex-6 FPGA
was proposed in [94]. The approach involved dataflow and
pipelined processing, achieving good precision and handling
a high number of time steps. All these works do not handle
the multi-asset option pricing case; rather, they only target
single-asset options. In addition, they tailor their optimizations
to smaller FPGAs than the AMD Versal board. Besides, as
they do not tackle the multi-asset case, these works lack the
automation to handle different numbers of correlated assets.
With regard to High-Level Synthesis (HLS), [7] demonstrated
the suitability of employing HLS for accelerating the MC
option pricing by applying a series of optimizations such as
task-level parallelism loop pipelining. The Vitis Quantitative
Finance Library [30] is an example of a well-established
modular HLS framework for quantitative finance applications.
While it is inspired by the QuantLib library for CPUs [43],
it leverages specific optimizations for AMD FPGAs.

VI. CONCLUSION

In this work, we presented a highly parallel implementation
of a Monte Carlo option pricing dataflow overlay tailored
specifically for AMD Versal AIEs, specifically targeting multi-
asset option pricing. We leveraged the specialized vectorized
operation capabilities of the AIE cores, split the various
stages of the option pricing application, and arranged these
spatially. The proposed design showcases the scalability of
parallel compute units, providing an optimized framework for
accelerating Monte Carlo multi-asset option pricing utilizing
399 of the 400 available AIE cores. We demonstrated that
our dataflow design achieves 25.7x speedup over a parallel
dataflow design in programmable logic using the AMD Vitis
Quantitive Finance Library and a 13.41x speedup over a
highly parallelized CPU implementation using 128 threads.
We also demonstrated that although the GPU requires 0.73 x
the execution time of our design, our design achieves 1.82x
better energy efficiency.

In future work, we aim to extend this implementation to
more quantitative finance kernels to develop a specialized
library on AMD Versal AlEs, similar to the Vitis Quantitative
Finance Library for FPGAs. We also plan to template the
design to accommodate non finance kernels, to generalize to
a framework of MC simulation on AMD Versal AIEs.

[1]

[3]

[4

=

[5]

[6

=

[7

—

[8]

[9]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]
[25]
[26]

[27]

REFERENCES

M. Haugh and A. Lo, “Computational challenges in portfolio manage-
ment,” Computing in Science & Engineering, vol. 3, no. 3, pp. 54-59,
2001.

A. Sedighi and D. Jacobson, “Computational challenges and oppor-
tunities in financial services,” in International Conference on Smart
Computing and Communication (ICSCC), 2019.

J. C. Hull and S. Basu, Options, futures, and other derivatives. Pearson
Education India, 2016.

B. Oksendal, Stochastic differential equations: an introduction with
applications. Springer Science & Business Media, 2013.

S. Liu, A. Borovykh, L. A. Grzelak, and C. W. Oosterlee, “A neural
network-based framework for financial model calibration,” Journal of
Mathematics in Industry, vol. 9, no. 9, pp. 9:1-9:28, 2019.

J. Rosen, C. Kahl, R. Goyder, and M. Gibbs, “Computationally expen-
sive problems in investment banking,” in High-Performance Computing
in Finance. Chapman and Hall/CRC, 2018, pp. 3-24.

G. Inggs, S. Fleming, D. B. Thomas, and W. Luk, “Is high level
synthesis ready for business? an option pricing case study,” FPGA Based
Accelerators for Financial Applications, pp. 97-115, 2015.

D. McLean, “Challenges in scenario generation: Modeling market and
non-market risks in insurance,” in High-Performance Computing in
Finance. Chapman and Hall/CRC, 2018, pp. 115-171.

R. Carmona and V. Durrleman, “Pricing and hedging spread options,”
Siam Review, vol. 45, no. 4, pp. 627-685, 2003.

S. Borovkova, F. J. Permana, and H. v. Weide, “A closed form approach
to the valuation and hedging of basket and spread options,” Journal of
Derivatives, vol. 14, no. 4, pp. 4:1-4:18, 2007.

R. Caldana, G. Fusai, A. Gnoatto, and M. Grasselli, “General closed-
form basket option pricing bounds,” Quantitative Finance, vol. 16, no. 4,
pp. 535-554, 2016.

A. Hirsa, Computational methods in finance.
FL, 2013.

D. J. Duffy, Finite difference methods in financial engineering: a partial
differential equation approach. John Wiley & Sons, 2013.

D. Duffie, J. Pan, and K. Singleton, “Transform analysis and asset
pricing for affine jump-diffusions,” Econometrica, vol. 68, no. 6, pp.
1343-1376, 2000.

P. Boyle, M. Broadie, and P. Glasserman, “Monte Carlo methods for
security pricing,” Journal of economic dynamics and control, vol. 21,
no. 8-9, pp. 1267-1321, 1997.

D. Elbrichter, P. Grohs, A. Jentzen, and C. Schwab, “DNN expression
rate analysis of high-dimensional PDEs: application to option pricing,”
Constructive Approximation, vol. 55, no. 1, pp. 3-71, 2022.

C. Reisinger and G. Wittum, “Efficient hierarchical approximation of
high-dimensional option pricing problems,” SIAM Journal on Scientific
Computing, vol. 29, no. 1, pp. 440458, 2007.

A. Quarteroni and S. Quarteroni, Numerical models for differential
problems. Springer, 2009.

R. E. Bellman, “Dynamic programming,” science, vol. 153, no. 3731,
pp. 34-37, 1966.

E. Eberlein, K. Glau, and A. Papapantoleon, “Analysis of Fourier
transform valuation formulas and applications,” Applied Mathematical
Finance, vol. 17, no. 3, pp. 211-240, 2010.

C. Leentvaar and C. W. Oosterlee, “Multi-asset option pricing using a
parallel Fourier-based technique,” Journal of Computational Finance,
vol. 12, no. 1, pp. 1-26, 2008.

C. Bayer, C. Ben Hammouda, A. Papapantoleon, M. Samet, and R. Tem-
pone, “Optimal damping with a hierarchical adaptive quadrature for
efficient Fourier pricing of multi-asset options in Lévy models,” Journal
of Computational Finance, 2023.

C. Bayer, C. B. Hammouda, A. Papapantoleon, M. Samet, and R. Tem-
pone, “Quasi-Monte Carlo with domain transformation for efficient
Fourier pricing of multi-asset options,” arXiv preprint arXiv:2403.02832,
2024.

F. Y. Kuo and I. Sloan, “Lifting the curse of dimensionality,” Notices of
the AMS, vol. 52, no. 11, pp. 1320-1328, 2005.

M. Holtz, Sparse grid quadrature in high dimensions with applications
in finance and insurance. Springer Science & Business Media, 2010.
P. Glasserman, Monte Carlo methods in financial engineering. Springer,
2004.

M. B. Giles, “Multilevel Monte Carlo path simulation,” Operations
research, no. 3, pp. 607-617, 2008.

CRC Press Boca Raton,

(28]

[29]

(30]
(31]
[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

K. Spanderen, “Beyond simple Monte-Carlo: Parallel computing with
QuantLib,” https://www.quantlib.org/slides/qlws13/spanderen.pdf, 2013.
S. Grauer-Gray, W. Killian, R. Searles, and J. Cavazos, “Accelerating
financial applications on the gpu,” in Workshop on General Purpose
Processor Using Graphics Processing Units, 2013.

“Vitis quantitative finance library,” https://docs.amd.com/r/en-US/Vitis_-
Libraries/quantitative_finance/index.html, 2022.

K. Glau and L. Wunderlich, “The deep parametric PDE method and
applications to option pricing,” Applied Mathematics and Computation,
vol. 29, no. 1, pp. 440458, 2022.

F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” Journal of political economy, vol. 81, no. 3, pp. 637-854,
1973.

P. Tankov, Financial modelling with jump processes.
Hall/CRC, 2003.

L. Bergomi, Stochastic volatility modeling. CRC press, 2015.

C. Bayer, P. Friz, and J. Gatheral, “Pricing under rough volatility,”
Quantitative Finance, vol. 16, no. 6, pp. 887-904, 2016.

C. Bayer, M. Eigel, L. Sallandt, and P. Trunschke, “Pricing high-
dimensional Bermudan options with hierarchical tensor formats,” SIAM
Journal on Financial Mathematics, vol. 14, no. 2, pp. 383—406, 2023.
D. Abts, J. Kim, G. Kimmell, M. Boyd, K. Kang, S. Parmar, A. Ling,
A. Bitar, I. Ahmed, and J. Ross, “The groq software-defined scale-
out tensor streaming multiprocessor: From chips-to-systems architectural
overview,” in IEEE Hot Chips Symposium (HCS), 2022.

M. Emani, V. Vishwanath, C. Adams, M. E. Papka, R. Stevens, L. Flo-
rescu, S. Jairath, W. Liu, T. Nama, and A. Sujeeth, “Accelerating scien-
tific applications with SambaNova reconfigurable dataflow architecture,”
Computing in Science & Engineering, vol. 23, no. 2, pp. 114-119, 2021.
B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: Versaltm architecture,” in International
Symposium on Field-Programmable Gate Arrays (FPGA), 2019.
GitHub Repoistory, 2025. [Online]. Available: https://github.com/accl-
kaust/mc-option-pricing-aie

M. Saito and M. Matsumoto, “SIMD-oriented fast Mersenne twister: a
128-bit pseudorandom number generator,” in Monte Carlo and Quasi-
Monte Carlo Methods. Springer, 2006, pp. 607-622.

“Versal Adaptive SoC Al Engine architecture manual (am009),”
https://docs.amd.com/r/en-US/am009-versal-ai-engine, 2023.

N. Firth, “Why use QuantLib,” vol. 34, 2004.

M. Bouaziz and S. A. Fahmy, “PRNGine: Massively parallel pseudo-
random number generation and probability distribution approximations
on AMD Al Engines,” in International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2025.

“Al Engine kernel and graph programming guide (ugl079),”
https://docs.amd.com/r/en-US/ug1079-ai-engine-kernel-coding, 2022.

P. J. Acklam, “An algorithm for computing the inverse normal cumula-
tive distribution function,” University of Oslo, Statistics Division, vol. 37,
no. 3, pp. 477-484, 2000.

M. J. Wichura, “Algorithm AS 241: The percentage points of the normal
distribution,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), vol. 37, no. 3, pp. 477484, 1988.

J. Zhuang, J. Lau, H. Ye, Z. Yang, Y. Du, J. Lo, K. Denolf, S. Neuen-
dorffer, A. Jones, J. Hu, D. Chen, J. Cong, and P. Zhou, “CHARM: Com-
posing heterogeneous accelerators for matrix multiply on versal ACAP
architecture,” in International Symposium on Field Programmable Gate
Arrays (FPGA), 2023.

G. Singh, A. Khodamoradi, K. Denolf, J. Lo, J. Gomez-Luna, J. Melber,
A. Bisca, H. Corporaal, and O. Mutlu, “Sparta: Spatial acceleration for
efficient and scalable horizontal diffusion weather stencil computation,”
in International Conference on Supercomputing (ICS), 2023.

J. Zhuang, J. Lau, H. Ye, Z. Yang, S. Ji, J. Lo, K. Denolf, S. Neuendorf-
fer, A. Jones, J. Hu, Y. Shi, D. Chen, J. Cong, and P. Zhou, “CHARM
2.0: Composing heterogeneous accelerators for deep learning on Versal
ACAP architecture,” ACM Transactions on Reconfigurable Technology
and Systems, 2024.

Z. Yang, J. Zhuang, J. Yin, C. Yu, A. K. Jones, and P. Zhou, “AIM:
Accelerating arbitrary-precision integer multiplication on heterogeneous
reconfigurable computing platform Versal ACAP,” in International Con-
ference on Computer Aided Design (ICCAD), 2023.

C. Zhang, T. Geng, A. Guo, J. Tian, M. Herbordt, A. Li, and D. Tao,
“ H-GCN: A graph convolutional network accelerator on Versal ACAP
architecture,” in International Conference on Field-Programmable Logic
and Applications (FPL), 2022.

Chapman and

[53

[54]

[55]

[56]

(571

[58]

[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

J. Zhuang, Z. Yang, and P. Zhou, “High performance, low power matrix
multiply design on ACAP: from architecture, design challenges and DSE
perspectives,” in Design Automation Conference (DAC), 2023.

X. Tian and K. Benkrid, “Monte-Carlo simulation-based financial com-
puting on the Maxwell FPGA parallel machine,” High-performance
computing using FPGAs, pp. 33-80, 2013.

J. A. Varela, C. Brugger, S. Tang, N. Wehn, and R. Korn, “Pricing high-
dimensional American options on hybrid CPU/FPGA systems,” FPGA
Based Accelerators for Financial Applications, pp. 143-166, 2015.

Y. Dong, “Accelerating python for exotic option pricing,”
https://developer.nvidia.com/blog/accelerating-python-for-exotic-option-
pricing/, 2020.

S. Zhang, Z. Wang, Y. Peng, B. Schmidt, and W. Liu, “Mapping of
option pricing algorithms onto heterogeneous many-core architectures,”
The Journal of Supercomputing, vol. 73, pp. 3715-3737, 2017.

D. Kirk, “NVIDIA CUDA software and GPU parallel computing archi-
tecture,” in International symposium on Memory management (ISMM),
2007.

B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, Heteroge-
neous computing with openCL: revised openCL 1.2. Newnes, 2012.
R. Dolbeau, S. Bihan, and F. Bodin, “HMPP: A hybrid multi-core
parallel programming environment,” in Workshop on general purpose
processing on graphics processing units. Citeseer, 2007.

R. Farber, Parallel programming with OpenACC. Newnes, 2016.

Y. Meng, R. Kannan, and V. K. Prasanna, “A framework for Monte-Carlo
tree search on CPU-FPGA heterogeneous platform via on-chip dynamic
tree management,” in International Symposium on Field Programmable
Gate Arrays (FPGA), 2023.

——, “Accelerating Monte-Carlo tree search on CPU-FPGA heteroge-
neous platform,” in International Conference on Field-Programmable
Logic and Applications (FPL), 2022.

T. Wang, W. Chang, A. Srivastava, R. Kannan, and V. Prasanna, “Monte
Carlo tree search for task mapping onto heterogeneous platforms,” in
International Conference on High Performance Computing, Data, and
Analytics, (HiPC), 2021.

E. Qasemi, A. Samadi, M. H. Shadmehr, B. Azizian, S. Mozaffari,
A. Shirian, and B. Alizadeh, “Highly scalable, shared-memory, Monte-
Carlo tree search based blokus duo solver on FPGA,” in International
Conference on Field-Programmable Technology (FPT), 2014.

M. W. Hassan, H. Ltaief, and S. A. Fahmy, “High throughput massive
MIMO signal decoding using multi-level tree search on FPGAs,” in
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2024.

Y. Wang and P. Li, “Algorithm and hardware co-design for FPGA
acceleration of hamiltonian Monte Carlo based no-u-turn sampler,” in
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), 2021.

F. Ortega-Zamorano, M. A. Montemurro, S. A. Cannas, J. M. Jerez, and
L. Franco, “FPGA hardware acceleration of Monte Carlo simulations
for the ising model,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 9, pp. 2618-2627, 2016.

S. Hung, M. Tsai, B. Huang, and C. Tu, “A platform-oblivious approach
for heterogeneous computing: A case study with Monte Carlo-based
simulation for medical applications,” in International Symposium on
Field-Programmable Gate Arrays (FPGA), 2016.

X. Tian and C. Bouganis, “A run-time adaptive FPGA architecture
for Monte Carlo simulations,” in International Conference on Field
Programmable Logic and Applications (FPL), 2011.

P. Kinsman and N. Nicolici, “NoC-based FPGA acceleration for Monte
Carlo simulations with applications to SPECT imaging,” IEEE Trans-
actions on Computers, vol. 62, no. 3, pp. 524-535, 2013.

Y. Lin, F. Wang, X. Zheng, H. Gao, and L. Zhang, “Monte Carlo
simulation of the Ising model on FPGA,” Journal of computational
Physics, vol. 237, pp. 224-234, 2013.

G. C. T. Chow, A. H. T. Tse, Q. Jin, W. Luk, P. H. W. Leong,
and D. B. Thomas, “A mixed precision Monte Carlo methodology
for reconfigurable accelerator systems,” in International Symposium on
Field Programmable Gate Arrays (FPGA), 2012.

J. H. C. Yeung, E. F. Y. Young, and P. H. W. Leong, “A Monte-
Carlo floating-point unit for self-validating arithmetic,” in International
Symposium on Field Programmable Gate Arrays (FPGA), 2011.

H. Yuasa, H. Tsutsui, H. Ochi, and T. Sato, “A fully pipelined imple-
mentation of Monte Carlo based SSTA on FPGAS,” in International
Symposium on Quality Electronic Design (ISQED), 2011.

[76]

(771

[78]

(791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

(93]

[94]

J. Cong, K. Gururaj, W. Jiang, B. Liu, K. Minkovich, B. Yuan, and
Y. Zou, “Accelerating Monte Carlo based SSTA using FPGA,” in
International Symposium on Field Programmable Gate Arrays (FPGA),
2010.

M. Smerdis, P. Malakonakis, and A. Dollas, “CarlOthello : An FPGA-
based Monte Carlo Othello player,” in International Conference on
Field-Programmable Technology (FPT), 2010.

J. Luu, K. Redmond, W. Lo, P. Chow, L. Lilge, and J. Rose, “FPGA-
based Monte Carlo computation of light absorption for photodynamic
cancer therapy,” in International Symposium on Field Programmable
Custom Computing Machines (FCCM), 2009.

A. Gothandaraman, G. D. Peterson, G. L. Warren, R. J. Hinde, and R. J.
Harrison, “FPGA acceleration of a quantum Monte Carlo application,”
Parallel Computing, vol. 34, no. 4-5, pp. 278-291, 2008.

A. Ejlali and S. G. Miremadi, “FPGA-based Monte Carlo simulation
for fault tree analysis,” Microelectron. Reliab., vol. 44, no. 6, pp. 1017—
1028, 2004.

X. Tian, K. Benkrid, and X. Gu, “High performance Monte-Carlo based
option pricing on FPGAs,” Engineering Letters, vol. 16, no. 3, pp. 434—
442, 2008.

D. Sanchez-Roman, V. Moreno, S. Lépez-Buedo, G. Sutter, I. Gonzdlez,
F. J. Gomez-Arribas, and J. Aracil, “FPGA acceleration using high-
level languages of a Monte-Carlo method for pricing complex options,”
Journal of Systems Architecture, vol. 59, no. 3, pp. 135-143, 2013.

C. de Schryver, P. Torruella, and N. Wehn, “A multi-level Monte Carlo
FPGA accelerator for option pricing in the Heston model,” in Design,
Automation and Test in Europe, (DATE), 2013.

C. de Schryver, I. Shcherbakov, F. Kienle, N. Wehn, H. Marxen,
A. Kostiuk, and R. Korn, “An energy efficient FPGA accelerator for
Monte Carlo option pricing with the heston model,” in International
Conference on Reconfigurable Computing and FPGAs, (ReConFig),
2011.

A. Kaganov, P. Chow, and A. Lakhany, “FPGA acceleration of Monte-
Carlo based credit derivative pricing,” in International Conference on
Field Programmable Logic and Applications (FPL), 2008.

X. Tian and K. Benkrid, “Massively parallelized quasi-Monte Carlo
financial simulation on a FPGA supercomputer,” in International Work-
shop on High-Performance Reconfigurable Computing Technology and
Applications (HPRCTA@SC), 2008.

D. Diamantopoulos, R. Polig, B. Ringlein, M. Purandare, B. Weiss,
C. Hagleitner, M. A. Lantz, and F. Abel, “Acceleration-as-a-uservice:
A cloud-native Monte-Carlo option pricing engine on CPUs, GPUs and
disaggregated FPGAS,” in International Conference on Cloud Comput-
ing (CLOUD), 2021.

N. A. Woods and T. VanCourt, “FPGA acceleration of quasi-Monte
Carlo in finance,” in International Conference on Field Programmable
Logic and Applications (FPL), 2008.

X. Tian and K. Benkrid, “Design and implementation of a high
performance financial Monte-Carlo simulation engine on an FPGA
supercomputer,” in International Conference on Field-Programmable
Technology (FPT), 2008.

, “High-performance quasi-Monte Carlo financial simulation:
FPGA vs. GPP vs. GPU,” Transactions on Reconfigurable Technology
and Systems, vol. 3, no. 4, pp. 4:1-4:22, 2010.

D. B. Thomas, J. A. Bower, and W. Luk, “Automatic generation and
optimisation of reconfigurable financial Monte-Carlo simulations,” in
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), 2007.

D. B. Thomas and W. Luk, “A domain specific language for reconfig-
urable path-based Monte Carlo simulations,” in International Conference
on Field-Programmable Technology (FPT), 2007.

D. B. Thomas, “Acceleration of financial Monte-Carlo simulations using
FPGASs,” in Workshop on High Performance Computational Finance,
2010.

M. De Jong, V.-M. Sima, K. Bertels, and D. Thomas, “FPGA-accelerated
Monte-Carlo integration using stratified sampling and brownian bridges,”
in International Conference on Field-Programmable Technology (FPT),
2014.

