
High Throughput Low Latency Network Intrusion
Detection on FPGAs: A Raw Packet Approach

Muhammad Ali Farooq
Arizona State University

Tempe, AZ, USA
mafarooq19@asu.edu

Abid Rafique
National University of Sciences and Technology

Islamabad, Pakistan
abid.rafique@seecs.edu.pk

Suhaib A. Fahmy
King Abdullah University of Science and Technology

Thuwal, Saudi Arabia
suhaib.fahmy@kaust.edu.sa

Aman Arora
Arizona State University

Tempe, AZ, USA
aman.kbm@asu.edu

Abstract—FPGA-accelerated Network Intrusion Detection Sys-
tems (NIDS) typically rely on pre-extracted features from net-
work flows, adding complexity and latency to real-time de-
tection. In contrast, this work proposes a novel methodology
for direct classification of raw packets, bypassing the need
for feature extraction. By leveraging a Look-Up Table (LUT)-
based neural network, our approach achieves efficient real-
time intrusion detection while maintaining high accuracy. We
explore model architectures for binary, 6-class, and 15-class
classification, incorporating two levels of sparsity for optimized
resource utilization. Using the Edge-IIoT dataset, our models
achieve over 99% classification accuracy while delivering up
to 1162 million inferences per second on a Virtex Ultrascale+
FPGA. Compared to state-of-the-art raw packet-based NIDS, our
approach improves throughput by up to 1000× while significantly
reducing resource costs, making it well-suited for high-speed,
resource-constrained environments.

Index Terms—Network Intrusion Detection, FPGA, Neural
Networks

I. INTRODUCTION

The importance of robust cybersecurity measures contin-
ues to grow. As network traffic increases and cyber threats
become more sophisticated, Network Intrusion Detection Sys-
tems (NIDS) have become essential in modern security in-
frastructures. Figure 1 illustrates a typical NIDS setup where
the system is placed between the firewall and the connected
devices to monitor and analyze incoming network traffic. By
inspecting each packet, the NIDS detects malicious activity,
ensuring protection of connected devices.

Traditional NIDS methods, such as signature-based detec-
tion [1] and statistical analysis [2], are being supplemented or
replaced by machine learning (ML) techniques, which offer
enhanced adaptability and the ability to detect novel threats.
These advancements reflect a shift towards intelligent, real-
time security measures. However, deploying ML-based NIDS
in high-throughput environments poses significant challenges.

Motivation: FPGAs provide a suitable platform for the
deployment of ML-based NIDS due to their capability in high-
throughput packet processing and their ability to implement a
wide range of ML models efficiently and with low-latency.

Fig. 1: Network Intrusion Detection System (NID)

However, the adoption of FPGA-accelerated NIDS in real-
world scenarios faces challenges. One key issue is the reliance
on pre-processed features from network flows. Many FPGA-
accelerated NIDS systems rely on pre-calculated features,
which adds complexity and latency for real-time detection
from live network data since those features would have to
be calculated in real-time.

The resource demands of complex ML architectures also
pose obstacles. Implementing these on resource-constrained
FPGA platforms is challenging due to their significant hard-
ware needs. High-speed networks impose strict requirements
on latency and throughput, which many ML-based NIDS
solutions struggle to meet, especially for real-time protection.

Proposed Solution: To address these challenges, we pro-
pose a novel methodology for FPGA-accelerated NIDS that
improves performance and efficiency. Our approach directly
classifies raw packets, removing the need for complex feature
extraction, and simplifying the pipeline for real-time NID.
We further enhance this by optimizing model architectures
for binary, 6-class, and 15-class classification tasks on the
Edge-IIoT dataset, incorporating two levels of sparsity to
improve resource utilization on FPGA platforms. Central to
our solution is a Look-Up Table (LUT)-based neural network
design, enabling efficient on-chip processing of network traffic
for live packet classification with reduced overhead.



Key Contributions: Our contributions are:

• We propose an FPGA-accelerated NIDS that directly
classifies raw packets, eliminating the need for feature
extraction.

• We implement optimized model architectures for binary,
6-class, and 15-class classification with two levels of
sparsity, leveraging the LogicNets [3] framework for
efficient neural network implementation.

• Our implementation on the Virtex Ultrascale+ FPGA
achieves high throughput using fewer than 10,000 LUTs,
demonstrating suitability for resource-constrained envi-
ronments.

II. RELATED WORK

NID Systems (NIDS) have evolved from traditional
signature-based [1] and statistical methods [2] to incorporate
ML techniques [4]. However, many ML-based NIDS solutions
are primarily designed for CPU [5] or GPU [6] platforms,
which struggle to manage the high-speed traffic typical of
modern networks.

To address these challenges, researchers have explored
FPGA-based implementations of ML models for NID, which
offer significant advantages in processing speed, parallelism,
and resource efficiency. Various ML algorithms have been
implemented on FPGAs for intrusion detection, including
Principal Component Analysis (PCA) [7], Naive Bayes [8],
and k-means clustering [9]. Nonetheless, neural networks have
garnered attention recently due to their improved accuracy and
adaptability for intrusion detection.

Several studies have investigated the application of neural
networks in FPGA-based NIDS. Ngo et al. [10] implemented
Artificial Neural Networks (ANNs) on FPGAs using datasets
such as NSL-KDD and IoT-23. Similarly, Ioannou et al. [11]
and Alrawashdeh et al. [12] accelerated neural networks on the
NSL-KDD dataset, with the latter employing a Deep Belief
Network (DBN). Murovič et al. [13] proposed a fully combi-
national Binary Neural Network (BNN), achieving significant
improvements in speed and resource efficiency using the
UNSW-NB15 [14] and NSL-KDD datasets. Vreča et al. [15]
also implemented a BNN for the UNSW-NB15 dataset, further
showcasing the viability of BNNs for FPGA-based NIDS.
Another notable approach is LogicNets [3], which accelerates
sparse deep neural networks (DNNs) using Look-Up Tables
(LUTs) on FPGAs. This method demonstrated promising re-
sults on the UNSW-NB15 dataset, offering efficient hardware
implementations for NIDS.

A significant limitation of existing implementations is their
focus on model inference performance, often neglecting the
effect of feature extraction on real-time detection. Real-time
NIDS must manage packet parsing, feature extraction, and
classification at high speeds while adhering to FPGA resource
constraints.

Le Jeune et al. [16], [17] proposed an innovative method
utilizing raw packet data from the UNSW-NB15 and CI-
CIDS2017 [18] datasets. Their method grouped packet headers

into “flow buckets” based on Flow Identifiers (FID), allow-
ing for multi-packet analysis in binary Convolutional Neural
Networks (CNNs) using the FINN framework. While this
system enhances detection by incorporating flow-level context,
it also introduces significant complexity. The process of sorting
packets into flows and using costly CNN techniques adds
memory overhead and complicates FPGA implementation,
which already face challenges in balancing resource utiliza-
tion, latency, and throughput. Furthermore, converting flow-
based datasets into packet-based formats complicates training,
and the datasets used only contain labeled TCP/UDP traffic,
restricting the system’s generalizability.

Our work eliminates the limitations in prior work by di-
rectly processing raw packet data without relying on complex
techniques like Convolutional Neural Networks (CNNs) or
flow-based sorting. This approach reduces the memory and
computational overhead associated with sorting packets into
flows and using resource-intensive ML architectures.

III. PROPOSED SOLUTION

A. Single Packet Network Intrusion Detection

Feature extraction is a critical aspect of ML-based NID.
Traditional approaches often rely on manually selected flow
metadata, such as the number of transmitted bytes or flow
duration. However, these methods require significant storage
or packet parsing, which is inefficient for real-time, resource-
constrained environments [19], [8], [15].

A more streamlined alternative is using raw traffic-based
features directly from the binary packet stream, reducing pre-
processing while maintaining competitive performance [20],
[21], [22], [23]. This approach aligns with the end-to-end
deep learning paradigm, where the initial layers of a deep
neural network (DNN) can automatically learn higher-level
features from raw data, enabling efficient real-time processing
on hardware platforms like FPGAs.

Le Jeune et al. [16] explored raw packet-based intrusion
detection by proposing a system that processes only the first
few bytes of a packet. However, as discussed in Section II, this
approach has several drawbacks that limit its suitability. Build-
ing on Le Jeune et al.’s work, we argue that the complexity
introduced by flow buckets can be avoided in favor of a more
efficient single-packet detection system, especially in resource-
constrained environments. In our approach, similar to Le Jeune

Fig. 2: System Diagram of Proposed Solution



TABLE I: Edge-IIoT Dataset Traffic Distribution

IoT Traffic Class Records

Normal Normal 11,223,940

Attack

Backdoor 24,862
DDoS HTTP 229,022
DDoS ICMP 2,914,354
DDoS TCP 2,020,120
DDoS UDP 3,201,626
Fingerprinting 1,001
MITM 1,229
Password 1,053,385
Port Scanning 22,564
Ransomware 10,925
SQL Injection 51,203
Uploading 37,634
Vulnerability Scanner 145,869
XSS 15,915

Total 20,952,648

et al. [17], packets are represented by their first 64 bytes,
which is sufficient to capture essential header information for
TCP/UDP traffic, as most critical metadata is contained within
the first few bytes. Shorter packets are padded to 64 bytes,
ensuring consistency in data processing.

Figure 2 presents a high-level system diagram of our ap-
proach. Raw packets are fed into a Look-Up Table (LUT)-
based neural network, like LogicNets [3], after trunca-
tion/padding. The output of the model is a classification of
the packet into a class, identifying whether the packet is
normal traffic or a type of intrusion. This design choice reduces
complexity and hardware overhead while still maintaining high
classification accuracy.

B. Edge-IIoT Dataset

Most datasets used in NIDS research are flow-based, which
introduces further complexity while performing training in
packet-based contexts. The Edge-IIoT dataset [24] offers a
more suitable alternative by providing packet-based data for
IoT and IIoT environments. The Edge-IIoT dataset captures
data from a wide range of IoT devices, which are frequent
targets of cyber threats, and provides a comprehensive simu-
lation of real-world network environments. Moreover, unlike
the popular UNSW-NB15 and CICIDS-2017 datasets, the
Edge-IIoT dataset is not limited to TCP/UDP traffic, thereby
providing more comprehensive training data.

Table I summarizes the distribution of all traffic types in
the dataset, providing details on the class of traffic, such as
Normal and various types of Attacks.

To be consistent with the paper introducing the Edge-IIoT
dataset [24], we develop models for binary, 6-class, and 15-
class classification, as discussed further in the paper.

C. LogicNets Framework

The LogicNets framework [3], developed by Umuroglu
et al. at Xilinx Research Labs, is designed for extreme-
throughput machine learning applications on resource-
constrained FPGAs. The core concept involves mapping in-

dividual neuron functions into Look-Up Tables (LUTs), en-
abling efficient FPGA implementations. LogicNets employs
quantized artificial neurons, representing each neuron as a truth
table. These truth tables, termed Hardware Building Blocks
(HBBs), form the framework’s fundamental components. Neu-
ron Equivalents (NEQs) (neurons with quantized fixed inputs
and outputs) are trained in conventional deep neural networks
and subsequently mapped to HBBs for FPGA deployment.
The framework emphasizes maintaining a low fan-in (number
of inputs to a neuron) to avoid exponential growth in LUT
cost. The LogicNets design flow comprises three key steps:
(Defining and training NEQs, (2) Converting NEQs into a
netlist of HBBs, and (3) Synthesizing the netlist into an FPGA
bitfile. This approach ensures neural networks are co-designed
with FPGA hardware, optimizing for resource efficiency and
high throughput. LogicNets is particularly suitable for high-
throughput FPGA-based applications like Network Intrusion
Detection Systems (NIDS).

LogicNets supports sparsity, and allows users to change the
number of inputs to each, which consequently changes the
number of connections between layers, based on hyperparam-
eters. There are two parameters that control the input size
of each NEQ. γ defines the number of inputs for each NEQ
while β defines the width of each input. Each NEQ has a
single output. For the first and hidden layers, the output width
is defined by the input width of the next layer. The output
width of NEQs in the output layer matches their input width.
Increased sparsity, achieved by lower values of γ or β, allows
the creation of resource-efficient implementations.

To define a LogicNet, the following hyperparameters are
necessary:

• Number and size of each layer: e.g., [45, 5] defines a
model with 3 layers (45 NEQs, 5 NEQs, and output layer)

• Sparsity definitions:
– βi, γi: settings for the first layer
– β, γ: settings for hidden layers
– βo, γo: settings for the last layer

IV. METHODOLOGY

A. Formatting the Edge-IIoT Dataset

We preprocess the Edge-IIoT dataset to enable direct packet-
based classification. This step is necessary due to the dataset’s
original format, which contains whole packets. Our prepro-
cessing steps ensure compatibility with our model while
preserving the raw packet structure for effective intrusion
detection. The formatting steps are:

1) Truncating packets in the .pcap files to 64 bytes using
Wireshark [25]

2) Extracting byte-level information from the truncated
packets and converting to plaintext

3) Cleaning the text files and converting the data from
hexadecimal to binary

4) Padding packets smaller than 64 bytes for uniformity
5) Adding labels to indicate the traffic class
6) Removing duplicate packets to ensure data integrity



TABLE II: Formatted Dataset Split and Total Counts

Class Dataset Split
Train Validation Test

Normal 6,506,277 2,695,457 92,948
Backdoor 16,870 6,989 241
DDoS HTTP 159,556 66,102 2,280
DDoS ICMP 2,039,769 845,047 29,141
DDoS TCP 1,413,288 585,505 20,191
DDoS UDP 2,250,668 932,419 32,153
Fingerprinting 730 302 12
MITM 203 84 3
Password 736,450 305,100 10,522
Port Scanning 14,439 5,982 207
Ransomware 6,871 2,846 99
SQL Injection 35,829 14,843 513
Uploading 26,308 10,899 376
Vulnerability Scanner 185,847 76,994 2,656
XSS 10,848 4,494 156

Total 13,403,953 5,553,063 191,498

7) Randomly split the dataset into train, validation, and test
sets, as shown in Table II.

For binary classification, we simply collapse all the attack
classes into a single label, thus transforming the dataset pre-
sented in Table II to a binary dataset. For 6-class classification,
we collapse the labels as follows:

• DDoS: DDoS HTTP, DDoS ICMP, DDoS TCP,
DDoS UDP

• Scanning: Fingerprinting, Port Scanning, Vulnerabil-
ity Scanner

• Injection: XSS, SQL Injection, Uploading
• Malware: Backdoor, Password, Ransomware
• Normal: Normal
• MITM: MITM
The data remains unchanged for the 15-class classification.

This approach causes issues since there are not enough data
samples for each class for multiclass classification. As such,
random oversampling is used to increase the training data.

B. Neural Architecture Search (NAS)

To find the optimal LogicNets model for each form of
classification problem, we perform manual NAS over a variety
of models and two sparsity settings. The model architectures
are presented in Table III. We consider small, regular, medium,
and large models, by gradually increasing the number of NEQs
and layers. Each model is assigned a name for easy reference,
as shown in the table. We consider a regular (non-sparse) and
sparse model for each model architecture. Our sparse models
differ from their non-sparse counterparts in the γ value, but
not in the β value. The sparsity settings used are presented in
Table IV.

The results for the binary, 6-class and 15-class NAS are
presented in Figures 3a, 3b and 3c respectively.

Figure 4 shows a zoomed-in view of the charts in Figure 3
to show detailed trends in the region of interest. It is clear that
the accuracy increases at first as models get larger and then
saturates.

TABLE III: Model Architectures Explored During NAS

Model Binary 6-Class 15-Class

c-s2 25,1 30,6 80,15
c-s1 100,25,1 100,25,6 100,25,15
c 128,32,1 128,32,6 128,32,15
c-m1 128,60,15,1 128,60,30,6 128,60,30,15
c-m2 200,86,15,1 300,86,30,6 300,86,30,15
c-big 256,86,15,1 512,86,15,6 593,100,33,15

For 6-class and 15-class models, accuracy even declines
after a certain size, making further increase in model size
unnecessary. For binary models, the accuracy gain beyond a
certain point is minimal, making further increases in model
size inefficient.

Based on the performance results presented in Figure 3 and
Figure 4, the c-m2 model was selected for all categories due
to its superior performance across both regular and sparse
settings. The performance of the regular models is primarily
used to select the architecture, but the performance of the
sparse models is also taken into consideration.

For Binary classification, each model is trained for 2 epochs
with a learning rate of 10−3 and a batch size of 256 on the
training data and evaluated on both the validation and test
sets. For multiclass classification, each model is trained for 5
epochs with a learning rate of 10−3 and a batch size of 256
on the training data and evaluated on both the validation and
test sets.

C. Synthesis and Implementation

Once the final models are determined through NAS, the
layer specifications are input into LogicNets, resulting in
Register Transfer Level (RTL) output. Out-of-context synthesis
is performed using Vivado 2021.1 for the Virtex Ultrascale+
card, with a timing goal of P = 1ns. The post-implementation
results are then utilized for further analysis.

V. RESULTS

A. Machine Learning Metrics

Table V presents the results of the six models derived from
NAS, including accuracy, F-1 score, and detection score for
both validation and test sets.

Classification accuracy is defined as:

Acc =
tp+ tn

tp+ fp+ tn+ fn

where tp, fp, tn, and fn are true positives, false positives, true
negatives, and false negatives, respectively. All models achieve

TABLE IV: Sparsity Settings During NAS
(β and γ are explained in Section III-C)

βi γi β γ βo γo

Regular 1 6 2 6 2 7

Sparse 1 4 2 4 2 7



(a) Binary (b) 6-Class (c) 15-Class

Fig. 3: Validation Accuracy for Neural Architecture Search

Fig. 4: Comparison of the Accuracy of the Models in Fig. 3

TABLE V: ML Results for Selected Models
(All Values are Percentages)

Validation Test

Acc F-1 DS Acc F-1 DS

binary 99.991 99.991 99.991 99.994 99.994 99.994
binary-sparse 99.988 99.988 99.988 99.992 99.992 99.992
6-class 99.95 99.95 99.989 99.95 99.95 99.995
6-class-sparse 99.87 99.88 99.975 99.87 99.88 99.982
15-class 99.94 99.94 99.983 99.95 99.95 99.989
15-class-sparse 99.75 99.78 99.963 99.76 99.79 99.964

accuracy above 99.9% in both validation and test sets, indi-
cating excellent performance with minimal misclassification.
Sparse models maintain high accuracy despite reduced feature
representations, demonstrating robust architecture.

The F-1 score is given by:

F1 =
tp

tp+ 0.5 · (fp+ fn)

The F-1 score, ranging from 0 to 100%, reflects model
precision and recall, with a higher score indicating better
performance. The weighted F-1 score is used for multiclass
models to address class imbalance. As shown in the table, F-1
scores align closely with accuracy, hovering around 99.9%.

The Detection Score (DS) metric (introduced by Le Jeune
et al. [26]), based on the F-1 score for binary classification,

adapts to multiclass scenarios by treating any attack classifi-
cation as a true positive (tp). This indicates how effectively a
Network Intrusion Detection System (NIDS) detects attacks.
Both binary and multiclass models show DS values above
99.9%, highlighting strong detection capabilities with minimal
false positives or negatives. Sparse models exhibit slight
performance drops but remain highly effective.

B. FPGA Implementation Results

The LUT (Look-Up Table) count and FF (Flip-Flop) count
indicate the resource utilization for implementing the models
on an FPGA. No DSPs and BRAMs are used in our implemen-
tations. Latency and Maximum Frequency are derived from
the Worst Negative Slack (WNS) reported by Vivado after
implementation. The minimum clock period is calculated as:

Pmin = 1− WNS ns

The latency of the model is given by Pmin multiplied by the
number of layers, as the models are pipelined with registers
between layers. The maximum frequency achievable is deter-
mined by:

Fmax =
1000

1− WNS
MHz

Since the model is pipelined, throughput directly corresponds
to the frequency; for instance, a frequency of 1 MHz equates
to a throughput of 1 million packets per second, since we
only ingest the first 64 bytes of packets in a single cycle.
These metrics indicate the model’s operational efficiency and
suitability for real-time applications.

The implementation results for the trained c-m2 models
are shown in Table VI. All models utilize fewer than 10,000
LUTs and exhibit latencies below 7 ns. Notably, sparse models
achieve throughputs exceeding 1100 million packets per sec-
ond while demonstrating significantly lower resource usage
compared to their regular counterparts.

C. Comparison with State-of-the-Art NIDS

Our evaluation demonstrates significant improvements in
both hardware efficiency and detection accuracy, particularly
when comparing our binary and binary-sparse models against
prior works in FPGA-based Network Intrusion Detection



TABLE VI: FPGA Implementation Results of Selected Models
(Throughput Measured in 106 Inferences per Second)

LUT FF Latency (ns) Throughput fmax (MHz)

binary 3337 1496 5.984 668.45 668.45
binary-sparse 500 337 3.496 1144.16 1144.16
6-class 7033 2319 6.136 651.89 651.89
6-class-sparse 1652 736 3.44 1162.79 1162.79
15-class 9033 2455 5.863 681.66 681.66
15-class sparse 2764 861 3.528 1133.79 1133.79

Fig. 5: Comparison of Our Binary Classification Model with
Previous Work on Binary Classification ML NIDS

Systems (NIDS). Figure 5 highlights the trade-offs between
LUT cost, inference speed, and accuracy in various binary
classification models, providing a clear comparison of our
approach with the state of the art.

The results, as visualized in the plot, indicate that our
binary-sparse model outperforms others, achieving over 1000
million inferences per second with minimal LUT cost. No-
tably, our work surpasses previous implementations such as
those by Umuroglu et al. [3], Vreča et al. [15], and Le Jeune et
al. [17], in terms of both inference speed and accuracy. While
BNN-based methods like Murovič et al. [13] achieve notable
throughput, they still lag in resource efficiency compared to
our binary-sparse approach.

Table VII further underscores this performance. While mod-
els like Vreča et al. [15] and Le Jeune et al. [17] have relatively
high LUT costs and lower throughput, our proposed solution
maintains a much lower LUT utilization while simultaneously
delivering higher accuracy and throughput. The table further
underscores this performance by illustrating key metrics across
different models:

(1) LUT Utilization: Our binary-sparse model achieves the
lowest LUT utilization at only 500 LUTs, significantly lower
than other models such as Le Jeune et al., which uses over
47,000 LUTs.

(2) Throughput: Our models achieve superior throughput,
with the binary-sparse model reaching over 1144 million

inferences per second, far exceeding others like Vreča et al.,
which manages only about 11 million.

(3) Accuracy: Both our models maintain high accuracy
levels above 99%, outperforming others like Umuroglu et al.,
which achieves around 91%.

These results demonstrate that our approach not only en-
hances hardware efficiency but also maintains or improves
detection accuracy compared to existing FPGA-based NIDS
solutions.

VI. DISCUSSION

The balance between accuracy and hardware resource effi-
ciency is critical for real-time NIDS applications, especially
in environments with constrained resources, such as Indus-
trial IoT (IIoT). By reducing complexity, using LUT-based
networks, and leveraging sparse neural networks, our method
enhances detection performance without the overhead typically
associated with more complex architectures [17], [11], [15].

However, it is crucial to recognize the limitations of single-
packet intrusion detection systems, despite their impressive
speed and efficiency. While these systems excel in rapid detec-
tion by analyzing individual packets, they cannot be expected
to function independently as a complete defense mechanism.
Single-packet analysis may lack the context needed to identify
more sophisticated, multistep attacks or those spread across
multiple packets.

Therefore, future work should focus on developing a hybrid
approach that integrates single-packet intrusion detection with
flow rule-based systems. Flow rule-based systems [27], [28],
which examine sequences of packets to detect patterns indica-
tive of malicious activity, provide the necessary context and
depth of analysis. A combined implementation would offer
the speed of single-packet detection with the comprehensive
view of flow-based methods, creating a more robust and
versatile intrusion detection framework. This integration would
enable real-time detection while addressing more complex
attack patterns, ensuring enhanced security for IIoT and other
network environments.

VII. CONCLUSION

This work presents a novel approach to FPGA-based Net-
work Intrusion Detection Systems (NIDS) that achieves excep-
tional performance in terms of both accuracy and hardware
efficiency. The results demonstrate significant improvements
in throughput, achieving up to a 1000× increase compared
to state-of-the-art NIDS using raw packet features, while si-
multaneously reducing resource utilization. All models require
fewer than 10,000 LUTs, ensuring suitability for resource-
constrained FPGA platforms. Our models achieve over 99%
accuracy across all classification tasks. Future work should
focus on integrating this method with flow-based systems to
create a more comprehensive security solution for IIoT and
other network environments.



TABLE VII: Comparison of Selected Binary Classification Models with Prior Work (OFE means On-Chip Feature Extraction.
Throughput (Tput) is in 106 Inferences per Second. A value of “–” means the metric is not specified in the paper)

Ref. OFE Dataset FPGA Acc. (%) LUTs FFs T’put fmax (MHz) Latency (ns)

[3] No UNSW-NB15 Virtex Ultrascale+ 91.3 15949 1274 471 471 10.5
[15] No UNSW-NB15 Zynq-7000 82.1 26556 2228 10.98 142.8 91
[17] Yes CICIDS2017 ZCU104 98.4 47297 – 1.901 336.13 6680
[13] No NSL-KDD Kintex Ultrascale+ 98.96 8606 0 62.5 – 19
binary (ours) Yes EDGE-IIOT Virtex Ultrascale+ 99.994 3337 1496 668.45 668.45 5.984
binary-sparse (ours) Yes EDGE-IIOT Virtex Ultrascale+ 99.992 500 337 1144.16 1144.16 3.496

REFERENCES

[1] C. Kruegel and T. Toth, “Using decision trees to improve signature-
based intrusion detection,” Recent Advances in Intrusion Detection, p.
173–191, 2003.

[2] E. Kabir, J. Hu, H. Wang, and G. Zhuo, “A Novel Statistical
Technique for Intrusion Detection Systems,” Future Generation
Computer Systems, vol. 79, p. 303–318, Feb. 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2017.01.029

[3] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “LogicNets: Co-
Designed Neural Networks and Circuits for Extreme-Throughput Ap-
plications,” in International Conference on Field-Programmable Logic
and Applications (FPL), 2020, pp. 291–297.

[4] J. Asharf, N. Moustafa, H. Khurshid, E. Debie, W. Haider, and A. Wa-
hab, “A Review of Intrusion Detection Systems Using Machine and
Deep Learning in Internet of Things: Challenges, Solutions, and Future
Directions,” Electronics, vol. 9, no. 7, p. 1177, 2020.

[5] G. De Carvalho Bertoli, L. A. Pereira Júnior, O. Saotome, A. L.
Dos Santos, F. A. N. Verri, C. A. C. Marcondes, S. Barbieri, M. S.
Rodrigues, and J. M. Parente De Oliveira, “An End-to-End Framework
for Machine Learning-Based Network Intrusion Detection System,”
IEEE Access, vol. 9, pp. 106 790–106 805, 2021.

[6] G. Karatas, O. Demir, and O. K. Sahingoz, “A Deep Learning Based
Intrusion Detection System on GPUs,” in 2019 11th International Con-
ference on Electronics, Computers and Artificial Intelligence (ECAI),
2019, pp. 1–6.

[7] A. Das, D. Nguyen, J. Zambreno, G. Memik, and A. Choudhary, “An
FPGA-Based Network Intrusion Detection Architecture,” Trans. Info.
For. Sec., vol. 3, no. 1, p. 118–132, mar 2008. [Online]. Available:
https://doi.org/10.1109/TIFS.2007.916288

[8] Z. Todorov, D. Efnusheva, and T. Nikolić, “FPGA Implementation of
Computer Network Security Protection with Machine Learning,” in 2021
IEEE 32nd International Conference on Microelectronics (MIEL), 2021,
pp. 263–266.

[9] L. Andrade Maciel, M. Alcântara Souza, and H. Cota de Freitas, “Re-
configurable FPGA-Based K-Means/K-Modes Architecture for Network
Intrusion Detection,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 8, pp. 1459–1463, 2020.

[10] D.-M. Ngo, B. Tran-Thanh, T. Dang, T. Tran, T. N. Thinh, and C. Pham-
Quoc, “High-Throughput Machine Learning Approaches for Network
Attacks Detection on FPGA,” Context-Aware Systems and Applications,
and Nature of Computation and Communication, pp. 47–60, 2019.

[11] L. Ioannou and S. A. Fahmy, “Network Intrusion Detection Using
Neural Networks on FPGA SoCs,” in International Conference on Field
Programmable Logic and Applications (FPL), 2019, pp. 232–238.

[12] K. Alrawashdeh and C. Purdy, “Reducing Calculation Requirements
in FPGA Implementation of Deep Learning Algorithms for Online
Anomaly Intrusion Detection,” in 2017 IEEE National Aerospace and
Electronics Conference (NAECON), 2017, pp. 57–62.

[13] T. Murovič and A. Trost, “Genetically Optimized Massively Parallel
Binary Neural Networks for Intrusion Detection Systems,” Computer
Communications, vol. 179, pp. 1–10, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366421002693

[14] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems,” in 2015 Military Communications
and Information Systems Conference (MilCIS), 2015, pp. 1–6.

[15] J. Vreča, I. Ivanov, G. Papa, and A. Biasizzo, “Detecting Network
Intrusion Using Binarized Neural Networks,” in 2021 IEEE 7th World
Forum on Internet of Things (WF-IoT), 2021, pp. 622–627.

[16] L. Le Jeune, T. Goedemé, and N. Mentens, “Towards Real-Time
Deep Learning-Based Network Intrusion Detection on FPGA,” Applied
Cryptography and Network Security Workshops: ACNS 2021 Satellite
Workshops, AIBlock, AIHWS, AIoTS, CIMSS, Cloud S&P, SCI, SecMT,
and SiMLA, Kamakura, Japan, June 21–24, 2021, Proceedings, p.
133–150, 2021.

[17] L. L. Jeune, T. Goedemé, and N. Mentens, “Feature Dimensionality in
CNN Acceleration for High-Throughput Network Intrusion Detection,”
in 2022 32nd International Conference on Field-Programmable Logic
and Applications (FPL), 2022, pp. 366–374.

[18] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characteri-
zation,” in Proceedings of the 4th International Conference on Infor-
mation Systems Security and Privacy - Volume 1: ICISSP,, INSTICC.
SciTePress, 2018, pp. 108–116.

[19] T. Murovič and A. Trost, “Resource-Optimized Combinational Binary
Neural Network Circuits,” Microelectronics Journal, vol. 97, p. 104724,
2020.

[20] W. Wang, Y. Sheng, J. Wang, X. Zeng, X. Ye, Y. Huang, and M. Zhu,
“HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using
Deep Neural Networks to Improve Intrusion Detection,” IEEE Access,
vol. 6, pp. 1792–1806, 2018.

[21] L. Han, Y. Sheng, and X. Zeng, “A Packet-Length-Adjustable Attention
Model Based on Bytes Embedding Using Flow-WGAN for Smart
Cybersecurity,” IEEE Access, vol. 7, pp. 82 913–82 926, 2019.

[22] Y. Zhang, X. Chen, L. Jin, X. Wang, and D. Guo, “Network Intrusion
Detection: Based on Deep Hierarchical Network and Original Flow
Data,” IEEE Access, vol. 7, pp. 37 004–37 016, 2019.

[23] Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng, and X. Wang, “PCCN:
Parallel Cross Convolutional Neural Network for Abnormal Network
Traffic Flows Detection in Multi-Class Imbalanced Network Traffic
Flows,” IEEE Access, vol. 7, pp. 119 904–119 916, 2019.

[24] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,
“Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset
of IoT and IIoT Applications for Centralized and Federated Learning,”
IEEE Access, vol. 10, pp. 40 281–40 306, 2022.

[25] Wireshark Foundation, “Wireshark,” network protocol analyzer.
[Online]. Available: https://www.wireshark.org/

[26] L. Le Jeune, T. Goedemé, and N. Mentens, “Machine Learning for
Misuse-Based Network Intrusion Detection: Overview, Unified Evalua-
tion and Feature Choice Comparison Framework,” IEEE Access, vol. 9,
pp. 63 995–64 015, 2021.

[27] F. Erlacher and F. Dressler, “On High-Speed Flow-Based Intrusion
Detection Using Snort-Compatible Signatures,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 1, pp. 495–506, 2022.

[28] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey, and R. T. Goswami,
“An Integrated Rule-Based Intrusion Detection System: Analysis on
UNSW-NB15 Data Set and the Real-Time Online Dataset,” Cluster
Computing, vol. 23, no. 2, p. 1397–1418, Oct. 2019. [Online].
Available: http://dx.doi.org/10.1007/s10586-019-03008-x


