
PRNGine: Massively Parallel Pseudo-Random
Number Generation and Probability Distribution

Approximations on AMD AI Engines
Mohamed Bouaziz and Suhaib A. Fahmy

King Abdullah University of Science and Technology (KAUST)
Thuwal, Saudi Arabia

mohamed.bouaziz@kaust.edu.sa

Abstract—Generating large volumes of random numbers is
essential for high-performance computing applications such as
Monte Carlo simulations, machine learning, and dynamic game-
play. Many of these applications require random number genera-
tion within a processing pipeline. Coarse-Grained Reconfigurable
Architectures (CGRAs) are well-suited for this task, enabling
efficient dataflow-based distribution across processing elements.
This work explores efficient random number generation on AMD
AI Engines (AIEs) through two execution models: a co-processor
model and a standalone dataflow accelerator model. Key chal-
lenges in porting Pseudo-Random Number Generators (PRNGs)
to AIEs, including the lack of support for certain operations,
unsigned data types, and efficient vectorization, are identified
and overcome. Additionally, the challenges of approximating
a normal distribution on AIEs are analyzed and addressed.
Optimized implementations of essential PRNG operations are
presented, demonstrating linear complexity and enabling scalable
random number generation. Performance evaluation provides
insights into the suitability of both execution models for various
applications.

Index Terms—PRNG, AI Engine, CGRA, Dataflow

I. INTRODUCTION

The use of random numbers is crucial in many applications.
They are used to simulate uncertainty, ensure fairness, and
introduce stochasitcity in fields such as cryptography in secure
key generation [1], Monte Carlo (MC) methods for scientific
simulations [2], and machine learning for data shuffling and
model initialization [3]. This has led to the development
of many Pseudo-Random Number Generators (PRNGs) such
as the Mersenne Twister generator [4] and the Marsaglia
XORSHIFT generator family [5].

Traditional CPU performance does not scale with each
new generation of hardware. On the other hand, the need to
generate a massive number of random numbers is notable. In
quantitative finance, MC simulations require a massive number
of random numbers to simulate price evolution in time for
financial stocks and derivatives [6], [7]. MC simulations are
also used in computational biology, materials science, and
chemistry [8]. Parallel MC simulations require independent
streams of random numbers. The generators must provide a
large period and be able to split into many non-overlapping
sub-sequences. Similarly, procedural content generation in
video games and graphics uses random numbers to create
large-scale game content such as maps, levels, textures, and

game mechanics. It often requires high throughput random
numbers to produce varied and dynamic gameplay experiences
for video games [9]. This need for massive randomness has
led to adapting PRNGs to parallel computation on multi-core
CPUs and GPUs and removing the dependence between the
random sequences, making them inherently parallel [10].

FPGAs are suited to PRNGs due to their fine-grained archi-
tecture, which enables the customization of bitwise operations
and the creation of LUT-optimized generators that treat the
random state as a vector of bits rather than words [11].
Besides, they can implement many parallel transformations,
and the output can be formed from any permutation of the
generator’s state without correlations between consecutive
bits. This allows for highly parallel transformations and high
throughput generation, making them suitable for massively
parallel applications [12].

Coarse-grained architectures offer acceleration by
combining both parallelism and programmability. Ambric
AM2045 [13] is an example of a coarse-grained architecture
that was used with parallel PRNGs leveraging its array
of RISC processors that communicate through small
memories [12]. This obsolete architecture suffered from a
restricted instruction set and limited memory space, which
complicated the adaptation of many PRNGs. Recently,
the AMD Versal [14] architectures emerged, comprising
an array of configurable RISC processors, named the AI
Engines (AIEs), highly programmable and optimized for
parallel vectorized operations. AIE cores are connected by a
high-performance stream interconnect network. Each AIE is
equipped with a 32KB Scratchpad Memory, which is shared
with neighboring AIEs in the cardinal directions. The high
degree of parallelism and reconfigurability reopens directions
for high-throughput random number generation on coarse-
grained architectures by many of the existing PRNGs. The
use of coarse-grained AIEs allows seamless implementation
of efficient dataflow designs contrary to fine-grained FPGAs.
However, a number of challenges arise when porting PRNGs
to the AIEs.

• Supported operations: PRNGs often include operations
the AIE do not natively support. For instance, most
XOROSHIRO generators [15] rely on an operation that
rotates a 64-bit binary word by applying a sequence of



shifting of its Most-Significant Bits (MSBs) and Least-
Significant Bits (LSBs). Similarly, SFMT [16] requires
right and left shifting operations on 128-bit binary words.
The challenge is that shifting operations supported by
AIEs cannot be performed natively on more than 32-bit
words.
Another challenge is that the PRNGs generate random
numbers based on an array of states. Depending on the
design of the PRNG, the state array may be accessed
through an indexing function that requires costly oper-
ations. For instance, SFMT [16] uses four state values
by looping through an array of 156 states. One of the
four states is indexed M (typically 122) steps ahead of
the iterator modulo 156. AIEs do not natively support the
modulo operation, and the compiler emulates it through a
precompiled series of operations. This incurs substantial
computational overhead. Besides, it breaks the execution
pipeline to branch to the precompiled modulo function.

• Data types: The AIEs have two types of engines:
scalar engines and vector engines. The vector engines
are typically used to perform computation, and they are
optimized to perform element-wise operations on 128-bit,
256-bit, 512-bit, and 1024-bit vectors of 32-bit elements.
Besides the lack of operation support for binary words
larger than 32 bits, the AIEs do not support unsigned
data types, which are fundamental for PRNGs.
Additionally, on AIEs, the outputs of PRNGs can be
cast to floating-point numbers by evaluating the generated
random number as a decimal number in fixed-point
representation and specifying the position of the decimal
point. This poses a challenge as the MSB is considered
the sign-bit instead of a constituting part of the random
value and can alter the quality of the generator. This is
also challenging for probability distribution approxima-
tions using the Inverse Cumulative Distribution Functions
(ICDFs) that expect numbers in [0, 1) (non-negative).

• Vectorization: A subset of PRNGs uses states and recur-
sions to generate random numbers, which create depen-
dencies in the generated values. As AIEs are typically
optimized for vectorized operations, picking a suitable
vectorized PRNG becomes a challenge. Although this
bottleneck is not specific to the AIE architecture, it still
presents a design constraint to consider.
Another challenge is the conditional processing of vector
elements, where different vector elements may follow
different computation paths. This is the case with the
Percentage Points algorithm [17] and Acklam’s Approx-
imation [18] used to approximate the ICDF of the Nor-
mal distribution where different polynomial expressions
are applied to the inputs depending on their values.
In traditional Programmable logic (PL) implementations,
this challenge can be mitigated by designing predicated
datapaths. Similarly, this can be achieved natively on
SIMD architectures that support predictions such as ARM
SVE [19].

Scalar Unit (ALU, Non-linear ops.)

Vector Unit
(Fixed-point, Floating-point)

Load Unit (256-bit)

Store Unit (256-bit)

Instruction Fetch/Decode

AGU

M
em

or
y 

A
cc

es
s

Load Unit (256-bit)
AGU

AGU

St
re

am
 In

te
r.

C
as

ca
de

 In
te

r.

Fig. 1: AI Engine core architecture

This paper addresses the challenges of porting PRNGs to
AMD Versal AIEs by analyzing the algorithmic requirements
of three PRNGs: XORWOW, XOROSHIRO, and SFMT. We
highlight the core functionalities of AIEs and implement the
necessary operations using native AIE-API [20] calls. Two
execution models are proposed: a co-processor model, where
AIEs generate random numbers and send them to the host
processor, and a standalone dataflow accelerator model, where
random number generation is pipelined with computation
within a dataflow overlay on AIEs. We evaluate and compare
the performance of these models, demonstrating their scalabil-
ity. Additionally, we address the challenge of approximating
the normal distribution using the ICDF approximation within
the dataflow model.

While PRNG performance is often benchmarked on CPUs
and GPUs, this work focuses on the design constraints of
embedding PRNGs into dataflow architectures implemented
on coarse-grained platforms such as AMD AIEs. Unlike
traditional Von Neumann architectures, leveraging the AIE
cores and their network of interconnections enables spatial
acceleration by executing workloads like Monte Carlo simu-
lations in a distributed, pipeline-parallel fashion.

II. ARCHITECTURAL OVERVIEW AND ALGORITHMIC
REQUIREMENTS

In this section, the AIE core architecture is detailed, high-
lighting its main scalar and vector datapaths. The three PRNGs
are analyzed and discussed in terms of functional requirements
in relation to AIE architectural capabilities.

A. AI Engine Core Architecture

AIE cores are optimized for high-performance computing,
integrating both single-instruction multiple-data (SIMD) and
very-long instruction word (VLIW) capabilities. They support
integer, fixed-point, and floating-point precision. The archi-
tecture includes various functional units to handle complex
computations, such as a 32-bit scalar RISC unit, a vector unit,
two load units, one store unit, an instruction fetch and decode
unit, and three address generation units (AGUs) supporting
multiple addressing modes.

The scalar unit in the AIE features an arithmetic logic unit
(ALU) and supports non-linear functions such as square root,
sine, cosine, and inverse square root. Its ALU supports 32-bit
scalar operations and enables data type conversion between
scalar fixed-point and floating-point with a one-cycle latency.



TABLE I: RNG requirements

Data type Required OPs Vectorization

XORWOW [5]
32-bit

Unsigned integer

XOROSHIRO [15]
64-bit

Unsigned integer
64-bit ops.

SFMT [16]
128-bit

Unsigned integer
Modulo op.
128-bit ops.

128-bit mask

The vector unit supports both fixed-point and floating-point
operations. It is equipped with vectorized multiply-accumulate
(MAC) capabilities to manage data permutation from vector
registers, perform pre-adds, multiply, and accumulate results.
It also supports concurrent operations across multiple vec-
tor lanes and accommodates various precisions for complex
and real operands. Additionally, a permutation network man-
ages data movement for temporary accumulator registers and
storage in vector registers or memory. The single-precision
floating-point (SPFP) vector unit shares the permute network
of the fixed-point data path, enabling concurrent operations
across multiple vector lanes and incorporating eight single-
precision MACs per cycle.

For data movement, the AIE’s load and store units manage
a 5-cycle latency for data memory. Each of these data memory
ports can operate in either 256-bit/128-bit vector register
mode or 32-bit/16-bit/8-bit scalar register mode. The AIE also
features direct stream interfaces with two input and two output
streams, configurable to either 32-bit or 128-bit widths, as well
as a 384-bit cascade stream for both input and output. These
are essential for building pipelined dataflow overlays.

B. Algorithmic Requirements

As shown in Table I, three PRNGs are selected for algo-
rithmic requirements evaluation.

XORWOW is a PRNG from the XORSHIFT family [5],
featuring an additional step that transforms the output into a
Weyl sequence—a uniform sequence over [0,m) based on an
integer k that is relatively prime to m. It is the default PRNG
in CUDA [21] and operates on 32-bit unsigned integers. As
shown in Algo. 1, XORWOW relies on bitwise operations for
number generation and can be vectorized by running parallel
PRNGs from different initial states.

XOROSHIRO [15] (xor, rotate, shift, and rotate) improves
upon XORSIFT [5] by incorporating rotations alongside shifts,
resulting in faster performance and higher-quality output.
It has a variant, XOSHIRO (xor, shift, and rotate), but
XOROSHIRO remains the more generic design. As shown
in Algo. 2, this PRNG operates on 64-bit unsigned integers,
which the AIE-API does not natively support. Like XOR-
WOW, it is based on bitwise operations and can be vectorized
using parallel PRNGs with different initial states. Besides, it
includes a built-in jump function that advances the state by a
power of two, improving state initialization in parallel PRNGs.

SFMT [16] (SIMD Fast Mersenne Twister) is a PRNG based
on the widely used Mersenne Twister algorithm MT19937 [4].

Algorithm 1 XORWOW Random Number Generation

1: Input: s0, · · · , s4, #RNs
2: Output: RNs
3: for i← 0 to #RNs do
4: cnt← cnt+ 362437
5: value ← s4
6: value ← value⊕ (value >> 2)
7: value ← value⊕ (value << 1)
8: value ← value⊕ (s0 ⊕ (s0 << 4))
9: value← value+ cnt ▷ Weyl sequence

10: RNs[i]← value
11: s4 ← s3, s3 ← s2, · · · , s1 ← s0
12: s0 ← value
13: end for

Algorithm 2 XOROSHIRO Random Number Generation

1: Input: s0, s1, #RNs
2: Output: RNs
3: for i← 0 to #RNs do
4: RNs[i]← rotate left(s0 + s1, 17) + s0
5: s1 ← s0 ⊕ s1
6: s0 ← rotate left(s0, 49)⊕ s1 ⊕ (s1 << 21)
7: s1 ← rotate left(s1, 37)
8: end for

It is optimized for high-speed generation of high-quality ran-
dom numbers, featuring a long period of 219937−1. MT19937
ensures well-distributed output while avoiding common PRNG
pitfalls such as short periods and poor randomness in lower
bits. Due to its speed and statistical robustness, it is a stan-
dard choice in scientific computing, simulations, and gaming
applications. As shown in Algo. 3, this PRNG runs a mix of
128-bit and vectorized 32-bit operations. For instance, L7 and

L9 perform left (
128
<<) and right (

128
>>) 128-bit shift operations,

respectively. The AIE-API does not natively support these.
On the other hand, L8 and L10 perform vectorized right

(
32
>>) and left (

32
<<) 4 × 32-bit shift operations, respec-

tively. These are supported natively by the AIE-API using the
aie::downshift and aie::upshift functions.

The selected PRNGs gradually require design constraints
for mapping on the AIE. The practical requirements can be
evaluated and categorized as follows:

• Data type: The data types required for running these
PRNGs become increasingly complex, ranging from 32 to
128 bits. While the AIE-API natively supports 32-bit data
types, the AIE architecture lacks support for unsigned in-
tegers—except for 8-bit ones, which are irrelevant to this
work. XORORSHIRO requires 64-bit numbers, which the
AIE-API does not support, adding to the complexity.
SFMT, which operates on 128-bit numbers, also faces
challenges despite native support for 128-bit vectors, as
this support is limited to handling four 32-bit vectors
rather than true 128-bit numbers.

• Required operations: Performing the necessary oper-



Algorithm 3 SFMT Random Number Generation

1: Macros: For MT19937 based algorithms, N = 156 and
M = 122

2: Input: s0, s1, · · · , sN , #RNs
3: Output: RNs
4: r1 ← sN−2, r2 ← sN−1

5: for i← 0 to #RNs do
6: v0 ← si, vM ← s(i+M) mod N

7: A← (v0
128
<< 8)⊕ v0

8: B ← (vM
32
>> 11) & vMASK

9: C ← r1
128
>> 8

10: D ← r2
32
<< 18

11: r1 ← r2
12: r2← A⊕B ⊕ C ⊕D
13: RNs[i]← r2
14: sN−1 ← r2
15: end for

ations for the PRNGs in Table I presents challenges.
XOROSHIRO and SFMT rely on 64-bit and 128-bit
operations, respectively, while the AIE-API natively sup-
ports only 32-bit operations. These operations can be per-
formed either in scalar or in vectorized mode, operating
element-wise on vectors of at least 128 = 4 × 32 bits.
Moreover, SFMT requires the modulo operation to be
emulated through a sequence of operations on the AIE
core. Execution trace analysis shows that this emulated
modulo function is loaded from a precompiled symbol,
necessitating a branch to a different memory location
during execution. This incurs context-switching overhead.

• Vectorization: Generating successive 32-bit random
numbers using bitwise operations on a predefined 32-
bit mask. SFMT extends this approach by adapting the
mask to 128 bits 1 for 128-bit random number generation.
While this is not restrictive for the AIE architecture, it
is a crucial constraint. PRNGs that rely on masked oper-
ations should be scalable to vectorized implementations
with masks that align with the target architecture’s bit
width—128 bits in the case of AIE.

C. Implementing Required Operations

Multiple challenges are discussed in Section II-B. We
deduce that to enable running the discussed PRNGs on AIE,
we require the following:

• AIE-API vectors must adapted to be used as vectors of
4 × 32-bit, 2 × 64-bit, or 1 × 128-bit binary words
for implementing the required data types of XORWOW,
XOROSHIRO, and SFMT, respectively.

• Implementation of the unsupported rotation left and
left shift operations on the 2 × 64-bit vectors for
XOROSHIRO.

1In Algo. 3, vMASK equals
BFFFFFF6BFFAFFFFDDFECB7FDFFFFFEF

• Implementation of the unsupported left and right shift
operations on the 1 × 128-bit vector for SFMT.

• Implementation of a cheaper modulo (constant) M oper-
ation.

The implementation of these operations on the required data
types is given in the following.

The shl_128bit and shr_128bit functions, illustrated
in Fig. 2a and Fig. 2b, perform left and right shifts, re-
spectively, on a 128-bit vector by a specified number of
bits, p. These functions operate on four 32-bit vector ele-
ments and leverage a sequence of AIE-API operations. For
shl_128bit, the process begins with aie::upshift,
which shifts each 32-bit element left by p bits. Next,
aie::shuffle_up_fill shifts the vector elements up-
ward by one position while filling the rightmost position with
zero. To handle cross-element bit shifts, aie::downshift
is applied to shift the intermediate result right by (32 - p)
bits, ensuring proper alignment. Finally, the aie::bit_or
operation merges the two shifted segments into a single
128-bit output. The shr_128bit function follows a sim-
ilar procedure but in the opposite direction. It first applies
aie::downshift to shift each element right by p bits.
Then, aie::shuffle_down_fill moves the vector el-
ements downward, filling the leftmost position with zero.
The aie::upshift operation then shifts the intermediate
result left by (32 - p) bits to align the zero-filled positions.
Finally, aie::bit_or combines the two shifted results into
the final 128-bit value.

The rotl_every64_in128 function, shown in Fig. 3,
performs a 64-bit rotate-left operation independently on the
two 64-bit halves of a 128-bit vector. For p < 32, each
half is first left-shifted by p bits, then right-shifted by (32
- p), and finally, the lower and higher 32-bit segments are
swapped using swap_high_low_per64bit. When p is 32
or greater, the process is adjusted: each half is right-shifted by
(64 - p), then left-shifted by (p - 32), followed by the
same 32-bit swap operation. The final result is obtained using
aie::bit_or, ensuring that both 64-bit halves are correctly
rotated within the 128-bit vector.

Note that the swap_high_low_per64bit function is
not an AIE-API native function. It is built upon two other func-
tions that we developed, swap_low_per64bit_in128
and swap_high_per64bit_in128. For each 64-bit half
in the 128-bit vector, swap_low_per64bit_in128 ex-
tracts 32 LSBs and places them in the 32 MSBs. Simi-
larly, swap_high_per64bit_in128 extracts 32 MSBs
and places them in the 32 LSBs.

The shl_every64_in128 function, shown in Fig. 4,
performs a left shift operation on the two 64-bit halves
of a 128-bit vector. It follows a similar principle as
rotl_every64_in128 but only extracts the 32 LSBs using
swap_low_per64bit_in128 when p < 32. For p is
32 or greater, only the 32 LSBs are retained, as the 32
MSBs are truncated by shifting. The same logic applies to
shr_every64_in128, illustrated in Fig. 5, which performs



a127 · · · a96 a95 · · · a64 a63 · · · a32 a31 · · · a0

a127−p · · · a960 · · · 0 a95−p · · · a640 · · · 0 a63−p · · · a320 · · · 0 a31−p · · · a00 · · · 0
aie :: upshift(., p)

a95 · · · a64 a63 · · · a32 a31 · · · a0 0 · · · 0
aie :: shuffle up fill(., zeros, 1)

0 · · · 0a95 · · · a96−p 0 · · · 0a63 · · · a64−p 0 · · · 0a31 · · · a32−p 0 · · · 0
aie :: downshift(., 32− p)

Bitwise OR

aie :: bit or(., .)
a95−p · · · a64−pa127 · · · a96−p a63−p · · · a32−p a31−p · · · a00 · · · 0

(a) Illustration of shl_128bit function by p bits.
a127 · · · a96 a95 · · · a64 a63 · · · a32 a31 · · · a0

0 · · · 0a127 · · · a96+p 0 · · · 0a95 · · · a64+p 0 · · · 0a63 · · · a32+p 0 · · · 0a31 · · · a0+p

aie :: downshift(., p)

0 · · · 0 a127 · · · a96 a95 · · · a64 a63 · · · a32
aie :: shuffle down fill(., zeros, 1)

0 · · · 0 a95+p · · · a960 · · · 0 a63+p · · · a640 · · · 0 a31+p · · · a320 · · · 0
aie :: upshift(., 32− p)

Bitwise OR

aie :: bit or(., .)
a95+p · · · a64+p0 · · · 0a127 · · · a64+p a63+p · · · a32+p a31+p · · · a0+p

(b) Illustration of shr_128bit function by p bits.

Fig. 2: 128-bit shift operations.

a right shift operation on the two 64-bit halves of a 128-bit
vector.

In SFMT, the modulo operation is always performed with
the constant M = 156 (Algo. 3, L6). Instead of using a costly
generic modulo operation, the implementation extracts the 8
LSBs using the bitwise AND operation &0xFF, ensuring the
result stays within [0, 255]. If the extracted value exceeds
156, subtracting 156 brings it within [0, 155], eliminating the
need to run the costly modulo and branching to its location in
memory, reducing runtime overhead.

III. EXPERIMENTAL SETUP AND PERFORMANCE
EVALUATION

This section evaluates the performance of the PRNGs listed
in Table I using the developed routines from Section II-C.
Two execution models, illustrated in Fig. 6, are considered.
The first model treats the AIEs as a co-processor (Fig. 6a),
where a large number of random numbers are generated and
sent to the host processor on demand, similar to a GPU
execution model. The second model employs the AIEs as a
standalone dataflow accelerator (Fig. 6b), running a PRNG-
Compute cluster overlay. Each cluster consists of an AIE
generating random numbers that feed another AIE performing
subsequent computations.

Notably, the second execution model is templated, allowing
the AIE responsible for computation to be adapted for any ker-
nel. Both execution models are open-sourced on GitHub [22].

A. Co-Processor Model

As shown in Fig. 6a, the AIEs function as a co-processor,
offloading random number generation. Each AIE runs an
independent PRNG, with every two vertically adjacent AIEs

b63 · · · b32 b31 · · · b0 a63 · · · a32 a31 · · · a0

b63−p · · · b320 · · · 0 b31−p · · · b00 · · · 0 a63−p · · · a320 · · · 0 a31−p · · · a00 · · · 0
aie :: upshift(., p)

0 · · · 0b63 · · · b64−p 0 · · · 0b31 · · · b32−p 0 · · · 0a63 · · · a64−p 0 · · · 0a31 · · · a32−p

aie :: downshift(., 32− p)

0 · · · 0b31 · · · b32−p 0 · · · 0b63 · · · b64−p 0 · · · 0a31 · · · a32−p 0 · · · 0a63 · · · a64−p

swap high low per64bit

Bitwise OR

aie :: bit or(., .)

b31−p · · · b0b63 · · · b64−pb63−p · · · b32−p a63−p · · · a32−p a31−p · · · a0a63 · · · a64−p

(a) Illustration of rotl_every64_in128<p> for p < 32.
b63 · · · b32 b31 · · · b0 a63 · · · a32 a31 · · · a0

0 · · · 0b63 · · · b96−p 0 · · · 0b31 · · · b64−p 0 · · · 0a63 · · · a96−p 0 · · · 0a31 · · · a64−p

aie :: downshift(., 64− p)

b95−p · · · b320 · · · 0 b63−p · · · b00 · · · 0 a95−p · · · a320 · · · 0 a63−p · · · a00 · · · 0
aie :: upshift(., p− 32)

b63−p · · · b00 · · · 0 b95−p · · · b320 · · · 0 a63−p · · · a00 · · · 0 a95−p · · · a320 · · · 0
swap high low per64bit

Bitwise OR

aie :: bit or(., .)

b95−p · · · b64−pb63−p · · · b0b63 · · · b96−p a63−p · · · a0a63 · · · a96−p a95−p · · · a64−p

(b) Illustration of rotl_every64_in128<p> for p ≥ 32.

Fig. 3: 2 × 64-bit rotate left operation.

b63 · · · b32 b31 · · · b0 a63 · · · a32 a31 · · · a0

b63−p · · · b320 · · · 0 b31−p · · · b00 · · · 0 a63−p · · · a320 · · · 0 a31−p · · · a00 · · · 0
aie :: upshift(., p)

0 · · · 0b63 · · · b64−p 0 · · · 0b31 · · · b32−p 0 · · · 0a63 · · · a64−p 0 · · · 0a31 · · · a32−p

aie :: downshift(., 32− p)

0 · · · 0b31 · · · b32−p 0 · · · 0 0 · · · 0a31 · · · a32−p 0 · · · 0
swap low per64bit in128

Bitwise OR

aie :: bit or(., .)

b31−p · · · b00 · · · 0b63−p · · · b32−p a63−p · · · a32−p a31−p · · · a00 · · · 0

(a) Illustration of shl_every64_in128<p> for p < 32.
b63 · · · b32 b31 · · · b0 a63 · · · a32 a31 · · · a0

aie :: upshift(., p− 32)

b95−p · · · b320 · · · 0 b63−p · · · b00 · · · 0 a95−p · · · a320 · · · 0 a63−p · · · a00 · · · 0

b63−p · · · b00 · · · 0 0 · · · 0 a63−p · · · a00 · · · 0 0 · · · 0
swap low per64bit in128

(b) Illustration of shl_every64_in128<p> for p ≥ 32.

Fig. 4: 2 × 64-bit left shift operation.

in the same column forming a cluster. Each cluster receives
two seed packets via a shared 32-bit stream interconnection
and outputs random numbers through another 32-bit stream
interconnection. Due to hardware constraints, packet streaming
is necessary to fully utilize all eight AIEs per column, as
each column has only six input and four output stream
interconnections [23].

Four MM2S (Main-Memory to Stream) and four S2MM
(Stream to Main-Memory) kernels handle seed input and
random number output, respectively, ensuring direct commu-
nication with the host. These kernels are implemented on the
PL. Since each column consists of four clusters, each input
MM2S and output S2MM kernel is connected to one of the
four rows of clusters across all the columns. Note that the



b63 · · · b32 b31 · · · b0 a63 · · · a32 a31 · · · a0

0 · · · 0b63 · · · b32+p 0 · · · 0b31 · · · bp 0 · · · 0a63 · · · a32+p 0 · · · 0a31 · · · ap
aie :: downshift(., p)

b31+p · · · b320 · · · 0 bp−1 · · · b00 · · · 0 a31+p · · · a320 · · · 0 ap−1 · · · a00 · · · 0
aie :: upshift(., 32− p)

0 · · · 0 b31+p · · · b320 · · · 0 0 · · · 0 a31+p · · · a320 · · · 0
swap high per64bit in128

Bitwise OR

aie :: bit or(., .)

b31+p · · · b32b31 · · · bp0 · · · 0b63 · · · b32+p 0 · · · 0a63 · · · a32+p a31+p · · · a32a31 · · · ap

(a) Illustration of shr_every64_in128<p> for p < 32.
b63 · · · b32 b31 · · · b0 a63 · · · a32 a31 · · · a0

aie :: downshift(., p− 32)

0 · · · 0b63 · · · bp 0 · · · 0b31 · · · bp−32 0 · · · 0a63 · · · ap 0 · · · 0a31 · · · ap−32

0 · · · 0b63 · · · bp 0 · · · 0 0 · · · 0 0 · · · 0a63 · · · ap
swap high per64bit in128

(b) Illustration of shr_every64_in128<p> for p ≥ 32.

Fig. 5: 2 × 64-bit right shift operation.

MM2S and S2MM kernels enable parallel communication with
the AIE clusters through separate channels. To simplify the
hardware design, these channels are grouped into four MM2S
and four S2MM kernels. This grouping does not serialize the
communication and ensures that data transfer remains fully
parallel. This enables efficient data transfer between the host
and AIEs.

Finally, this model employs 320 AIEs (40 columns × 8
rows), utilizing 80% of the available 400 AIEs (50 × 8).
The model is constrained to a maximum of 40 columns
because only 39 out of 50 columns contain PL-interface tiles
necessary for AIE-to-PL connectivity. However, these interface
tiles provide four incoming and four outgoing 32-bit stream
interconnections to adjacent horizontal tiles, allowing the use
of the 40th column despite the 39-column limitation.

B. Standalone Dataflow Accelerator

As shown in Fig. 6b, the AIEs operate as a standalone
dataflow accelerator. In this execution model, each cluster
of two vertically adjacent AIEs runs the random number
generation followed by another compute step. Each cluster
receives the PRNG seeds on a 32-bit stream interconnection,
sends the output random numbers to another compute kernel
mapped on the second AIE, and outputs the result of the
computation on another 32-bit stream interconnection. The
four MM2S and four S2MM PL kernels to communicate the
AIEs to the host, and 320 AIEs (40 columns × 8 rows) out
of 400 AIEs, are used similarly to the Co-processor model in
Section III-A.

To evaluate this model, the generation of the Normal
distributed numbers is used as the compute stage that fol-
lows the PRNG. For this, the incoming numbers from the
PRNGs must be converted to single-precision floating-point
(SPFP) numbers normalized in the interval [0, 1). The AIE-
API function aie::to_float is used for this conversion.
This function treats the integer input as a 32-bit fixed-point
number and converts it to SPFP by specifying the position of

the binary point. Since all the numbers in the interval [0, 1)
have their binary point at the MSB, the function is configured
accordingly to ensure correct normalization.

However, due to the lack of unsigned integer support on
the AIE, the PRNG-generated integer may be misinterpreted
as negative if its MSB is 1. To convert it to the desired
interval correctly, we apply an arithmetic adjustment to ensure
equivalence with an unsigned-to-float conversion as follows.

A SPFP number r consists of a 1-bit sign S, an 8-bit
exponent E, and a 23-bit mantissa M , and is represented as
r = (−1)S × M × 2E−128. Here, the mantissa M follows
an implicit leading-one convention, i.e. M = [b22 · · · b0]
represents 1. [b22 · · · b0]. Therefore, for a fixed-point number
to be converted to a SPFP number, it should be normalized to
1. [b22 · · · b0]. Therefore, if the MSB of the fixed-point number
is 1, then the 23 most significant bits (MSBs) correspond to the
mantissa, while the remaining 32− 23 = 9 bits are truncated
during conversion. To ensure proper alignment, we first apply
a 9-bit right shift using aie::downshift, bringing the
mantissa into the LSBs. Then, the aie::to_float function
is applied while specifying the binary point position at bit 23.
This ensures that the MSB of the input fixed-point number is
correctly interpreted as part of the number itself rather than as
a sign bit. We construct a function unsigned_to_float
that applies both this method and aie::to_float to con-
vert unsigned integer inputs to SPFP numbers correctly. The
function evaluates each element of the integer input vector
and applies the appropriate conversion based on the sign bit.
This selection is efficiently handled using the aie::select
function, ensuring that each element undergoes the correct
conversion while maintaining vectorization efficiency.

For Normal distributed number generation, Acklam’s Ap-
proximation [18] is utilized on the converted SPFP numbers in
[0, 1). This method is used for Inverse Cumulative Distribution
Function (ICDF) approximation through a rational fraction, as
given in Eq. 1 (coefficients given in Table III). This method
applies different calculations for the input values close to 0 and
1, but this is omitted here for simplicity as was done in [24].

P (R(X)) =
(((((A1R

2 +A2)R
2 +A3)R

2 +A4)R
2 +A5)R

2 +A6)R

((((B1R2 +B2)R2 +B3)R2 +B4)R2 +B5)R2 + 1

, where R(X) = X − 0.5
(1)

C. Performance evaluation

The performance of the two implemented models described
in Section III-A and Section III-B are compared in Table II.
The details of the AMD Versal platform used for experiments
are given in Table IV. For comparison, 160K to 160M random
numbers are generated.

In Table II, the execution times for all PRNGs are shown
scaling by four orders of magnitude. Linear scaling would
result in a 10× increase moving one column to the right.
Lower multipliers indicate better scaling. We notice that the
scaling is approximately linear. Besides, fixed overheads such
as packet switching are amortized over the increasing number



S2MM

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

S2MM

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

PRNG

MM2S

MM2S

MM2S

MM2S
S2MM

S2MM

x40

x8
AI Engine Cluster PL Kernel

PL Kernel

AI Engine
Array

Programmable
Logic

Input Packet
Stream

Output Packet
Stream

(a) Co-processor model.

S2MM

Comp.

PRNG

Comp.

PRNG

Comp.

PRNG

Comp.

PRNG

S2MM

Comp.

PRNG

Comp.

PRNG

Comp.

PRNG

Comp.

PRNG

MM2S

MM2S

MM2S

MM2S
S2MM

S2MM

x40
x8

AI Engine Cluster PL Kernel
PL Kernel

AI Engine
Array

Programmable
Logic

Input
Stream

Output
Stream

Feed-Forward
Stream

(b) Standalone dataflow accelerator model.

Fig. 6: PRNG accelerator architectures.

TABLE II: Execution time (in milliseconds) for the different PRNGs.

PRNG Model
160K
RNs

1.6M (10× ←)
RNs

16M (10× ←)
RNs

160M (10× ←)
RNs

M2 to M1

XORWOW
M1: Co-processor 2.858 17.477 (6.11×) 164.762 (9.42×) 1634.63 (9.92×)

3.15×
M2: Dataflow 6.315 59.749 (9.46×) 593.921 (9.94×) 5934.01 (9.99×)

SFMT
M1: Co-processor 4.831 30.494 (6.31×) 285.603 (9.36×) 2835.71 (9.92×)

1.86×
M2: Dataflow 6.722 60.242 (8.96×) 594.355 (9.86×) 5934.5 (9.98×)

XOROSHIRO
M1: Co-processor 7.637 70.596 (9.24×) 697.669 (9.88×) 6967.69 (9.98×)

0.96×
M2: Dataflow 6.961 68.520 (9.84×) 683.628 (9.97×) 6833.75 (9.99×)

TABLE III: Coefficients of the fraction P in Eq. 1

Coeff. Value Coeff. Value

A1 -3.9696830286653757e+01 B1 -5.4476098798224058e+01
A2 2.2094609842452050e+02 B2 1.6158583685804089e+02
A3 -2.7592851044696869e+02 B3 -1.5569897985988661e+02
A4 1.3835775186726900e+02 B4 6.6801311887719720e+01
A5 -3.0664798066147160e+01 B5 -1.3280681552885721e+01
A6 2.5066282774592392e+00

of random numbers generated. For the Co-Processor model
with XORWOW and SFMT, we see a better than linear scaling
at 1.6M RNs, indicating this amortization.

TABLE IV: Hardware accelerator configuration.

Component Description

Board AMD Versal ACAP VCK5000
Device XCVC1902
AI Engine Array 400× 1st Gen. AIE
Tool Version Vitis 2022.1

XORWOW is slightly faster than SFMT, which is
faster than XOROSHIRO. In the Co-processor model (M1),
XOROSHIRO is consistently slower than XORWOW and
SFMT. However, in the Standalone dataflow accelerator model



(M2), XOROSHIRO slightly matches SFMT and XORWOW.
This suggests that using XORWOW and SFMT with M1 is
more beneficial.

The last column represents the geometric mean of the
execution times using the M2 to M1 ratio. We notice that
the overhead of the Normal ICDF approximation, which is
implemented in M2, is not well hidden within the latency
of the fast XORWOW and SFMT PRNGs compared to the
slower XOROSHIRO. This suggests that using XOROSHIRO
with M2 is more beneficial. This also suggests that when
using XORWOW and SFMT, more pipelining of the second
computation stage of the Normal ICDF approximation is
needed to improve pipeline balance and match the performance
of M1.

IV. DISCUSSION AND CONCLUSION

This paper has demonstrated how to port massive random
number generation to AMD AI Engines. This was achieved
by implementing and optimizing custom functions to enable
the implementation of PRNGs. We identified key challenges,
including the lack of support for certain operations, unsigned
data types, and vectorization constraints and addressed them
through sequences of operations supported by the AIE-API.
Additionally, we presented the porting of normal distribution
approximation. We presented experimental results for two
execution models. The first model uses the AIEs to offload the
random number generation, while the second is used to enable
seamless integration of random number generation within
computational pipelines. Performance evaluation confirms that
the implemented methods exhibit linear scalability, enabling
the generation of large volumes of random numbers while
maintaining efficiency. The results also highlight that the
co-processor model performs better with fast PRNGs like
XORWOW and SFMT, rather than XOROSHIRO.

This work also demonstrates that the AMD AI Engine
architecture could benefit from allowing cross-lane operations
such as shifts as well as combining registers to form larger
vector lanes, as is the case with the AVX [25] extension on
x86 processors. It could also benefit from supporting unsigned
data types natively. This would reduce the overhead of running
sequences of operations, extracting better performance for
random number generation.

In future work, we will tackle another class of PRNGs,
MWC (Multiple-With-Carry) [5], which are sign-insensitive
as they require arithmetic operations such as addition and
multiplication. These are challenging to run on the AIE
architecture as it does not support unsigned arithmetic, as has
been discussed earlier. They are further challenging as the AIE
architecture uses special 48-bit registers, called accumulator
registers, to store the results of multiplications of 32-bit inte-
gers (including the sign extension), making combining lanes
even more complicated. We have provided an open-source
release of our code [22] for the wider community to build
further applications that rely on random number generation
on AIEs.

REFERENCES

[1] R. Rolland, Randomness in Cryptography. Springer International
Publishing, 2015.

[2] L. Lista, Random Numbers and Monte Carlo Methods. Springer
International Publishing, 2023.

[3] B. Antunes and D. R. C. Hill, “Random numbers for machine learning: A
comparative study of reproducibility and energy consumption,” Journal
of Data Science and Intelligent Systems, 2024.

[4] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number genera-
tor,” ACM Transactions on Modeling and Computer Simulation, vol. 8,
no. 1, pp. 3––30, 1998.

[5] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical Software, vol. 8,
no. 14, 2003.

[6] P. Glasserman, Monte Carlo Methods in Financial Engineering.
Springer New York, 2003.

[7] M. Bouaziz, M. Samet, and S. A. Fahmy, “A dataflow overlay for Monte
Carlo multi-asset option pricing on AMD Versal AI Engines,” in ISC
High Performance Research Paper Proceedings, 2025.

[8] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the Monte
Carlo method is so important today,” WIREs Computational Statistics,
vol. 6, no. 6, pp. 386–392, 2014.

[9] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games. Springer International Publishing, 2016.

[10] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
random numbers: as easy as 1, 2, 3,” in International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
2011.

[11] D. B. Thomas and W. Luk, “High quality uniform random number gen-
eration using LUT optimised state-transition matrices,” Journal of VLSI
Signal Processing Systems for Signal, Image, and Video Technology,
vol. 47, no. 1, p. 77–92, 2007.

[12] D. B. Thomas, L. Howes, and W. Luk, “A comparison of CPUs, GPUs,
FPGAs, and massively parallel processor arrays for random number
generation,” in International Symposium on Field Programmable Gate
Arrays (FPGA), 2009.

[13] I. Ambric, “Am2000 family architecture reference,” 2008.
[14] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive

compute acceleration platform: Versal architecture,” in International
Symposium on Field-Programmable Gate Arrays (FPGA), 2019.

[15] D. Blackman and S. Vigna, “Scrambled linear pseudorandom number
generators,” ACM Transactions on Mathematical Software, vol. 47, no. 4,
pp. 36:1–36:32, 2021.

[16] M. Saito and M. Matsumoto, “SIMD-oriented fast Mersenne Twister: a
128-bit pseudorandom number generator,” in Monte Carlo and Quasi-
Monte Carlo Methods, 2006.

[17] M. J. Wichura, “Algorithm AS 241: The percentage points of the normal
distribution,” Journal of the Royal Statistical Society. Series C (Applied
Statistics), 1988.

[18] P. J. Acklam, “An algorithm for computing the inverse normal cumula-
tive distribution function,” University of Oslo, Statistics Division, vol. 37,
no. 3, pp. 477–484, 2000.

[19] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico,
and P. Walker, “The ARM scalable vector extension,” IEEE Micro,
vol. 37, no. 2, pp. 26–39, 2017.

[20] “AI Engine kernel and graph programming guide (UG1079),”
https://docs.amd.com/r/en-US/ug1079-ai-engine-kernel-coding, 2022.

[21] “CUDA C++ programming guide,” https://docs.nvidia.com/cuda/cuda-c-
programming-guide, 2024.

[22] GitHub Repoistory, 2025. [Online]. Available: https://github.com/accl-
kaust/PRNGine

[23] “Versal Adaptive SoC AI Engine architecture manual (am009),”
https://docs.amd.com/r/en-US/am009-versal-ai-engine, 2023.

[24] S. Grauer-Gray, W. Killian, R. Searles, and J. Cavazos, “Accelerating
financial applications on the GPU,” in Workshop on General Purpose
Processor Using Graphics Processing Units, 2013.

[25] “Intel AVX-512 instructions,” https://www.intel.com/content/www/us/en/
developer/articles/technical/intel-avx-512-instructions.html, 2014.


