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Abstract—Many massively parallel applications require
floating-point (FP) precision, necessitating specialized hardware
support. Novel Reconfigurable Dataflow Accelerators (RDAs) and
Coarse Grained Reconfigurable Arrays (CGRAs) like the AMD
Versal AI Engine Array can implement optimized datapaths. The
AMD Versal FPGA family integrates AI Engine cores for vector
FP operations as well as DSP58 primitives in the programmable
logic for use in fine-grained architectures. Configurability at
these levels involves factors, particularly data movement, that
complicate measuring empirical compute performance limits.
This paper presents an architectural model to isolate and measure
these limits. Using this model, we compare resources, showing
the superior operator density and performance of the DSP58
over the previous generation AMD UltraScale+ DSP48E2 for
massively parallel dataflow overlays. We also show that the
DSP58 can outperform programmable AI Engines in massively
parallel feedforward applications.

Index Terms—Dataflow, CGRA, massive parallelism.

I. INTRODUCTION AND RELATED WORK

Floating Point (FP) representation is essential in many
massively parallel applications across domains, such as fluid
dynamics, machine learning, and others [1]. Many general-
purpose architectures come with optimized parallel/vector FP
units such as Advanced Vector Extensions (AVX) [2] in vari-
ous x86 Intel and AMD CPUs and Scalable Vector Extension
(SVE) [3] on ARM CPUs that support a high number of par-
allel SIMD FP operations. Similarly, the Ampere architecture
[4] of Nvidia GPUs can perform FP tensor operations with
different precisions. Those architectures can be leveraged for
massively parallel applications. However, dataflow accelerators
still find use with compute patterns that do not fit these
general-purpose architectures well. Hence, we must consider
these operations when designing efficient dataflow overlays on
architectures like the AMD Versal [5].

The AMD Versal architecture combines fine-grained and
coarse-grained modalities to implement dataflow architectures,
as shown in Fig. 1. At the fine-grained level, the Programmable
Logic (PL) contains optimized hardware resources that can
be combined into arbitrary arrangements. In particular DSP
blocks, are used to implement arithmetic in the PL. Specif-
ically, the DSP58 [6] in the AMD Versal natively supports
single-precision FP operations, unlike the older DSP48E2 [7]
on AMD UltraScale+ [8] and previous generations that only

supported fixed-point operations directly. FP operations can be
implemented using older DSP blocks without native FP sup-
port, but this requires additional hardware to compose fixed-
point/integer operations and results in extra timing overhead.
Floating point operator synthesis can be done through vendor
or open source IPs [9], [10] and High-Level Synthesis (HLS)
tools also automate this for supported datatypes.

The AMD Versal has a new additional resource: an array
of software-programmable cores, called AI Engines (AIEs),
that offer SIMD FP and integer support and that can be used
for massively parallel applications. These are connected via
streaming interconnect and access data from off-chip and on-
chip memory.

Although both the DSP58s and AIEs support native FP
operations, data movement patterns play a crucial role in their
overall throughput. Analyzing the practical limits of these
primitives is complex as compute performance is not solely
determined by raw arithmetic capability. DSP blocks tend to
absorb most of the arithmetic workload in FPGA designs,
but achieving optimal mapping, especially from HLS, remains
challenging [11]. Consequently, evaluating DSP efficiency
requires an application-level perspective, as computational
capability does not solely determine overall effectiveness.
Furthermore, comparing newer primitives such as the Versal
DSP58 and AIEs against older ones like the UltraScale+
DSP48E2 is complicated by differences in architectural in-
tegration, such as the presence of High-Bandwidth Memory
(HBM) in devices like the Alveo U280 [12], while not being
available on any architecture with the AI Engines.

This work aims to propose an architectural benchmarking
model for analyzing the implementation of feed-forward mas-
sively parallel dataflow overlays that leverage FP operations
across AMD Versal primitives. The proposed model provides
a way to separate the compute primitives’ performance indi-
cators from the data movement implications. It also enables
fair comparison with the older DSP48E2.

We employ the model to compare the performance of the
Versal DSP58 block against the UltraScale+ DSP48E2 by
measuring the maximum achievable frequency for various
design points for PL-based designs. As the AIEs are situated
within the AIE Array, which is distinct from the fine-grained
PL, we compare performance against the PL-based designs
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Fig. 1: AMD Versal SoC architectrure.

void aie_vmul_stream(input_window<float> *in0,
input_window<float> *in1,
output_windw<float> *out) {

aie::vector<float, 8> a = window_readincr_v<8>(in0);
aie::vector<float, 8> b = window_readincr_v<8>(in1);
aie::vector<float, 8> res = aie::mul(a, b);
window_writeincr<8>(out, res);

}

Fig. 2: Element-wise vector multiplication on AIE.

leveraging the DSP blocks in terms of speedup and energy
efficiency. We take massively parallel element-wise vector
multiplication as an example in our model, as it represents
the backbone of many important acceleration workloads, in-
cluding matrix-matrix and matrix-vector multiplication. We
show that Versal primitives (DSP58s and AIEs) offer higher
performance for massively parallel overlays than UltraScale+
and enable scalable dataflow implementation. This is despite
lacking HBM, present in UltraScale+, which enables high
throughput data movement. We open-source the model in this
repository [13].

II. FLOATING POINT ON DSP BLOCKS VS AI ENGINES

This section explores the differences in FP datapaths be-
tween AIEs and DSP58 primitives, detailing how each can
be configured for SIMD FP operations. It also discusses opti-
mization techniques, mainly through pipelining, and explains
how these primitives can be structured to extract pipelining
efficiency.

A. DSP vs AIEs Datapath Differences

As a RISC core optimized for highly vectorized workloads
across various data types, the AI Engine natively supports
FP operations. In particular, using the AIE-API [14], it
can perform 8-lane SIMD FP multiplication per cycle using
aie::mul, as shown in Fig. 2.

DSP blocks in AMD FPGAs (illustrated in Fig. 3) are
highly flexible, with runtime programmable control inputs that
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Fig. 3: DSP Block simplified block diagram.

can modify their datapath configuration to implement differ-
ent graphs of add/multiply/accumulate and similar functions.
This flexibility has been exploited at a low level to build
programmable overlays [15], however, current synthesis tools
will usually statically set these to implement fixed graphs of
arithmetic functionality. Due to this flexibility, DSP blocks
tend to implement most integer arithmetic operations during
synthesis. The AMD LogiCore Floating-Point Operator IP
[9] uses DSP blocks with additional logic to implement FP
operations. The number of DSP blocks required, cascading
scheme (if applicable), and configuration vary based on the
DSP block version and the operation.

B. DSP58 vs DSP48E2 Functionality

We analyze two state-of-the-art AMD FPGA DSP blocks:
the DSP48E2 [7], featured in the UltraScale+ architecture,
and the DSP58 [6], included in the newer Versal architecture.
Notably, the DSP58 is a functional superset of the older
DSP48E2, offering backward compatibility.

The AMD LogiCore Floating-Point Operator IP [9] enables
the implementation of a single-precision FP multiplication
operation. As shown in Table I, an 8-lane multiplier (including
data movement circuitry) using DSP48E2 blocks requires 3
DSPs per lane. This employs the MAXDSP IP configuration,
which cascades and operates the DSPs as an FP multiplier
using extra surrounding logic. The same operation on the



TABLE I: Resource usage of 8-lane PL-based multipliers.

Board DSP blocks BRAMs LUTs FFs

UltraScale+ U280 24×DSP48E2 12 7287 10182
Versal VCK5000 8×DSP58 12 5841 9124

Usage comparison 3× 1× 1.25× 1.16×

DSP58 primitive requires only one DSP per lane due to native
FP support and reduced surrounding logic. This is using the
PRIMITIVEDSP IP configuration.

C. Pipelining DSP blocks

Pipelining complex datapaths into multiple stages enables
higher operating frequencies on the PL. Depending on the IP
implementation and the DSP primitive used, different numbers
of configurable pipeline stages are supported: using the DSP58
up to 4 stages, while the DSP48E2 based implementation can
use up to 7 stages for FP multiplication.

DSP blocks are optimized for integration into deep custom
dataflow pipelines, leveraging a spatial computing paradigm
to deliver high performance. On the other hand, the AIE
is a processor based on the traditional von Neumann archi-
tecture, with an instruction memory that stores a program.
Its performance stems from vector execution and the high 1
GHz operating frequency. DSP blocks can also be used to
implement programmable processors when needed [16]. This
paper focuses on a massively parallel feed-forward dataflow
application.

III. PROPOSED ARCHITECTURAL MODEL

In this section, we propose an architectural model of a
dataflow overlay that can be implemented on the FPGA PL
using DSP blocks and on the AIE Array using AI Engines.
This architectural model aims to provide high FP operation
density and reduced logic and control complexity. This is
to distil the effective compute performance of the available
resources, without significant impact from data movement and
control.

A. Architectural Model

Constructing a benchmarking model to evaluate the perfor-
mance of FP primitives involves several factors. The PL is
more fine-grained than the AIE Array, with data movement
being completely custom, unlike the regular vertical and
horizontal streams on the AIE Array. Besides, current AMD
Versal boards with AIEs lack HBM, which limits highly par-
allel off-chip data movement compared to AMD UltraScale+
boards. Internal data communication optimizations, such as
shared buffers, can also impact the measurement of compute
performance. Therefore, we require the following to build
an architectural model that isolates the performance of FP
primitives for comparison:

• The dataflow should only include feed-forward streams
of data.
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Fig. 4: Implemented architectural model.

• Off-chip data communication must be done with DRAM
(no HBM).

• Computation per FP primitive does not share or synchro-
nize intermediate results with other primitives.

Fig. 4 shows the architectural model used in this analysis.
This model aims to ensure similar data movement and compute
patterns across the DSP blocks and AIEs and Versal and
UltraScale+ platforms.

For data movement, the Memory-to-Stream (for input) and
Stream-to-Memory (for output) communication kernels, al-
ways mapped on the PL, are identical across all implemen-
tations. The channels are 32 bits wide. All channels handle
vectors with sizes that are multiples of the total parallel inputs
and outputs.

For computation in the PL-based designs, the HLS design of
the Processing Elements (PEs) is mapped to DSP blocks and
LUTs/FFs. In the AIE-based designs, PEs are implemented
as computation kernels using the AIE-API [14]. In this case,
communication kernels connect to the AIE array through PL
Interface tiles, which allow connections to multiple 32-bit
channels.

In both designs, the PEs execute the single-precision FP
multiplication operation in an 8-lane SIMD fashion, processing
data as soon as it becomes available. Thus, both implementa-
tions follow the same data movement and execution pattern,
allowing a fair comparison.

B. Experimental Setup

We use the AMD VCK5000 board with the Versal
XCVC1902 device and the AMD Alveo U280 with the Ul-
traScale+ XCU280 device, whose resource availabilities are
shown in Table II.

The UltraScale+ Alveo U280 has 4.58× as many DSP
blocks as the Versal VCK5000. However, FP designs require



TABLE II: Resource availability on target platforms.

Board DSP BRAM LUT FF

UltraScale+ U280 9024 2016 1304K 2607K
Versal VCK5000 1968 1934 899K 1799K

Resource comparison ×4.58 ×1.04 ×1.45 ×1.45
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Fig. 5: Maximum achievable frequency for different numbers
of 8-lane SIMD PEs.

one third of the DSP blocks per FP functional unit, as
discussed in Section II-B, resulting in a normalized DSP usage
for FP implementations of 1.53×. Moreover, the Alveo U280
features HBM and DRAM memories, while the VCK5000
only features DRAM. Hence, we only use the DRAM memory
to satisfy the model constraints.

For the AIE-based designs, we use the communication
kernels in the PL as the AIEs have higher bandwidth to the
PL than to DRAM [17], and to ensure consistency with the
PL-based designs.

C. Fine-Grained Primitives: DSP Blocks Comparison

The DSP primitives used in this analysis implement FP
operations differently and support varying numbers of pipeline
stages. Since pipelining impacts frequency, we compare the
maximum achievable frequency for the PE designs based on
both the DSP48E2 and DSP58.

Fig.5 illustrates how maximum frequency scales with the
number of pipeline stages enabled in the FP multipliers for
different numbers of PEs (in multiples of 8 SIMD lanes) on
both the VCK5000 and the Alveo U280. As noted in Sec.II-C,
the DSP58 FP multipliers can be pipelined to a maximum
depth of 4 cycles.

As the number of PEs increases, the frequency drops due
to higher DSP block utilization and more additional resources
needed for pipelining causing some congestion, as discussed
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Fig. 6: Effect of pipelining on the execution time of one 8-lane
multiplier Processing Element.

in Section II-B. The best maximum achievable frequency on
the Alveo U280 does not exceed the worst on the VCK5000,
even with more pipeline stages. In addition, frequency plateaus
at 4 pipeline stages. For the U280, designs with more than 32
PEs were unrouteable due to high congestion.

To isolate the effect of pipelining from the congestion issue
on the Alveo U280, we pipelined a single PE with the same
number of pipeline stages used previously. For a given operand
vector size, the operation timing—how data flows in and out
of the PE and how computation is performed—remains the
same, allowing us to directly assess the impact of pipelining on
performance. Fig. 6 shows that pipelining the DSP48E2 does
not improve throughput as the problem size increases. The
frequency plateaus at 4 pipeline stages and deeper pipelines
introduce additional overhead for data movement.

This suggests that the FP multiplier design using three
DSP48E2 blocks does not scale well, and congestion is a key
constraint when implementing a high density of PEs, compared
to the DSP58 primitive.

D. Coarse-Grained Primitives: AIE vs DSP

DSP blocks are situated within the PL, while the AIE Array
is distinct from the PL. This means where data sources are
within the PL, they can be ingested into massively parallel
DSP block-based datapaths more easily than is possible for
AIEs. So, while the raw computational capability and clock
rate of the AIEs are high, data movement can dramatically
impact overall application performance. To evaluate this,
we analyze the speedup and energy efficiency of massively
parallel dataflow using DSP blocks and AIEs. Out of the
DSP blocks, we only consider the DSP58 primitive in this
experiment as it allows scaling to a high number of PEs, as
explained in Section III-C, enabling massive parallelism.



TABLE III: Design resource and power consumption.

AIE Design DSP58 Design

Processing Elements 384 184 (1472 DSP blocks)

Compute Resource Usage (%) 96% AIEs 74% DSP58

Total Design Power (W) 109.6 45.8

Speedup and energy efficiency are analyzed based on large
input vectors to fully exploit the high number of PEs. Input
sizes are chosen to occupy as many PEs as possible and are
chunked in multiples of the total SIMD lanes of both the AIE
and PL-based designs. The number of PEs used is given in
Table III and is chosen empirically to maximize resource usage
while not encountering congestion issues when routing.

As shown in Fig. 7, the FP vector element-wise multipli-
cation operation is 1.74× times faster using the PL-based
design than using the AIEs. Recall that our architectural model
ensures similar communication and computation patterns for
both architectures. Hence, this suggests that coupling com-
munication through the PL with stream processing on the
distinct AIE Array presents an potential practical performance
bottleneck for the AIEs.
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Fig. 7: Execution time and energy efficiency.

We extract the total chip power from the post-routing report.
Table III shows that the PL-based design consumes less power
than the array of the AIEs. We derive energy consumption
from the measured runtime and power report. In Fig. 7, we
also show the overall energy efficiency, which is defined as
the ratio of the energy consumption of PL-based designs to
the AIE design. It is demonstrated that PL-based designs are
3.8–4.3× as energy efficient as the AIE design for this large
parallel FP multiplication application. In [18], it was shown
that when there is data reuse, the AIEs can be more energy
efficient as they retain data within their local memories for
reuse. This confirms that while the AIE has a faster clock rate
and an optimized datapath, its compute performance can only
be fully realized with well-designed data movement patterns.

IV. CONCLUSION

This paper proposed an architectural model that distils the
empirical limits of FP performance on the AMD Versal FPGAs
for massively parallel dataflow overlays. At the primitive level,
we have shown that the DSP58 significantly outperforms the
older DSP48E2 of the AMD UltraScale+ architecture when
pipelined, as well as supporting higher-density parallel data-
paths. This allows the AMD Versal to implement massively
parallel applications. We have also shown that at the coarse-
grained level, AIEs have higher energy consumption than DSP
blocks with feed-forward stream processing pipelines. We aim
to extend this analysis to more complex dataflow overlays to
better understand the trade-offs in implementing FP datapaths
on modern FPGAs and RDAs/CGRAs.
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