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Abstract—Supporting the evolution of wireless communication
beyond 5G using high-performance networks requires mas-
sive device connectivity. Massive Multiple-Input Multiple-Output
(MIMO) systems have been used and proven to increase the
data throughput of wireless links. However, scaling such systems
to a large number of antennas and a high modulation factor
entails a significant computational cost for signal decoding using
conventional non-linear decoders. Heuristic tree-search-based
approaches have been proposed to address this challenge as
a means to achieve real-time decoding requirements for large
MIMO configurations. FPGAs represent an ideal platform for
accelerating MIMO signal decoding on account of their low
latency and potential for integration within the signal processing
chain while consuming low power. This paper presents soft-
ware/hardware co-design for a multi-level tree search approach
that integrates the computation of multiple tree levels. The
proposed heuristic transforms the tree search process into a
streaming operation well suited for the FPGA’s architecture. We
show a series of hardware design and algorithmic optimizations
that significantly improve scalability and decoding time, resulting
in a design capable of decoding 64 x64 64-QAM MIMO within
10ms real-time requirements.

Index Terms—Wireless communication, MIMO, field pro-
grammable gate arrays, signal decoding, sphere decoder.

I. INTRODUCTION

Next-generation wireless systems are expected to cater to
users’ ever-increasing need for high-performance communica-
tion. Multiple-Input Multiple-Output (MIMO) systems are a
proven solution to maximize wireless capacity [1-7]. While
MIMO is already a core component of 4G and 5G communi-
cations systems [7], scaling to larger systems within real-time
constraints presents a challenge for future adoption.

MIMO systems can scale across two dimensions: the num-
ber of antennas and the modulation factor. The critical chal-
lenge is the complexity of decoding the signal at the receiver
side. Non-linear decoders, such as Maximal Likelihood [8] and
Sphere Decoders (SDs) [9, 10], exhibit better Bit Error Rate
(BER) performance than linear decoders [6, 11-14], especially
when decoding multiple parallel communication streams. The
decoding process is mapped to a tree search problem, which
grows exponentially, making it computationally complex and
hindering scalability. Hence, practical solutions rely on sub-
optimal heuristics to reach an approximate solution while
reducing complexity [15-19].

Tree-search-based SD is a well-established decoding algo-
rithm that relies on mapping the decoding process to GEMM-

based computation [12—-14]. Two main challenges prohibit
scaling to larger MIMO configurations: real-time decoding
constraints and hardware resources constraints. Real-time de-
coding restricts the decoder’s scalability due to the exponential
computational complexity of the problem. Hardware resources
limit scaling the modulation factor due to the exponential
growth of the decoder’s memory footprint.

This work tackles these scalability challenges using hard-
ware and algorithmic optimizations. SD includes an inherent
computationally expensive backtracking step that bottlenecks
the decoding process [14]. This paper proposes an approach
that eliminates backtracking from the SD algorithm, making
the tree search a stream-forward process well-suited to exploit
the FPGA’s infrastructure. The proposed heuristic baseline
design is thoroughly analyzed, and performance & memory
models are used to identify design scalability challenges.
Hardware optimizations, in the form of kernel fusion and max-
imizing data reuse, significantly improve resource utilization
and on-chip memory usage. Moreover, the decoding process
was accelerated enhancing the decoding throughput, thereby
enabling the accommodation of larger MIMO configurations.
Additionally, we employ algorithmic refactoring to extract a
static portion of the computation into a pre-processing step,
significantly reducing the decoding time and improving the
decoder’s scalability further.

Hence, this paper explores a software/hardware co-design
approach to scale hardware-based MIMO decoding systems
while limiting the impact of the exponentially increasing
computation. The decoder achieves real-time decoding (10ms
decoding time and 10~2 BER [2,3, 12]) for massive MIMOs
up to the size of 64x64 with 64-QAM modulation. We show
significant improvement in decoding time compared to both
(GPU) vector- and (FPGA/ASIC) spatial-based designs, as
we show in Section V. Moreover, our approach decodes the
signal at lower SNR (db) values, requiring less transmission
power. While some vector-based decoders exhibit better BER
performance, the proposed design significantly outperforms
them in terms of decoding time.

The contributions of this work can be summarized as:
e A heuristic to determine the most promising path in a

tree search while eliminating the backtracking step, trans-
forming it into a stream-forward operation (Section III).



o A novel software/hardware co-design that maximizes data
reuse, which enables the decoding of large-scale MIMO
configurations (Section IV).

e A detailed performance/memory model for reasoning
about the workload and guiding optimizations. We utilize
the models to identify scalability bottlenecks and propose
solutions to mitigate them (Sections III and IV).

o The proposed design achieves significant speedup com-
pared to state-of-the-art decoders on various platforms
(GPU/FPGA/ASIC). We show orders of magnitude
speedup compared to vector-based implementations at the
cost of increasing the required transmit power to decode
the signal. On the other hand, we show comparable BER
performance with spatial-based designs while achieving
up to 15x speedup in the decoding time (Section V).

II. BACKGROUND & LITERATURE REVIEW
A. System Model

A typical MIMO system with M transmitters and N re-
ceivers communicating via a channel is shown in Figure 1.
The transmitter sends M data streams represented as vector
s = [S0,51,-..,SMm—1]), Where s; belongs to a finite alphabet
set of complex constellations denoted by 2. We consider a
small-scale fading channel represented as channel matrix H,
which is an NxM matrix where h;; is a complex random
variable with mean O and variance 1, modeling the fading
gain between transmitter 5 and receiver i. The received signal
y = [yo,yl,...,yN_l]T can be modeled as in Equation 1,
where n = [no,nl,...,nN_l}T represents additive white
Gaussian noise, where n; is an independent zero-mean cir-
cularly symmetric complex Gaussian random variable with

variance o2.

y=Hs+n. (D)

B. Sphere Decoding (SD)

Non-linear decoders excel over their linear counterparts
in terms of decoding accuracy, especially when scaling the
modulation factor and the number of antennas. Non-linear
decoding represents the problem as a tree search operation
calculating a posterior probability for all possible transmitted
vectors s € S, where |S| = |Q|™. The resulting vector, s,
minimizes the distance between the received vector y and the
assumed noiseless vector Hs as shown in Equation 2.

§ = argmin||y — Hs||?. )
sES

The SD algorithm enumerates the points inside a hyper-
sphere of radius r around the received point y. The sphere
radius r is set initially by the user to prune the search space, as
shown in Equation 3; however, it can be subsequently updated
at run-time to prune the search space further. The optimization
problem shown in Equation 3 is translated into a least-square
problem by performing a QR decomposition of the channel
matrix H = QR, where Q € CV*V is an orthogonal matrix
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Fig. 1: Typical MxN MIMO system.

and R € CN*M js an upper triangular matrix. This translation
transforms Equation 3 into Equation 4:
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C. Vector-Based MIMO Decoders

GPU acceleration of MIMO decoding relies on exploiting
the parallelism afforded by GPU cores suited to matrix multi-
plication. The authors in [12] proposed a GEMM-based variant
of the SD algorithm using Breadth-First Search (BFS) traversal
to enable dependence-free parallelism that fits the GPU’s
architecture. However, this approach ultimately increases com-
putational complexity since BFS reaches leaf nodes much later
than other tree traversal strategies.

The design in [5] is a Fixed Complexity Sphere Decoder
(FCSD) that sets a threshold for the number of independent
paths traversed in the search tree. While other FCSD imple-
mentations exploit the GPU’s massive parallelism by instan-
tiating multiple decoders [20], the design in [5] parallelizes
the decoding algorithm itself. The CPU host orchestrates and
schedules operations while exploiting the cuBLAS library to
accelerate the compute-intensive operations on the GPU. The
design was run on an Nvidia GTX 760 GPU and achieved sig-
nificant performance improvement over CPU implementations
without jeopardizing BER performance. The decoder proposed
in [5] scaled to 16x16 MIMO with 64-QAM modulation
factor.

A flexible N-Way MIMO detector proposed in [15] decom-
poses the decoding process into QR decomposition followed
by a tree search. The authors utilized the GPU’s parallelism to
perform multiple tree searches in parallel, greatly enhancing
BER performance. Unlike conventional decomposition meth-
ods, the QR decomposition kernel in [15] is optimized to
process many small dense matrices in parallel. Increasing
parallelism improved BER performance with no impact on
decoding time. The design was run on an Nvidia GeForce
GTX 690 and scaled to 4x4 MIMO with 64-QAM.



We observed that vector-based solutions use parallelism to
overlap multiple distinct instances of the tree search. While
such an approach yields good BER performance [5, 15], it does
not improve the latency of the decoding process, which de-
pends on algorithmic properties and how well they map to the
underlying architecture, especially when scaling the number of
antennas. As such, spatial-based decoders have the potential to
scale well without compromising BER performance through
enhanced specialization.

D. Spatial-Based MIMO Decoders

Low latency and low power decoders are desirable for
meeting the latency requirements of signal decoding within
the power envelope of wireless base stations. Hence, the
implementation of MIMO decoders on spatial architectures
(FPGASs/ASICs) has been explored. The research proposed
in [21] divides the decoding process and associated data
structures on a CPU-FPGA platform. Optimizing the data
flow between parallel threads on the CPU and pipelined
kernels on the FPGA allows the design to scale and improve
performance compared to CPU-based MIMO decoders. The
configurable design in [22] employs a Robust Bounded Span-
ning with Fast Enumeration (R-BSFE) approach to maintain
accuracy and reduce complexity. Moreover, a channel matrix
reordering technique is used to enhance the accuracy, reducing
the required transmission power by 5 dB. This design was
tested up to 8x8 MIMO and 1024-QAM. However, the BER
performance falls under the required 10~2 threshold at high
SNR values, as is shown later in Section V. A GEMM-based
SD implementation was proposed in [14] and implemented
on a Xilinx U280 FPGA. The authors combined the tree
traversal approach proposed by [23] with BLAS-based tree
construction [12]. A dynamically built search tree avoids
communication with the host, allowing performance to scale
to 10x10 MIMO with 16-QAM modulation.

ASICs offer the advantage of customized hardware architec-
ture, which can run at higher frequencies than FPGAs. In [24],
a modified version of Dijkstra’s algorithm is used to implement
a MIMO decoder on a 0.49mm?, 25.1K-gate ASIC. Dijkstra’s
algorithm is modified to enable overlapped computation with
the best candidate node pre-calculated to be expanded in the
next iteration, effectively reducing the critical path delay. The
ASIC presented in [24] is a 4x4 MIMO 16-QAM decoder
that decodes the signal at a throughput of 302 Mb/s at an
SNR of 20 dB. Other work in [25] implements a Monte
Carlo tree search (MCTS)-based MIMO decoder on an ASIC,
then uses the same approach for antenna selection in [26].
Their approach eliminates costly matrix multiply operations
and applies optimizations to limit the search space without
sacrificing BER performance. They developed a 1.43 mm?
65nm CMOS MIMO decoder for 64 x8 MIMO with 16-QAM
delivering up to 665Mb/s of throughput.

A key observation from the literature review is that spatial-
based decoders scale better than vector-based decoders (sup-
porting a higher number of antennas and modulation factors).
While spatial-based decoders show significant improvement in

decoding time (i.e., throughput) compared to GPU decoders,
the transmit power required to decode the signal with 1072
BER is higher (i.e., higher SNR). This previous work demon-
strates that scalability remains a challenge and that beyond
parallelism, algorithmic modifications are required to achieve
the required decoding time and BER for complex MIMO
systems. Our detailed algorithmic model in Section III helps
guide us to such an architecture.

III. MULTI-LEVEL TREE SEARCH FOR SIGNAL DECODING

Here, we explain the multi-level heuristic proposed in this
paper to traverse the tree search space efficiently. The algo-
rithm is explained, and its complexity analysis and memory-
usage models are presented. This is particularly important for
evaluating the scalability boundaries of the hardware design.

A. Multi-Level Heuristic

The proposed heuristic constructs the tree search space
and models the MIMO system similar to the SD algorithm
explained in Section II-B. However, the critical differences
are in the way the search tree is fraveresed, and the way
unpromising branches are pruned. The multi-level heuristic
traverses the tree search space L levels at a time. One global
timestep explores all the nodes generated from one root node
within L levels of the tree. The leaf node with the lowest
PD evaluation in one global timestep is chosen as the next
root node. The remaining leaf nodes are discarded, as shown
in Figure 2. Higher L values entail exploring more nodes at
each global timestep, which in turn covers a higher portion of
the search space, yielding better BER performance. However,
this comes at the cost of a higher computational workload that
impacts throughput.

Each global timestep includes four main functions as shown
in Algorithm 1: (1) Load loads the corresponding input
matrices Yitep, Hotep, (2) Expand enumerates all successors
at level L, (3) GEMM evaluates the PD for all generated
nodes, (4) Norm normalizes the results and chooses the node
with minimum PD to be the next root.

Algorithm 1: Multi-Level Tree Search Algorithm

Data:

Received signal (Y)

Channel matrix (H)

Combined levels (L)

Result:

Decoded signal vector (5)

1 Node < root;

2 for i : 0 — Steps do

3 Y, H; <Load(Y, H) ; /* Load inputs x/
4 B +Expand(L) ; /* Generate subtree x/
5 G +GEMM(H, B,Y);

6 Node <Norm(G) ; /* Norm & min (PD) x/
7 end
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Fig. 2: Tree expansion and selection process based on the proposed
heuristic for a 4-QAM MIMO configuration, where L = 2, combin-

ing two levels to process per global timestep. Red nodes have the
lowest PD in their respective timesteps.

1) Load: The channel matrix (H) and received signal (Y)
act as inputs to the computing kernel. The received signal (Y')
is a duplicated vector that constructs the matrix for GEMM
computation. Each level of the search tree is represented by a
part of these matrices. Hence, only a slice of these matrices
is loaded for each global timestep. Start and end indices are
calculated to determine the corresponding chunk of data to
fetch depending on the node’s level.

2) Expand: This function generates all the successor nodes
to the current tree root. All children inherit the decoded portion
of the signal that the current root holds, which initially starts
as an empty set. Using the current state of the tree, the Expand
function constructs the matrix (B) to model the recovered
signal so far and enumerate all possible values for the next
symbol to decode. The algorithmic complexity of this function
is O(L x SubTreer,), where SubTreer, = q* is the size of the
subtree. The size of the matrix (B) and its implications will
be discussed in the memory model in Section III-B

3) GEMM: The GEMM engine performs the usual matrix
multiply operation, where Y = (H x B)+Y". The output (Y) is
stored in matrix ((3), which is used to evaluate (PD) values for
the leaves of the current subtree. The algorithmic complexity
of the GEMM operations is O(L x N x SubTreer) =
(L x N x ¢"). Increasing the number of levels (L) or the
modulation factor (QAM) significantly impacts the complexity
of the GEMM operation.

TABLE I: Compute and memory model parameters.

Parameter Values Description

N 8,16,32,64 Number of receivers

L 2,4 Number of levels

q 4,16,64 QAM modulation factor

Steps % Number of global timesteps

Tree o ¢N*t1 — 1 Total number of nodes in the tree
Treey, N Number of leaf nodes in the tree
SubTree 5 glt1 —1  Total number of nodes in the sub-tree
SubTreey, gt Number of leaf nodes in the sub-tree

H Channel matrix

Y Received signal

B Enumeration of all candidate leaf nodes

G GEMM result for all leaf nodes (pre-normalization)

PD Partial Distance evaluation for all leaf nodes

4) Norm: The output of the GEMM operation is normalized
to calculate the final (PD) for each leaf node. Nodes are sorted
according to their (PD) values to retrieve the lowest (PD),
corresponding to the most promising node in this subtree that
is more likely to lead to the solution. This function performs
floating point multiply and accumulates with a complexity of
O(L x SubTreey,). The output of this function is the new root
node to be processed in the next timestep or the leaf node that
represents the decoded signal.

B. Memory Model

We established in Section III-A that the proposed algorithm
is more predictable than other non-linear decoders, so its per-
formance can be statically estimated using the model explained
here. Table I defines some parameters for the model that are
used throughout the paper. Scalability is the primary design
objective in this work, hence the focus on the memory foot-
print of the algorithm. Implementing a hardware accelerator
for such an exponentially complex problem incurs presents a
challenge due to the limited resources available. Five main data
structures are used to implement the proposed algorithm in
hardware, two of which are inputs offloaded to the accelerator
and three holding intermediate data. We should also consider
the fact that in a real deployment, CPUs and GPUs would
require the data to be moved into memory and then accessed
by processing cores. FPGAs, however, are equipped with high-
speed transceivers capable of delivering signal data directly
into the computational pipeline.

1) Search space: The tree depth depends on the number of
receivers (N), and the tree width depends on the modulation
factor (QAM), so the total number of nodes in the tree can be
evaluated as (¢! —1). Pruning the search space is essential
to achieve reasonable decoding times. The SD algorithm
is data-dependent, with pruning based on each node’s PD
compared to the sphere radius. Such a pruning strategy cannot
be statically quantified; however, our proposed heuristic has a
statically defined pruning strategy. Empirical evaluation shows
that the SD algorithm explores (< 1%) of the search space.
Our proposed approach explores (SubTree 4 x Steps), where
SubTree s is the total number of nodes in (L) levels and
(Steps) is the number of global timesteps required to reach the
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Fig. 3: Dataflow hardware architecture for the baseline (V1) decoder.
leaf nodes. Hence, the proposed algorithm explores (< 1%)
of the search space. mem(B) = O(N x SubTreey,) )
2) Input data structures: Matrices (H&Y') are two inputs
that are moved from the host to the accelerator, and their
memory complexity is shown in Equations 5 & 6. The matrix mem(G) = O(L x SubTreer) (10)
(H) models the communication channel and, hence, does
not change between runs. On the other hand, the vector mem(PD) = O(SubTreey) (11)

(Y) represents the incoming signal to be decoded, which is
streamed in from deployed antennas. In the case of CPU &
GPU decoding, the received signal has to be passed to the
main memory and then fetched by the accelerator. In contrast,
RF-soc-enabled FPGA can employ high-speed transceivers to
feed data directly into the decoding pipeline, bypassing the
memory access step.

mem(H) = O(N?) (5)

mem(Y) = O(N x SubTreey,)

= O(N x ¢") ©

The algorithm operates only on a chunk of these matrices
for each global timestep. Equations 7 & 8 show the resulting
memory complexity for each global timestep.

mem(Hgiep) = O(N x L) @)

mem(Ysep) = O(L x %) ®)

3) Intermediate Data Structures: The size of the interme-
diate data structure detailed earlier in Section III-A is critical.
Limited on-chip memory restricts the scalability of the design,
so the size of these data structures must be optimized. The
three major data structures are (B,G, PD), with memory
complexity shown in Equations 9, 10, and 11.

It is worth noting that the size of the subtree (SubI'reer)
has a significant impact on the memory footprint. For 64 x64
MIMO with ¢ = 64, the subtree size is SubTree;, = 6454,
A data structure of that size cannot fit in the limited on-chip
memory of the FPGA.

IV. MULTI-LEVEL TREE SEARCH HARDWARE DESIGN

Increasing the throughput of wireless networks using MIMO
largely depends on scaling the number of antennas and
the modulation factor. However, due to the computationally
challenging nature of the signal decoding process, it would
be infeasible to target a fully scalable system. We target a
challenging configuration of 64x64 MIMO using 64-QAM
modulation while adhering to a BER of 1072, Two main
constraints restrict our system’s design space: (a) hardware
resources limitation, i.e., decoder design fits in the FPGA, and
(b) real-time decoding constraint, i.e., decoding the signal in
< 10ms. The design stages detailed in this section address
these constraints in order to achieve the objective of supporting
real-time decoding for a 64-QAM 64 x64 MIMO system.

A. Baseline (V1)

1) Design: The baseline design maximizes the use of on-
chip BRAM to exploit its single-cycle access latency. Initially,
the channel matrix (H) is stored in HBM, while the received
signal (Y) is streamed from the RF baseband antennas. In our
experiments, we emulate the MIMO operation using Monte
Carlo simulation, hence we store the simulated received signal
(Y) in HBM. Accesses are ordered as would be the case
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Fig. 4: Hardware architecture for the hardware optimized (V2) decoder.

in a live RF stream. The (Load) function fetches the global
timestep’s corresponding chunk of the channel matrix (H) and
the received signal (Y) from HBM and buffers them in on-
chip BRAMs. The (Expand) function enumerates all successor
nodes in (L) levels from the root based on the modulation
factor (QAM) and stores the resulting matrix (B) in BRAM.
Consequently, the GEMM engine accesses all its operands
from local on-chip memory, as illustrated in Figure 3. Finally,
the normalization step (Norm) evaluates the (PD) for all active
nodes and chooses the minimum PD to be the new root. The
memory complexity of each module is shown in Figure 3.

This architecture is well suited for dataflow optimization;
however, its high BRAM usage prohibits scaling. The decod-
ing times for 4-QAM & 16-QAM configurations are shown
in Figure 8. The baseline design achieves real-time decoding
for all 4-QAM configurations; however, it breaks the real-
time decoding constraint for 16-QAM configurations of sizes
larger than 16x16. Moreover, the design cannot scale to 64-
QAM due to resource utilization constraints. Increasing the
modulation factor (QAM) has an exponential impact on the
BRAM usage to store matrix (B).

2) Algorithmic complexity: Due to the stream-forward na-
ture of the proposed heuristic, the computational complexity
can be statically estimated. The overall complexity of the
hardware kernel (77/1) can be estimated using Equation 12,
where 7)., represents the (Load) and (Expand) functions as
they are executed in parallel. The complexity breakdown is
shown in Equations 13, 14, and 15.

Ty, = st Tyrep + Tyemm + Tnorm (12)
=1

Tprep = O(L x %) (13)

Tyemm = O(L x N x ¢") (14)

Trorm = O(L % ¢") (15)

B. Hardware kernel fusion (V2)

1) Design: It can be noticed that data structures with a
memory footprint of (L x ¢) present a bottleneck for on-chip
memory usage. Hence, in this design, we optimize data reuse,
saving memory usage as well as optimizing performance, as
shown in Figure 4.

Fusing the Expand and GEMM kernels together eliminates
the need for a data transfer of size (L x ¢~). Moreover,
we eliminate the need to store the (B) enumeration matrix.
We exploit the fine granularity of the reconfigurable logic
to customize computation to generate a chunk of columns
of the (B) matrix, then perform all the necessary multiply-
accumulate operations with the channel matrix (H) storing a
partial evaluation in the resulting (G) matrix.

We further fuse the Norm process to eliminate the need
for storing the resulting (G, maximizing data reuse. We elim-
inate the calculation of all the G matrix and the associated
normalization required to obtain the PD evaluation of all the
nodes in a subtree. Instead, we transform the operation into
a vector product followed by normalization directly. Hence,
each iteration generates the PD for a node directly. We only
store one node (minimum PD) instead of L x ¢” nodes. This
approach also eliminates iterating over the active nodes to find
the minimum PD, reducing algorithmic complexity further.

This transformation fuses the GEMM and Norm operations
inside the expansion process, allowing fine-grained optimiza-
tions in the hardware design. The fusion optimizes memory
usage as well as enhances decoding time. The V2 design
eliminates the storage of G and PD matrices, significantly
enhancing scalability. It also generates the B-matrix in chunks
that are processed on the fly, reducing on-chip memory usage.
Figure 8 shows the decoding time compared to the baseline
(V1), where V2 enables 16-QAM configurations to be decoded
in real-time. While V2 supports 64-QAM configuration, its
computational complexity makes real-time decoding impossi-
ble. Hence, algorithmic refactoring is required to allow 64-
QAM configurations to be decoded in real-time.
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Fig. 5: Hardware architecture of algorithmic refactored (V3) decoder.

2) Algorithmic complexity: This design iteration tackles on-
chip memory usage by fusing kernels to eliminate the need
for on-chip buffering of multiple data structures, as well as
eliminating the need to stream the data from one kernel to the
other. While these optimizations significantly improve both
performance and memory usage, the algorithm’s theoretical
complexity remains unchanged from the baseline.

C. Algorithmic refactoring (V3)

1) Design: Scaling the modulation to 64-QAM incurs a
memory explosion that requires further algorithmic refac-
toring. Each global timestep computes the partial distance
evaluation (P D) of all leaf nodes in the subtree of (L) levels.
This process involves performing the GEMM operation for all
SubTreej, leaf nodes. Two observations were used to drive the
algorithmic refactoring: the channel matrix (f) is fixed for a
given channel, and the enumeration matrix (B) is fixed for the
modulation scheme. The channel matrix (H) rarely changes,
for instance, due to the movement of the radio system or server
weather conditions. Hence, this process can be extracted out
of the computational pipeline and moved to pre-processing.

Figure 6 explains the portion moved to pre-processing. This
data is readily available before processing starts and is static

Enumuration matrix (B)
QAML

Channel matrix (H)

Fig. 6: Preprocessing computation. A block of size L x L from the
channel matrix (H) is multiplied by the enumeration (B) matrix to
generate partial sum results for each global timestep.

across iterations. A chunk of the channel matrix is multiplied
by the enumerated B-matrix at each global timestep. The
partial sum of the GEMM operation is buffered in the FPGA’s
HBM to be streamed into the computational pipeline. This al-
gorithmic refactoring eliminates the complexity of the GEMM
operation, which can be estimated using Equation 14. Hence,
the total number of MAC operations in the computational
pipeline is significantly reduced. Moreover, eliminating the
GEMM operation eliminates the need to duplicate the received
signal (Y), reducing its memory footprint.

After pre-computing the partial sum, PSp, the remaining
portion of the GEMM operation is shown in Figure 7. The
remaining computation uses the symbols that were previously
decoded from previous global timesteps. These recovered
symbols are augmented with the enumerated B-matrix for use
in the GEMM with channel matrix (H). This portion can be
done once at the start of the global timestep, as shown in
Figure 5, instead of repeating it for all leaf nodes. Hence,
another partial sum is computed at the start of the global
timestep and buffered in on-chip BRAM. The buffered partial
sum is reused for all leaf nodes until the global timestep

C————
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Ll PSg1 X Ll S, S, S1
N i=2|PSg2 N X X S, Sz
i=3 PSgs X X X X Ss
i=4 PSg4 X X X X

Channel matrix (H) Decoded vector (S)

Fig. 7: Hardware kernel computation for four timesteps. Partial sum
results from preprocessing (P.Sg) are used along with the decoded
portion of the signal to compute the (PD) value.



Algorithm 2: Multi-Level Tree Search Algorithm (V3)
Data:
Received signal (Y')
Channel matrix (H)
Combined levels (L)
Enumeration partial sum (PSg)
Result:
Decoded signal vector (5)
1 Cur_Node < root;
2 for i : 0 — Steps do
3 }/;7Hi,PSB(Z-) +Load(Y, H, PSB(i));
4 PSA(Z-) <Matvec(H;,5);
5
6

Cur_Node <—Decode(PS s;), PSp(iy, Yi);
end

concludes.

Details of the hardware kernel are shown in Figure 5, and
the refactored algorithm is shown in Algorithm 2. The sub-
tree root node is stored in BRAM with a dedicated memory
space (S vector) to hold the decoded symbols of the received
signal. Recovered symbols and the corresponding chunk of the
channel matrix (H) are input to a floating point MAC unit.
The resulting partial sum (PSy4) is buffered in BRAM to be
reused. The Decode PE shown in Figure 5 is responsible for
evaluating the PD of leaf nodes by performing two floating-
point adds and one floating-point multiply. Multiple decoding
PEs are instantiated to evaluate multiple leaf nodes in parallel.
The results of the Decode PEs pass through a comparator that
determines the minimum (PD) node to be used as the root
node for the next global timestep.

2) Algorithmic complexity: The GEMM computation has
been broken down into the summation of two partial sums
(one in pre-processing and one in the hardware kernel). The
hardware kernel iterates over the SubTree; leaf nodes to
perform only two floating point additions and one MAC
operation instead of a full GEMM. The overall complexity of
the hardware kernel (77,3) can be estimated using Equation 16,
with the breakdown in Equations 17, and 18.

Steps
TV3 = Z TMm‘xuec + TDecode (16)
=1
TMatvec = O(L X N) (17)
TDecode = O(L X qL) (18)

D. Performance Discussion

Table II summarizes the achievable support of each design
stage for all tested MIMO configurations. The baseline design
(V1) supports 4-QAM configurations for all antenna sizes
up to 64x64. However, the modulation factor significantly
impacts the exponentiality of the tree search’s computational
complexity. Consequently, when decoding 16-QAM configu-
rations, (V1) breaks the real-time constraint for MIMO sizes

TABLE II: Feasibility of designs for different MIMO configurations.
@ indicates design implemented and meeting real time constraints (x
close to real time constraint). © indicates design does not meet real-
time constraints. O indicates design does not fit device resources.

Config. 4-QAM 16-QAM 64-QAM
Vi V2 V3 Vi V2 V3 Vi V2 V3

8x8 e e @ e o o O e e
6x16 @@ © @ e o o O © e
32x32 @ e ® © o o O © e
64x64 @ @ @ © o e O © e

larger than 16x16. Moreover, due to the high memory foot-
print of (V1), 64-QAM configurations are not synthesizable
by cause of insufficient resources.

The hardware kernel fusion employed in (V2) optimizes
resource utilization, as shown in Table III. These resource sav-
ings enable the design to fit the 64-QAM configuration in the
FPGA’s available resources. Moreover, reducing intra-kernel
data communication and maximizing data reuse accelerates the
decoding process by an average of 3.2x compared to (V1) for
the 16-QAM configuration, as shown in Figure 8. While the
(V2) design satisfies the resource constraint in the case of 64-
QAM configuration, it fails the real-time decoding constraint
for MIMO sizes larger than 88, as indicated in Table II.

The algorithmic refactoring in (V3) enables design scalabil-
ity to support real-time decoding for 64-QAM configurations.
The partial evaluation strategy explained in Section IV-C and
the parallel decoding PEs deliver accelerated performance.
With 42x and 8x speedups compared to (V1) and (V2),
respectively, (V3) satisfies all the objectives and constraints
defined earlier. This final design stage decodes in real-time
MIMO configurations up to 64-QAM 64 x64. We successfully

V1-4-QAM
-8 V2-4-QAM
-8 V3-4-QAM
—o— V3-64-QAM

V1-16-QAM
—a— V2-16-QAM
—a— V3-16-QAM
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g
Y
£
=
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A
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MIMO size (MxN)

Fig. 8: Decoding time comparison of the design stages, (L = 2).
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Fig. 9: Bit Error Rate (BER) comparison for V3 implementation.
MIMO size is set to 64x64 and tested for L = 2 and L = 4.

TABLE III: Resource utilization for all design versions synthesized
on the Alveo U280 FPGA.

Design MxN LUTs FFs BRAMs DSPs
V1 (16-QAM) 64x64  35%  24% 29% 2%
V2 (64-QAM) 64x64  28% 19% 18% 2%
V3 (64-QAM) 64x64  20% 17% 18% 2%

scaled the design for more antennas, up to 256 x256; however,
decoding time exceeded the real-time constraints. On the other
hand, scaling the modulation factor to 256-QAM results in a
design that exceeds the FPGA’s resources due to exponential
growth in the on-chip memory requirements.

We further evaluate BER performance and decoding time
when increasing the number of levels L from 2 to 4, setting
the MIMO size to 64x64. We test the 4-QAM and the 16-
QAM configurations of the (V3) design; however, the 64-
QAM configuration is tested only with L = 2, as shown in
Figure 9. Processing four levels with 64-QAM modulation
shows infeasible decoding times. We observe a significant
increase in computational complexity when increasing the
number of levels explored, which outweighs the BER per-
formance improvement. For instance, increasing L for the 16-
QAM configuration lowers the SNR at which the signal is
decoded from 18 dB to 12 dB, as shown in Figure 9, but
decoding time is two orders of magnitude slower.

V. EXPERIMENTAL EVALUATION
A. Experemintal Setup

Our experimental platform comprises a Xilinx Alveo U280
FPGA card equipped with 8GB of High Bandwidth Memory
(HBM) accessible over 32 channels in addition to 32 GB of
DDR4 memory [27]. The card is hosted in a workstation with
an AMD Ryzen Threadripper Pro 3975WX 32-core CPU. The
FPGA designs are implemented using OpenCL/C++ High-
Level Synthesis (HLS) and synthesized using Xilinx Vitis
2020.2, with the designs running at an approximate frequency

of 300 MHz. The workstation runs Ubuntu 18.04. We use the
Intel Math Kernel Library (MKL) and the Boost library for
host-side computation. The test dataset is randomly generated
using Monte Carlo simulations to emulate the MIMO system
as in [12, 14], to be able to control for a range of different SNR
and antenna configurations, as is standard practice in such
evaluations. Building a physical testbed to collect real world
data for these test scenarios is very challenging considering
the complexity and variety of radio hardware required.

B. GPU Comparison

GPU-based designs usually rely on instantiating multiple
instances of the tree search to cover more of the tree, en-
hancing BER performance and increasing utilization of the
GPU cores. While this helps enhance BER accuracy, it does
not help with latency. Hence, the low number of antennas
supported by GPU designs: 32x32 for 16-QAM and 16x16
for 64-QAM as shown in Table V. Tables IV and V show the
SNR value at which the BER drops below the threshold of
10~2; a lower value is preferred. The GPU implementations in
[5, 15] can decode signals within the acceptable BER threshold
at lower transmit power (SNR) than our decoder (and other
spatial-based implementations). However, the GPU consumes
significantly more power, and the decoding time/throughput of
GPU-based designs does not scale to larger configurations.

We compare against the faster Nvidia GTX 690 reported
results for the N-way design in [15] as shown in Table IV.
Our design is slower for smaller configurations of 4 x4 MIMO
at 16-QAM since the small size of the search tree does not
fully exploit the capabilities of our proposed design. The 64-
QAM configuration, however, shows an 8.7 x speedup for our
design compared to [15]. Moreover, if the GPU design could
be scaled to 64x64 MIMO at 64-QAM, our design would
have shown even more significant gains.

The authors in [5] attempted to scale the number of anten-
nas, which is reflected in the exponentially slowing decoding
times shown in Table V. Our proposed decoder scales the
design to a high number of antennas without significant
performance degradation. While our design exhibits higher

TABLE IV: Comparison with N-Way-GPU detector [15].

N-Way [15] Our work

T’put SNR T’put SNR
MIMO Config. (Mb/s) (dB) (Mbls) (dB) Speedup
4x4 16-QAM 1036.8 10 410 18 0.4x
4x4 64-QAM 519.2 15 4494 22 8.7x

TABLE V: Comparison with FCSD-GPU [5].

FCSD-GPU [5] Our work

Time SNR Time SNR
MIMO config (ms) (dB) (ms) (dB) Speedup
8x8 16-QAM 1.32 x 104 14 385x10°1 18 10°
16x16 16-QAM  2.68 x 10% 14 6.4 x 10~1 18 10°
32x32 16-QAM  4.98 x 106 14 1.14 18 106
8x8 64-QAM 1.22 x 10% 18 2.8 22 104
16x16 64-QAM  4.68 x 10° 18 5.6 22 105




SNR values at which the signal is decoded, we achieve up
to five orders of magnitude speedup compared to [5]. Due to
the slow CPU-GPU interconnect, the GPU’s design scalability
is hindered when the number of antennas grows beyond 4 x4.
On the other hand, our design scales smoothly up to 64-QAM
64 x64 MIMO configurations.

The GEMM-based decoding on GPUs proposed in [12]
was reproduced in [14] on Nvidia A100 GPUs and tested for
4-QAM modulations. The decoder traverses the search tree
using BFS to maximize the utilization of GPU cores with
dependence-free parallelism. However, this method results in
more computational complexity as it visits an exponentially
larger number of nodes. Our proposed architecture shows an
average speedup of 188 decoding 10x 10 MIMO at 4-QAM
compared to [12] implemented on an Nvidia A100 GPU.

While GPU designs can scale to 64-QAM modulation, the
number of antennas does not scale feasibly beyond 4x4. On
the other hand, our design scales up to 64x64 MIMO with
64-QAM modulation. This is emphasized by the increasing
speedup our design shows compared to different GPU de-
coders when increasing the number of antennas.

C. FPGA and ASIC Comparison

The FPGA design proposed in [14] uses SD with K-best
sorting starting with a relatively large radius, which results
in acceptable BER performance at lower SNR as depicted
in Figure 10. However, this comes at the cost of higher
computing complexity. The maximum configuration supported
is 10x 10 at 16-QAM. Our proposed design decodes the signal
for the same configuration in 0.4ms, yielding a 40x speedup,
which grows further when scaling to 64-QAM, which was
not achievable in [14]. Figure 10 shows that our design has
comparable BER to other ASIC and FPGA-based designs.
However, Table VI shows that we significantly improved the
decoding throughput. The speedup column shows the speedup
of all designs compared to the slowest, which is the modified
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Fig. 10: Bit Error Rate (BER) comparison for multiple spatial-based
implementations, 4x4 MIMO 16-QAM.

TABLE VI: Throughput comparison of spatial-based MIMO de-
coders.

. . Throughput

HW Architecture Configuration (Mb/s) Speedup
ASIC Dijkstra’s [24]  4x4 16-QAM 302 1x
MCTS [25] 64x8 16-QAM 665 2.2%

R-BSFE [22] 4x4 16-QAM 519 1.7x

4x4 64-QAM 494 1.6x

FPGA 4x4 16-QAM 410 1.35x
Our work 4x4 64-QAM 4494 14.9x

64x64 64-QAM 4575 15.1x

Dijkstra ASIC decoder [24]. The R-BSFE ASIC design [22]
is 1.3 x faster than our proposed design for 4x4 MIMO at 16-
QAM due to the small problem size, which fails to exploit the
parallelism optimizations in our design. However, scaling our
design to 4x4 64-QAM shows around a 9x advantage. The
closest reported configuration in other work to our target is
the 64x8 64-QAM decoder implemented as MCTS on FPGA
in [25]. Even with a larger number of antennas, we achieve a
speedup of 6.9x compared to [25].

VI. CONCLUSION

This work tackles the scaling of Massive MIMO decoding
for a large number of antennas and high modulation factor
within real-time constraints. We presented an iterative design
refinement for a signal decoding architecture that enables
scalability and significantly accelerates decoding time. A
multi-level tree search heuristic was proposed that eliminates
the backtracking step that usually hinders tree search. This
effectively transforms the computation required for the tree
search into a streaming operation. Hardware optimizations,
such as kernel fusion, were applied to maximize data reuse
and significantly reduce on-chip memory usage, allowing the
design to scale. Moreover, algorithmic refactoring improved
decoding throughput, further enabling 64 x 64 64-QAM MIMO
configurations to be supported within real-time constraints.

Our final design achieved significant improvement in both
decoding time and scalability, compared to GPU, FPGA, and
ASIC decoders at the cost of slightly lower BER accuracy.
For the largest 64x64 64-QAM MIMO configuration, we
demonstrated up to 15x speedup compared to state-of-the-
art spatial-based decoders and 188 x speedup compared to the
reproduction of a vector-based GPU decoder on modern A100
GPU. BER accuracy can be improved in future work by in-
stantiating multiple tree search instances like GPU approaches,
which increases coverage of the search tree while retaining
the latency advantage. We are investigating integration with a
physical testbed to evaluate the additional latency benefit of
direct ingestion of RF data into the FPGA as opposed to a
more traditional offload from a host as is required for GPUs.
Such integrations are typically done in a power-constrained
environment, where our FPGA approach should be much more
practical than a GPU.



[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

REFERENCES

T. L. Marzetta, “Massive MIMO: an introduction,” Bell Labs Technical
Journal, vol. 20, pp. 11-22, 2015.

C. Cox, An introduction to LTE: LTE, LTE-advanced, SAE and 4G
mobile communications. John Wiley & Sons, 2012.

“IEEE standard for information technology—telecommunications and
information exchange between systems - local and metropolitan area
networks—specific requirements - part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications,” IEEE Std 802.11-
2020 (Revision of IEEE Std 802.11-2016), pp. 1-4379, 2021.

S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “What Should 6G
Be?” Nature Electronics, vol. 3, no. 1, pp. 20-29, Jan 2020. [Online].
Available: https://doi.org/10.1038/s41928-019-0355-6

T. Chen and H. Leib, “GPU acceleration for fixed complexity sphere
decoder in large MIMO uplink systems,” in IEEE Canadian Conference
on Electrical and Computer Engineering (CCECE), 2015.

K. Nikitopoulos, G. Georgis, C. Jayawardena, D. Chatzipanagiotis, and
R. Tafazolli, “Massively parallel tree search for high-dimensional sphere
decoders,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 10, pp. 2309-2325, 2018.

M. T. Nguyen, X. N. Tran, V. D. Ngo, Q.-K. Trinh, D. T. Nguyen, and
T. A. Vu, “Sub-optimal deep pipelined implementation of MIMO sphere
detector on FPGA,” EAI Endorsed Transactions on Industrial Networks
and Intelligent Systems, vol. 10, no. 1, pp. e3—e3, 2023.

E. Grell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Transactions on Information Theory, 2002.

H. Vikalo, B. Hassibi, and T. Kailath, “Iterative decoding for MIMO
channels via modified sphere decoding,” IEEE Transactions on Wireless
communications, vol. 3, no. 6, pp. 2299-2311, 2004.

L. Brunel, “Multiuser detection techniques using maximum likelihood
sphere decoding in multicarrier CDMA systems,” IEEE Transactions on
Wireless Communications, vol. 3, no. 3, pp. 949-957, 2004.

K. Nikitopoulos, “Massively parallel, nonlinear processing for 6G:
Potential gains and further research challenges,” IEEE Communications
Magazine, vol. 60, no. 1, pp. 81-87, 2022.

M.-A. Arfaoui, H. Ltaief, Z. Rezki, M.-S. Alouini, and D. Keyes,
“Efficient sphere detector algorithm for massive MIMO using GPU
hardware accelerator,” Procedia Computer Science, vol. 80, pp. 2169—
2180, 2016.

G. Georgis, K. Nikitopoulos, and K. Jamieson, “Geosphere: An exact
depth-first sphere decoder architecture scalable to very dense constella-
tions,” IEEE Access, vol. 5, pp. 4233-4249, 2017.

M. W. Hassan, A. Dabah, H. Ltaief, and S. A. Fahmy, “Signal detection
for large MIMO systems using sphere decoding on FPGAs,” in IEEE

[15]

[16]

(17]

[18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

International Parallel and Distributed Processing Symposium (IPDPS),
2023.

M. Wu, B. Yin, G. Wang, C. Studer, and J. R. Cavallaro, “GPU accel-
eration of a configurable n-way MIMO detector for wireless systems,”
Journal of Signal Processing Systems, vol. 76, pp. 95-108, 2014.

L. G. Barbero and J. S. Thompson, “A fixed-complexity MIMO detector
based on the complex sphere decoder,” in IEEE Workshop on Signal
Processing Advances in Wireless Communications, 2006.

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE Journal of solid-state circuits, vol. 40, no. 7,
pp. 15661577, 2005.

A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Fichtner,
“Algorithm and VLSI architecture for linear MMSE detection in MIMO-
OFDM systems,” in IEEE International Symposium on Circuits and
Systems, 2006.

M. Li, B. Bougard, E. E. Lopez, A. Bourdoux, D. Novo, L. Van
Der Perre, and F. Catthoor, “Selective spanning with fast enumeration:
A near maximum-likelihood MIMO detector designed for parallel pro-
grammable baseband architectures,” in IEEE International Conference
on Communications, 2008.

H. Wang and M. Chen, “A fixed-complexity sphere decoder for MIMO
systems on graphics processing units,” in International Conference on
Information Engineering and Computer Science, 2010.

Y. Meng, R. Kannan, and V. Prasanna, “Accelerating monte-carlo tree
search on CPU-FPGA heterogeneous platform,” in International Con-

ference on Field Programmable Logic and Applications (FPL), 2022.

Y. Wu and J. McAllister, “Configurable quasi-optimal sphere decoding
for scalable MIMO communications,” IEEE Transactions on Circuits
and Systems I, vol. 68, no. 6, pp. 2675-2687, 2021.

K. Nikitopoulos, J. Zhou, B. Congdon, and K. Jamieson, “Geosphere:
Consistently turning MIMO capacity into throughput,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4, pp. 631-642, 2014.
T.-H. Kim and L-C. Park, “Implementation of a high-throughput and
area-efficient MIMO detector based on modified Dijkstra’s search,” in
GLOBECOM IEEE Global Telecommunications Conference, 2009.

J. Chen, C. Fei, H. Lu, G. E. Sobelman, and J. Hu, “Hardware efficient
massive MIMO detector based on the monte carlo tree search method,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 7, no. 4, pp. 523-533, 2017.

J. Chen, S. Chen, Y. Qi, and S. Fu, “Intelligent massive MIMO antenna
selection using monte carlo tree search,” IEEE Transactions on Signal
Processing, vol. 67, no. 20, pp. 5380-5390, 2019.

Xilinx. Alveo U280 data center accelerator card data sheet.
[Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/
documents/data_sheets/ds963-u280.pdf


https://doi.org/10.1038/s41928-019-0355-6
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds963-u280.pdf

	Introduction
	Background & Literature Review
	System Model
	Sphere Decoding (SD)
	Vector-Based MIMO Decoders
	Spatial-Based MIMO Decoders

	Multi-Level Tree Search for Signal Decoding
	Multi-Level Heuristic
	Load
	Expand
	GEMM
	Norm

	Memory Model
	Search space
	Input data structures
	Intermediate Data Structures


	Multi-Level Tree Search Hardware Design
	Baseline (V1)
	Design
	Algorithmic complexity

	Hardware kernel fusion (V2)
	Design
	Algorithmic complexity

	Algorithmic refactoring (V3)
	Design
	Algorithmic complexity

	Performance Discussion

	Experimental evaluation
	Experemintal Setup
	GPU Comparison
	FPGA and ASIC Comparison

	Conclusion
	References

