
DONNA: Distributed Optimized Neural Network Allocation
on CIM-Based Heterogeneous Accelerators

Mojtaba F. AlShams1, Kamilya S. Smagulova1, Suhaib A. Fahmy1, Mohammed E. Fouda2,†, and Ahmed M. Eltawil1
1CEMSE Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

2Rain Neuromorphics, Inc., San Francisco, CA, 94110, USA
†Email: foudam@uci.edu

Abstract—The continued development of neural network ar-
chitectures continues to drive demand for computing power.
While data center scaling continues, inference away from the
cloud will increasingly rely on distributed inference on multiple
devices. Most prior efforts have focused on optimizing single-
device inference or partitioning models to enhance inference
throughput. Meanwhile, energy consumption continues to grow
in importance as a factor of consideration. This work proposes
a framework that searches for optimal model splits and dis-
tributes the partitions across the combination of devices taking
into account throughput and energy. Participating devices are
strategically grouped into homogeneous and heterogeneous clus-
ters consisting of general-purpose CPU and GPU architectures,
as well as emerging Compute-In-Memory (CIM) accelerators.
The framework simultaneously optimizes inference throughput
and energy consumption. It is able to demonstrate up to 4×
speedup with approximately 4× per-device energy reduction in
a heterogeneous setup compared to single GPU inference. The
algorithm also finds a smooth Pareto-like curve in the energy-
throughput space for CIM devices.

Index Terms—Distributed Inference, Model splitting, Hetero-
geneous Hardware, Compute-in-memory, Heterogeneous Devices,
GPU, CPU, CIM, ReRAM.

I. INTRODUCTION

Deep Neural Network (DNN) models are known for their
ability to solve complex problems with high accuracy. Their
popularity led to the development of architectures of different
variety and complexity, albeit at the cost of larger storage
capacities and computational power. Graphics Processing Unit
(GPU) with parallel processing took over Central Processing
Unit (CPU) as a technology of choice due to its ability
to accelerate operations such as Matrix-Vector Multiplication
(MVM) which form the core of DNN. Nevertheless, general-
purpose machines that are based on Von-Neumann architecture
require constant data transfer between processing and memory,
causing a “memory wall” problem and limiting the speed
of data processing. For example, the state-of-the-art ViT-22B
[1] and GPT-3 [2] models with so-called “attention” blocks
have 22 and 175 billion trainable parameters, respectively. The
NVIDIA H100 Tensor Core GPU [3], which is among the most
powerful currently available GPUs, can not fit huge models
such as GPT-3 for single device inference. It is also expected
that emerging models will continue to grow in size and
hardware accelerators will continue to suffer from limitations,
as discussed above [4].

From a compute perspective, a promising approach to
accelerate modern DNN models is to utilize novel hardware
architectures such as emerging Compute-In-Memory (CIM)
devices. Unlike traditional computing platforms, CIM does not
mitigate the memory wall problem but solves it by combining
storage and computation units. The memory elements used
form a mesh of crossbar arrays that perform the MVMs using
Kirchhoff’s and Ohm’s laws [5] [6]. Devices are designed to
perform fast and energy-efficient operations, where ReRAM
memory technology is one of the promising technologies to
be used as a basic cell of CIM crossbar array. The design and
performance of ReRAM-based accelerators such as ISAAC,
PUMA, PipeLayer and others are reviewed in [7].

From an efficient inference performance perspective, dis-
tributing DNN across multiple devices is one of the ways to
solve situations where the available resources cannot meet the
targeted latency performance or when the model is too large
to fit in a single device. Multiple works contributed to the
solving and optimizing of distributed inference setups, mainly
focusing on at-the-edge scenarios. One of them is DistrEdge
which uses model parallelism to increase inference throughput
[8]. The authors used greedy search and reinforcement learning
to find the best layer-volumes and their split-parts. Their
work included a variety of heterogeneous edge devices and
different communication bandwidths (BW). Another work,
PipeEdge algorithm [9], searches for best layer-splits of the
model and tries to minimize the slowest stage in the inference
pipeline. It aims to maximize the inference throughput while
considering the edge device’s memory constraints. Authors
of Neurosurgeon [10] designed a framework that optimizes
either the inference throughput or the energy consumption
of a mobile-cloud system. However, It does not consider
simultaneous optimization nor distributing on multiple devices
as in DONNA. Neurosurgeon is fed with the model’s layers
characteristics and uses pre-generated prediction models to
estimate the latency and energy costs of each possible par-
titioning.

This work proposes DONNA framework to find the optimal
DNN model splits and optimal allocation to the available
devices. It not only considers inference throughput optimiza-
tion, as in most of prior work, but also considers energy
optimization which is becoming an important factor in modern
deployments. DONNA optimizes inference throughput and/or

energy consumption. The main contributions of the paper are:
(1) The framework is designed to support heterogeneous nodes
spanning edge (weak devices) or the cloud (strong devices), on
homogeneous or heterogeneous devices’ clusters; (2) Unlike
previous works, this work can optimize throughput and/or
energy by controlling a tuneable parameter α; (3) To the best
of our knowledge, this is the first work which studies the effect
of including CIM architectures in a distributed inference setup.

The rest of the paper is organized as follows: Section II
presents DONNA, distributed optimal neural network alloca-
tion, how it operates, explains the search algorithm, and shows
how it is different from [9]. Section III explains the experi-
mental setup and details on how the simulation framework
was constructed. Section IV discusses obtained results. Finally,
Section V summarizes the most important points of this paper
and provides conclusions and future work directions.

II. DONNA FRAMEWORK

A. An Overview

DONNA exploits pipeline parallelism for distributed in-
ference and splits model M with L layers across a ho-
mogeneous or heterogeneous set of devices comprised of
CPU, GPU, and/or novel CIM platforms. Pipelining avoids
collective synchronization and communication and improves
the effectiveness of distributed systems. Our system aims to
find the optimal model split to minimize the slowest pipeline
stage. Furthermore, the proposed framework tries to minimize
total energy consumption and to find a trade-off between the
slowest stage inference time τ∗ and energy E∗.

The main components of DONNA include a profiler and
a partitioning algorithm, as shown in Fig. 1b. The profiler
analyzes the DNN on each device type1 to produce a profile
with (1) per-layer computation time, (2) per-layer computation
energy consumption, and (3) size of each layer’s output
tensors. The output of the profiler is fed to the partitioning
algorithm (see Section II-B for more details). The partitioning
algorithm also receives information about the set of available
devices |D| = D, communication medium, and the weight
coefficient α. Using the dynamic programming minimization
technique presented in [9], the algorithm minimizes the cost
function to find the slowest inference stage and optimal
inference energy where throughput can be estimated from
the inference slowest stage. This helps to identify optimal
model splits and to choose a subset of devices S ⊆ D with
S ≤ D that participate in distributed inference of the model M.
Eventually, DONNA schedules 1 to N independent inference
processing stages of a pipeline. Each stage is assigned with its
corresponding split from the model to a device from the set S.
Energy consumption and throughput can be estimated when
all participating devices are identified. The pipeline system
is assumed to support asynchronous communication, where
computation and communication overlap.

1An available device in the system is different than a device type. If, for
example, three identical CPUs and one CIM device are accessible, then the
system has four available devices and two device types.

B. Algorithm and Cost Functions

ht(i, s, u) represents the time consumed to process the first i
layers of the Neural Network (NN) model using the currently
chosen participating set of devices s. The output of the ith

layer will be transmitted to the device u ∈ D\s. Therefore,
the algorithm tries to find the optimal time ht(L,S, ϕ) that is
consumed to process all layers of the model M on participating
devices S. While he(i, s, u) denotes the energy consumption
of processing the first i layers, using the currently chosen
participating devices s, then communicating the output of
the ith layer to device u. The weight of energy optimization
is controlled by α. The total inference energy consumption
is calculated by adding the energy cost of processing the
considered layers. The proposed cost function is denoted by
ht+e(j, s ∪ {u}, v) with variable weighting factor α ∈ [0, 1]
as follows

min
j,u,v

[α · hnorm
t (j, s ∪ {u}, v) + (1− α) · hnorm

e (j, s ∪ {u}, v)]

s.t. 0 ≤ i < j ≤ L and u, v ∈ D\s
(1)

We define hnorm
t representing the maximum pipeline stage

in order to minimize inference’s slowest stage as shown in
(2). T norm

comp({i → j}, u) is the normalized time of computing
layers i to j in device u. T norm

comm(u, v, l
out
j) is the normalized

time to communicate the output of the jth layer from device
u to v. hnorm

e presented in (3) minimizes the inference energy.
Enorm

comp(lp, dp) is the normalized energy of the computing layer
set of layers lp on the device dp. Enorm

comm(dp, dp+1, l
out
p) is the

normalized energy of communicating the output of lp from
device dp to dp+1. loutj is the same as in (2)

hnorm
t (j, s ∪ {u}, v) = max


hnorm
t (i, s, u)

T norm
comp ({i → j}, u)

T norm
comm(u, v, l

out
j)

(2)

hnorm
e (j, s ∪ {u}, v) =

|s|+1∑
p=1

Enorm
comp(lp, dp)+

|s|∑
p=1

Enorm
comm(dp, dp+1, l

out
p) + Enorm

comm(u, v, l
out
j) (3)

Discrepancies in time and energy scales may lead to biased
outcomes. Consequently, we normalize each term relative to
its maximal value derived from the collective computation and
communication operations of all device types.

DONNA’s operation is summarized in Algorithm 1. The
algorithm explores different paths in the search space. All
paths start with the same initial incomplete pipeline stage
ht+e(0, ϕ, device) = 0 (Line 3). Each path starts forming
the pipelining stages by exploring different devices and layers
combinations (Lines 5-8), hence, leading to different sub-
optimal solutions. The algorithm keeps track only of the best
sub-optimal solutions (Line 26). Whenever a better path is
found, it is tagged (Line 16) so the optimal solution can be
traced back through the path to form the optimal distribution

Fig. 1: a) Heterogeneous hardware nodes: ’Intel(R) Xeon(R) W-3323 CPU @ 3.50GHz’, ’NVIDIA GeForce RTX 3070 Ti’ and
CIM-NeuroSim [11]; b) Proposed framework overview: Model Profiling and Partitioning; c) Pipelining stages; d) Convolution
layers’ kernel mapping used in the CIM simulator [12].

strategy (Lines 36-43). It should be mentioned that this is not
a brute-force algorithm as it does not exhaust every possible
solution and it excludes some non-optimal ones.

III. METHODOLOGY

A. Experimental Setup

In this work, different combinations of computing devices
connected via homogeneous communication mediums were
tested for ResNet152, VGG19, and VGG8 workloads. Types
of computing devices considered include: (1) NVIDIA GeForce
RTX 3070 Ti, referred to as the GPU device, (2) Intel(R)
Xeon(R) W-3323 CPU @ 3.50GHz, referred to as the CPU
device, and (3) ReRAM-based CIM accelerator, referred to
as the CIM device). Both the GPU and CPU devices are
operated using Linux Ubuntu 20.04.5 LTS. CIM devices are
simulated using DNN+NeuroSim [13], which is an end-to-end
framework that allows evaluation of chip-level performance
and inference accuracy. Neurosim’s accuracy was validated
and calibrated against a 40nm RRAM-based CIM macro with
an error under 1% [11]. Neurosim considers a hierarchical
CIM architecture (Fig.1a) consisting of multiple tiles con-
nected via H-tree interconnect. Each tile includes processing
elements (PE) comprised of a 1T1R crossbar array for synaptic
weight implementation. The framework supports methods of
weight mapping. 3D convolution kernels are unrolled and
mapped into a group of subarrays, maximizing data reuse and
reducing energy and latency [12]. As shown in Fig. 1d, the
kernel weights are spread with K ×K sub-matrices that are
allocated to the Processing Elements (PEs) [12]. Input feature
maps’ inputs are reused among the PEs as the kernel slides

TABLE I: Communication Medium Bandwidth and Energy
Efficiency

Medium Type Bandwidth Efficiency

PCIe-5 64GB/s [15] 6.5pJ/b [16]

High Bandwidth WCC 1GB/s [17] 0.1µJ/b [18]

Low Bandwidth WCC 3.5MB/s [18] 50µJ/b [18]

across them. NeuroSim also provides flexible design options
at device-level, circuit-level and algorithm-level [13].

The first communication medium studied is wired Pe-
ripheral Component Interconnect Express (PCIe-5) [14],
which is considered in this paper as a cheap communi-
cation channel because its communication cost is much
less than the computation cost. The other two media are
wireless channels, High Bandwidth Wireless communica-
tion channel (HB-WCC) and Low Bandwidth Wireless com-
munication channel (LB-WCC), with weaker communica-
tion capabilities. Table I summarizes each communication
medium’s capabilities. Overall, there are 252 scenarios for the
four device setup clusters {{4CPUs},{2CPUs, 2GPUs},
{2CPUs, 2CIMs}, {2CPUs, 1GPU, 1CIM}} and differ-
ent α values spanning from 0 to 1 with step of 0.2.

B. Simulation Framework

In this work, we consider the VGG8, VGG19 and
ResNet152 models. Due to the CIM simulator (NeuroSim [13])
being restricted to these models, we are not able to support
SoTA models such as vision transformers and large language
models which we will consider in future work.

Algorithm 1 Proposed DONNA Algorithm Pseudo Code
Require: D: available devices to choose from;

B: bandwidth between devices;
PE: bits transmission power efficiency;
PF: per-layer computation cost and each layer’s output size (i.e. Pj) profiles of a
model M with L layers, for each device type.
α: The value of the weighting parameter in (1);

Ensure: Topt: optimal slowest pipeline stage time for optimal throughput Thopt;
Eopt: optimal total inference energy consumption;
R: optimal distribution strategy;

1: procedure PARTITION(D,B, PE, PF, α) // Start the search algorithm
2: Initial ht+e(i, s, u), h

norm
t (i, s, u), hnorm

e (i, s, u) ← +∞ ∀ i ∈ L, s ⊆
D, u ∈ D;

3: Initial ht+e(0,Φ, u), hnorm
t (0,Φ, u), hnorm

e (0,Φ, u) ← 0 ∀ u ∈ D;
4: Initial costopt ← +∞
5: for i = 0 to L− 1 do
6: for each subset s ⊆ D do
7: for each u ∈ D\s do
8: for j = i + 1 to L do
9: tcomp, ecomp = Tnorm

comp ({i→ j}, u), Enorm
comp ({i→ j}, u)

10: if j == L then
11: tcost = max(tcomp, h

norm
t (i, s, u))

12: ecost = ecomp + hnorm
e (i, s, u)

13: C = α · tcost + (1− α) · ecost
14: if C < costopt then
15: costopt = C;
16: index = (i, s, u)
17: end if
18: else
19: for each v ∈ D\s\{u} do
20: tcomm, ecomm = Tnorm

comm(u, v, Pj), E
norm
comm(u, v, Pj)

21: tcost = max(tcomp, tcomm, hnorm
t (i, s, u))

22: ecost = ecomp + ecomm + hnorm
e (i, s, u)

23: C = α · tcost + (1− α) · ecost
24: if C < ht+e(j, s ∪ {u}, v) then
25: ht+e(j, s ∪ {u}, v) = C
26: p(j, s ∪ {u}, v) = (i, u); // Record the precursor
27: hnorm

t (j, s ∪ {u}, v) = tcost
28: hnorm

e (j, s ∪ {u}, v) = ecost
29: end if
30: end for
31: end if
32: end for
33: end for
34: end for
35: end for
36: // Find the optimal strategy where S = s ∪ {u}
37: (i, s, u) = index;
38: Add(i + 1→ L, u) to R;
39: while i > 0 do
40: (i, u) = p(index);
41: Add(i + 1→ index[0], u) to R;
42: index = (i, s\u, u);
43: end while
44: return Thopt, Eopt,R // From R estimate Thopt and Eopt

45: end procedure

The framework is implemented in PyTorch V1.13. Both
the profiler and the partitioning algorithm are implemented in
Python3. The partitioning algorithm is based on two pillars: a
cost function that the optimal partitioning should minimize and
a minimization algorithm. Dynamic programming, using the
memoization technique, is used as the minimization algorithm.
Its main advantage is that it reduces algorithm computation
overhead by calling already calculated sub-problems from
memory instead of recomputing them and also by skipping
computing large sub-problems that will not be an optimal
solution.

1) Performance of CPU and GPU: The Python time()
function [19] was used to estimate the per-layer computation
times of running the model on the GPU device. Each layer is
executed one hundred times, and then the computation time is
averaged and taken as the computation time of that layer. The

TABLE II: Computation Cost Profiling Tools.

Platform Time Profiling Energy Profiling

NVIDIA RTX3070Ti Python time library [19] nvidia-smi [21]

Intel Xeon CPU Python pyJoules library [20] Python pyJoules library [20]

DNN+NeuroSim CIM DNN+NeuroSim output [22] DNN+NeuroSim output [22]

pyJoules library [20] was used to estimate computation time
and energy for the CPU device.

The pynvml.smi library [21] was used for the GPU device
to estimate the average power of executing a certain model
layer, which was then multiplied by its execution time. This
is averaged over 100 executions to determine each layer’s
computation energy consumption. CPU measurements with
pyJoules were similarly averaged over 100 runs.

2) Performance of CIM: Computation time and energy
estimations in CIM device type are different from GPU and
CPU estimations as they come from a simulator and not
a physical device. The DNN+NeuroSim [22] simulator was
used, with its default parameters, to estimate both per-layer
computation time and per-layer computation energy consump-
tion. NeuroSim provides these calculations after defining the
intended NN architecture and setting CIM device parameters
in the simulator. Table II summarizes how computation cost
measurements were taken.

3) Communication cost estimation: The partitioning algo-
rithm uses the device’s Bandwidth (BW) and transfer power
efficiency to calculate communication time and energy costs
where (4) and (5) calculate communication time and commu-
nication energy, respectively.

Tcomm(loutj , BW) =
loutj

BW
(4)

Ecomm(loutj , Peff) = loutj · Peff (5)

Tcomm and Ecomm are the communication time and energy
costs, respectively, to transfer a layer’s output of size loutj

through a medium with a transfer rate of BW and a power
efficiency of Peff in pJ/s.

4) Inference energy consumption and throughput estima-
tion: After assigning each model split to its corresponding
device type, the framework utilizes device types’ profiles to
estimate the inference energy and throughput. The computa-
tion energy of each assigned split and communication energy
resulting from this distribution strategy are summed together to
form the total inference energy consumption. The framework
also finds the slowest pipelining stage of computation and
communication times to take its inverse as the inference
throughput.

IV. RESULTS AND DISCUSSION

A. Models Profiling Results

Fig. 2a–b present per-layer computation profiles of work-
loads running on compute nodes described in Section III-A. In
general, the GPU is the fastest in terms of computation speed,
and the CIM device is the most efficient compute device in
terms of energy consumption. Also, it can be seen that the

CIM device is the slowest in computations, except for the last
one or two layers of each model. This is a result of how the
CIM technology is designed. The CIM design is optimized for
matrix-vector multiplications which suits more FC layers than
convolution layers.

B. Models Partitioning Results

1) Simultaneous Energy and Throughput Optimization:
Fig. 2c–k show possible ResNet152, VGG19, and VGG8
partitioning scenarios across different combinations of devices,
communication medium, and variable α. The marker shape
in the plot represents the set D, whereas its color describes
α’s value. It is important to note that not all available de-
vices D may participate in distributing the inference (i.e.,
|S| ≤ |D|). The horizontal subplots describe the effect of
each communication medium on the algorithm’s behavior. The
algorithm tries to minimize inference energy (i.e., α → 0) or
maximize inference throughput (i.e., α → 1). When α = 0, the
algorithm assigns all model layers, not shown on the plot, to
the most energy-efficient device. Although this minimizes the
total energy, it may harm the performance by preventing other
devices from participating, leading to slower throughput as the
system is not utilizing the speedup gained from pipelining. On
the other hand, DONNA maximizes inference throughput by
trying to enable the fastest devices to participate and does
not consider energy consumption when α = 1. This will
always ensure maximized throughput. Nevertheless, tuning α
to reduce energy with negligible effect on the throughput is
possible. For example, while finding ResNet152 optimal split
on HB-WCC and D = {4CPUs}, varying α from 1 to 0.8
reduced energy by 7.6% with negligible effect (less than 0.5%)
on throughput.

Simultaneous optimization of throughput and energy con-
sumption (i.e. 0 < α < 1) greatly depends on computation cost
compared to the communication cost. We used the same device
configurations for all simulations and swept α from 0 to 1
for three different communication mediums. Energy reduction
is negligible in the three models when PCIe-5 was used in
distributing homogeneous devices as shown in Fig. 2c, f and
i. As the communication cost is very cheap compared to the
computation cost, reducing energy by reducing α encourages
fewer devices to participate, preventing the algorithm from
exploiting the advantage of pipelining speedup and the saved
communication energy is small compared to the computation
energy. Furthermore, more expensive communication media
result in overlapping optimization points. For example, the
algorithm chose a single GPU to perform the inference on both
D = {2CPUs, 2GPUs} and D = {2CPUs, 1GPU, 1CIM}
when α = 1 as shown in Fig.2e resulting in two overlapping
optimization points.

The number and diversity of available devices in a set
D play an important role. Optimization points are more
spread across the energy-throughput space tending towards
the optimal performance region when D = {2CPUs, 1GPU,
1CIM} mainly due to the efficient performance of CIM and
the computational performance of the GPU. In other words,

the higher the compute diversity is, the more flexibility is
offered to obtain the intended performance. This advantage
is most apparent in Fig.2c. Furthermore, comparing Fig. 2i, j
and k to the rest of the subplots, the number of model layers
also impacts inference distribution. A smaller number of layers
limits the spread of optimization points across the throughput-
energy space.

2) Optimized Distributed Inference vs. Single Device Per-
formance: Although the GPU used provides the best trade-off
compared to the other device types and the NN models in our
work can fit into a single GPU, distributing them over multiple
devices can provide higher performance. Fig. 3 shows the
trade-off of distributing ResNet152 with the normalized scales
for inference speedups, total energy consumption, and average
device energy consumption. Here, the average device energy
consumption is computed as the total inference energy over
all participating devices, hence, it is different from the per-
device energy of individual participating devices. Therefore,
some scenarios show an improved performance in either
throughput or energy consumption, while others show worse
performance compared to the baseline, which, in our case,
is the performance of a single GPU. For instance, Scenarios
4 and 10 with D = {2GPUs, 0CIMs, 2CPUs} and S =
{2GPUs, 0CIMs, 2CPUs} achieve faster throughput than a
single GPU, showing the benefit of inference distribution using
our proposed framework. The relatively cheap communica-
tion medium HB-WCC enabled more devices to participate
with minimal communication energy overhead, yielding an
increased throughput speedup with a slight increase in total
energy consumption. In addition, this distribution resulted in
a lower average device energy consumption compared to that
of a single GPU. The proposed framework in Scenario 10
could speed up the estimated throughput 4.26× and achieve a
3.6× per-device energy reduction. On the other hand, using a
costly channel such as LB-WCC (Scenario 16) does not yield a
noticeable speedup and results in higher total energy consump-
tion. Nevertheless, the average per-device energy consumption
is less than the computation energy of a single GPU.

Furthermore, augmenting the system with CIM allows
energy-efficient solutions designing with a trade-off in
throughput. Scenarios 2 and 8 show how much energy can be
saved when inference is distributed on CIM devices. However,
inference throughput dropped to less than half of a single GPU
throughput due to CIM device design limitations mentioned
at the beginning of this section. Using only CIM devices
on a costly channel such as LB-WCC (i.e., Scenario 14)
led to a drop in throughput and a significant increase in
communication energy consumption due to the slowness of
CIM device compared to GPUs in performing convolutions
that represent more than 90% of the used DNN models and
the high communication energy of LB-WCC.

3) CIM as an Edge-Device: A real-world scenario would
consist of multiple devices at the edge that can communi-
cate with the cloud. Unlike previous experimentation, this
scenario does not assume all devices communicate with the
same medium. Edge devices communicate with each other

(a) Time profile (b) Energy profile

𝑉𝐺𝐺8 𝑜𝑛 𝐺𝑃𝑈

𝑉𝐺𝐺8 𝑜𝑛 𝐶𝑃𝑈

𝑉𝐺𝐺8 𝑜𝑛 𝐶𝐼𝑀

𝑉𝐺𝐺19 𝑜𝑛 𝐺𝑃𝑈

𝑉𝐺𝐺19 𝑜𝑛 𝐶𝑃𝑈

𝑉𝐺𝐺19 𝑜𝑛 𝐶𝐼𝑀

𝑅𝑒𝑠𝑁𝑒𝑡152 𝑜𝑛 𝐺𝑃𝑈

𝑅𝑒𝑠𝑁𝑒𝑡152 𝑜𝑛 𝐶𝑃𝑈

𝑅𝑒𝑠𝑁𝑒𝑡152 𝑜𝑛 𝐶𝐼𝑀

4𝐶𝑃𝑈𝑠 2𝐶𝑃𝑈𝑠 + 1𝐺𝑃𝑈 + 1𝐶𝐼𝑀2𝐶𝑃𝑈𝑠 + 2𝐺𝑃𝑈𝑠2𝐶𝑃𝑈𝑠 + 2𝐶𝐼𝑀𝑠

Available Devices 𝛼’s Value
0 0.2 0.4 0.5 0.6 10.8

(c) ResNet152 on PCIe-5 (d) ResNet152 on HB-WCC (e) ResNet152 on LB-WCC

(f) VGG19 on PCIe-5 (g) VGG19 on HB-WCC (h) VGG19 on LB-WCC

(i) VGG8 on PCIe-5 (j) VGG8 on HB-WCC (k) VGG8 on LB-WCC

Fig. 2: (a-b) Computation costs profiles for different DL workloads; (c-k) Distribution performance using DONNA on different
communication channels, available devices setup, and different α values when partitioning ResNet152, VGG19, and VGG8 on
the communication mediums.

Fig. 3: Inference throughput speedup, total energy consumption and per-device energy consumption when distributing
ResNet152: single GPU is a baseline scenario and Scenarios (x, y ∈ D, z ∈ S, α, communication medium), where x is
the scenario number; device combinations y and z correspond to number of available and participating GPUs, CIMs and
CPUs, respectively.

(a) Throughput Speedup (b) Energy Reduction

Fig. 4: Comparing distributed inference on CIM devices
to offloading all computations to a GPU cloud. (a) shows
throughput speedup gains. (b) shows energy reduction gains.

through the same high data rate channel (i.e. HB-WCC) while
communication to the cloud is modeled with a slower network
(i.e. LB-WCC) under the premise of heavy traffic routed to the
cloud. A single GPU or CPU is used as the cloud and CIM
devices are used as the edge devices for their very efficient
energy consumption which is a crucial metric at the edge.
Although DONNA tried to only maximize throughput (i.e.
α = 1), it allocates all layers to the edge devices and does not
offload any computations to the cloud whether it is a GPU or
a CPU.

This suggests that in terms of both energy and throughput,
the cost of distributing the inference among edge devices is
less than that of partially offloading computations to the cloud.
This can be seen in Fig. 4 where offloading all computations to
the cloud (i.e. GPU) is the baseline. It can be noticed from the
figure that the larger the workload is, the more performance
gains are achieved in such a setup. Energy reduction is always
achieved and can reach more than ×200 for the largest
workload which shows a core advantage of CIM device’s
energy efficiency. It should be noted that the algorithm does
not instruct the edge device to offload all VGG8 computations
to the cloud as it is forced to process at least the first layer
on the edge device, hence, transmitting raw data to the cloud

feeding VGG8 achieves higher throughput as shown in Fig.4a.
In general, increasing α encourages the algorithm to find a

split that will lead to higher throughput and possibly increase
inference energy consumption and vice versa. Decreasing α in
homogeneous compute nodes and very cheap communication
channels may lead to a limited number of participating devices,
a significant throughput decrease with negligible energy reduc-
tion as communication overhead is already small. Furthermore,
NN models with more layers allow more flexibility in finding
the intended optimized performance. Finally, the more diverse
compute nodes available to choose from, the smoother the set
of solutions found by varying α.

V. CONCLUSION

The DONNA framework concurrently optimizes distributed
inference for both throughput and energy consumption, a
key dual objective. Experimental evaluation was conducted
on ResNet152, VGG19, and VGG8 architectures leveraging
the ImageNet dataset for heterogeneous systems consisting
of GPU, CPU, and CIM. Compared to the performance of
a single GPU, DONNA can achieve about 4× speedup gained
from pipeline processing with around 4× per-device energy
reduction. This improvement was realized by judiciously
allocating layers to devices with optimal energy efficiency
within a heterogeneous configuration. The algorithm finds a
smooth Pareto-like curve on the throughput-energy space when
CIM devices participate thanks to having devices with diverse
performance capabilities, allowing the algorithm to explore
a broader spectrum of optimization points. Our future work
includes scaling the framework to support large language mod-
els, exploring other model-splitting techniques, using near-
exact computation profiling and developing a more accurate
communication model.

VI. ACKNOWLEDGEMENT

This work has been partially supported by King Abdullah
University of Science and Technology CRG program under
grant number: URF/1/4704-01-01

REFERENCES

[1] M. Dehghani, J. Djolonga, B. Mustafa, P. Padlewski, J. Heek, J. Gilmer,
A. Steiner, M. Caron, R. Geirhos, I. Alabdulmohsin et al., “Scal-
ing vision transformers to 22 billion parameters,” arXiv preprint
arXiv:2302.05442, 2023.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877–1901, 2020.

[3] “Nvidia h100 tensor core gpu datasheet,” https://resources.nvidia.com/
en-us-tensor-core/nvidia-tensor-core-gpu-datasheet, accessed: 2023-06-
13.

[4] “Ai memory wall,” https://medium.com/riselab/
ai-and-memory-wall-2cb4265cb0b8, accessed: 2023-06-12.

[5] F. Staudigl, F. Merchant, and R. Leupers, “A survey of neuromorphic
computing-in-memory: architectures, simulators, and security,” IEEE
Design & Test, vol. 39, no. 2, pp. 90–99, 2021.

[6] D. Zhao, Y. Wang, J. Shao, Y. Chen, Z. Guo, C. Pan, G. Dong,
M. Zhou, F. Wu, W. Wang et al., “Compute-in-memory for numerical
computations,” Micromachines, vol. 13, no. 5, p. 731, 2022.

[7] K. Smagulova, M. E. Fouda, F. Kurdahi, K. N. Salama, and A. Eltawil,
“Resistive neural hardware accelerators,” Proceedings of the IEEE, vol.
111, no. 5, pp. 500–527, 2023.

[8] X. Hou, Y. Guan, T. Han, and N. Zhang, “Distredge: Speeding up
convolutional neural network inference on distributed edge devices,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2022, pp. 1097–1107.

[9] Y. Hu, C. Imes, X. Zhao, S. Kundu, P. A. Beerel, S. P. Crago, and J. P.
Walters, “Pipeedge: Pipeline parallelism for large-scale model inference
on heterogeneous edge devices,” in Euromicro Conference on Digital
System Design (DSD), 2022, pp. 298–307.

[10] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[11] A. Lu, X. Peng, W. Li, H. Jiang, and S. Yu, “NeuroSim validation
with 40nm RRAM compute-in-memory macro,” in IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS),
2021, pp. 1–4.

[12] X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data flow
for convolutional neural networks on processing-in-memory architec-
tures,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 4, pp. 1333–1343, 2019.

[13] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An
end-to-end benchmarking framework for compute-in-memory acceler-
ators with versatile device technologies,” in 2019 IEEE international
electron devices meeting (IEDM). IEEE, 2019, pp. 32–5.

[14] “Doubling bandwidth in under two years: PCI Express base
specification revision 5.0, version 0.9 is now available to members,”
https://pcisig.com/doubling-bandwidth-under-two-years-pci-express\
%C2\%AE-base-specification-revision-50-version-09-now, accessed:
2023-06-13.

[15] “Trenton Systems blog: What is PCIe 5.0?” https://www.trentonsystems.
com/blog/what-is-pcie-5.0, accessed: 2023-06-13.

[16] “Nvidia grace-hopper white paper,” https://resources.nvidia.com/
en-us-grace-cpu/nvidia-grace-hopper, accessed: 2023-06-25.

[17] “Qualcomm: Everything you need to know about 5g,” https:
//www.qualcomm.com/5g/what-is-5g#:∼:text=5G\%20can\%20be\
%20significantly\%20faster,(Mbps)\%20average\%20data\%20rates.,
accessed: 2023-06-20.

[18] E. Björnson and E. G. Larsson, “How energy-efficient can a wireless
communication system become?” in Asilomar Conference on Signals,
Systems, and Computers, 2018, pp. 1252–1256.

[19] “Python library: time — time access and conversions,” https://docs.
python.org/3/library/time.html, accessed: 2023-06-13.

[20] “pyjoules’s documentation,” https://pyjoules.readthedocs.io/en/latest/,
accessed: 2023-06-13.

[21] “Python bindings to the nvidia management library,” https://pypi.org/
project/pynvml/, accessed: 2023-06-13.

[22] “DNN+NeuroSim v1.3 GitHub page,” https://github.com/neurosim/
DNN NeuroSim V1.3, accessed: 2023-06-13.

