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Abstract—Coarse-grained reconfigurable arrays (CGRAs) are
reconfigurable architectures that combine the efficiency of custom
datapaths with the flexibility of FPGAs. Optimized word-level
functional units with reconfigurable interconnect enable a wide
range of applications. Due to the irregular data movement
patterns and the diversity of real-world HPC applications, a
traditional homogeneous regular-shaped CGRA architecture can
be sub-optimal. A more application-specific arrangement of
resources could, however, result in poor hardware reuse and
increased deployment effort for a CGRA. Using CGRA overlays
can increase hardware reuse while maintaining high performance
of a more optimized architecture. This proposal uses and builds
upon the built-in tools of the MLIR infrastructure to target a
class of applications that can be analyzed, rewritten, and opti-
mized based on the available resources of an underlying CGRA
architecture, thereby better exploiting hardware resources.

I. PROBLEM AND MOTIVATION

Coarse-Grained-Reconfigurable-Arrays (CGRAS) are recon-
figurable architectures comprising an array of interconnected
processing elements (PEs) capable of performing different
computational functions. Recently, the interest in CGRAs has
renewed thanks to their capability in compute acceleration, fast
compilation, and portability to various applications. However,
traditional regular-shaped rectangular architectures differ from
the irregular-shaped data movement patterns in many real-
world applications, thereby missing opportunities for efficient
compilation and hardware utilization.

Fig. 1 illustrates example application kernels mapped onto
a 3x3 CGRA where Fig. 1a overlays the data access pattern
of a 2D Jacobi stencil kernel and Fig. 1b overlays the data
access pattern of an FIR filter kernel . In both examples, the
top right PE and the bottom left PE are not utilized. However,
as the compiler is oblivious to the data access patterns, it
includes those PEs in the search space when it searches for
a feasible mapping of both applications on the underlying
architecture. More generally, the problem concerns all the
hardware resources, including the width of interconnect, the
structure of the memories and the registers, and the supported
operations by the processing elements. As more complex
architectures include more hardware components, the search
space grows accordingly, increasing compilation effort.

In this work, we propose generating CGRA overlays based
on a target class of applications. Analyzing and optimizing
the application kernels results in transforming the kernels for
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Fig. 1: Mapping examples

better-shaped data access patterns at the application level, re-
ducing the compilation search space at the compiler level, and
increasing the reusability of the hardware by accommodating
more overlays on the same architecture at the hardware level.

II. BACKGROUND AND RELATED WORK

Several works have targeted optimizing acceleration of HPC
applications on CGRAs.

REVAMP [1] proposed an approach for optimizing the
hardware architecture by analyzing a set of input applications
targeting the reduction of area and power and maintaining
the same throughput. However, it does not explore the op-
portunities of transforming the application kernels and tar-
gets generating heterogeneous CGRA architectures rather than
overlays that reuse the same hardware. FlexC [2], contrary
to REVAMP, explored rewriting application kernels to reduce
hardware requirements. It explored opportunities for a set
of input applications to use fewer hardware components by
rewriting them into fewer operations, which increases hard-
ware reuse. However, it does not perform optimizations on
the hardware itself. OverGen [3] proposed a framework for
domain-specific overlay generation targeting FPGAs for ease
of compilation of applications, as compiling to FPGAs is
highly time-consuming. However, OverGen does not exploit
existing CGRA architectures and focuses mainly on reducing
the compilation time to FPGAs. There is also work demon-
strating that such coarse grained overlays can be deployed on
FPGAs in an architecture-centric manner, thereby extracting
much higher performance than is possible through architecture
agnostic design [4].
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Fig. 2: Optimized overlay generation process.

TABLE I: Utilized resources per Al Engine.

Kernel Tile Size  Vector Update ops. ~ Multiply ops.  MAC ops.
2D Convolution 16x16 6 1 8
2D Jacobi 16x16 6 1 4

III. APPROACH AND UNIQUENESS

In this work, we propose leveraging the Multi-Level In-
termediate Representation (MLIR) compiler infrastructure [5]
to analyze and transform the input application kernels and
generate the appropriate overlay based on an input architecture
specification. This approach differs from the previous work
by applying the analyses and the transformations on multiple
levels, using MLIR, instead of on the bitcode level, using
LLVM, thereby capturing more information about the data
access patterns and requirements of the operations upwards
from an abstract view close to the kernel code and downwards
from a lower view close to the architecture.

As shown in Fig. 2, the input application kernels are parsed
using the Polygeist [6] C/C++ frontend to generate MLIR files.
Then, the MLIR infrastructure is leveraged to perform several
passes on the kernels to analyze them and apply relevant
transformations, considering the input architecture specifica-
tions. The process results in outputting the specifications of an
optimized overlay and the bitcode of the application kernels.

Notably, one of the key features of MLIR is the ability to
target different architectures at different levels of abstraction,
making porting the overlay and the compiled kernels flexible
to targeting different hardware. One possible target is FPGAs,
which is feasible using the CIRCT framework [7] for hardware
compilation using MLIR, in particular by using Calyx [8].

IV. PRELIMINARY RESULTS

We target the commercial CGRA architecture of the AMD
Versal ACAP VCK5000, which comprises 400 (8 x50) PEs,
called Al Engine. Each Al Engine is optimized for vector
operations with a scratchpad memory of 32 KB, shared with
neighbouring PEs in the cardinal directions.

We target two application kernels, 2D Convolution
and 2D Jacobi, with a 3x3 sliding window. We employ
MLIR’s affine-loop-tile pass with a cache-size
of 32KB to fit within the AI Engine memory limits.
Subsequently, we use affine-loop-unroll with
unroll-full and unroll-full-threshold=3
to fully unroll loops with trip counts up to 3, unrolling

the element-wise operations in the sliding window.
We then apply affine-super-vectorize with
virtual-vector—-size=8 for 8-lane SIMD vectorization.
Lastly, the aie-vectorize pass in the MLIR-AIE
framework lowers MLIR code to aievec dialect for the
AMD Versal ACAP architecture.

Table I shows the resulting overlay configuration. The 8 x50
Al Engine PEs are allocated 16x16 single precision float
elements of the 2D input grid. We notice that both kernels
require an exact number of vector updates, translating into
similar data access patterns. For the innermost loop, the num-
ber of the multiply operations is also similar, while the number
of the multiply-accumulate (MAC) operations differs slightly,
translating into slightly different computation behavior. This
results in using the same overlay architecture with a mere
change in the innermost loop computation operations that run
on the vector RISC-V cores.

V. EXPECTED RESULTS AND CONTRIBUTIONS

Extending this work to incorporate more analysis and opti-
mization passes will contribute to better designing overlays for
a wide range of architectures as the MLIR ecosystem is bridg-
ing the gap between the hardware and the software through
compilation support. Additionally, not only does it ease the
reachability of the variety of architectures, but it also optimizes
the implementation further, reducing the development cost.
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