
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 1

Power-Efficient Mapping of Large Applications
on Modern Heterogeneous FPGAs
Kalindu Herath, Alok Prakash, Suhaib A. Fahmy, Senior Member, IEEE,

and Thambipillai Srikanthan, Senior Member, IEEE

Abstract—The increasing size of modern FPGAs allows for ever
more complex applications to be mapped onto them. However,
long design implementation times for large designs can severely
affect design productivity. A modular design methodology can im-
prove design productivity in a divide and conqueror fashion but
at the expense of degraded performance and power consumption
of the resulting implementation. To reduce the dominant power
dissipation component in FPGAs, the routing power, method-
ologies have been proposed that consider data communication
between modules during module formation and placement on
the FPGA. Selecting proper mapping region on target FPGAs,
on the other hand, is becoming a critical process because of the
heterogeneous resources and column arrangements in modern
FPGAs. Selecting inappropriate FPGA regions for mapping could
lead to degraded performance. Hence, we propose a methodology
that uses communication-aware module placement, such that
modules are mapped by selecting the best shape and region
on the FPGA factoring the columnar resource arrangements.
Additionally, techniques for module locking and splitting have
been proposed for deterministic convergence of the algorithm
and for improved module placement. This methodology exhibits
nearly 19% routing power reduction with respect to commercial
CAD flows without any degradation in achievable performance.

Index Terms—FPGAs, CAD, floorplanning, modular design
methodology, routing power.

I. INTRODUCTION

Modern Field Programmable Gate Arrays (FPGAs) com-
prise millions of logic resources, as well as different types of
hard modules such as Digital Signal Processing (DSP) Blocks
and Block Memories (BRAMs) in various sizes. The growth
in resource capacity and falling costs of FPGAs have en-
abled the implementation of larger applications onto them [1].
Though FPGAs offer a promising target platform for large
applications from domains such as artificial intelligence and
deep neural networks [2], cloud services [3] and autonomous
vehicles [4] [5], [6], the design process is cumbersome and
time consuming. Compilation of large applications using low-
level Hardware Description Language (HDL) based design
tools is cumbersome and verification is challenging. There
have been a range of efforts to improve design productivity in
commercial FPGA CAD tools recently. However, compilation
times remain long, hampering the design cycle. Studies have
shown that compiling large applications can take hours or even
days [7]. Moreover, tools tend to generate implementations

K. Herath, A. Prakash, and T. Srikanthan are with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore.
e-mail: (kalindu.herat, alok, astsrikan)@ntu.edu.sg.

S. A. Fahmy is with King Abdullah University of Science and Technology
(KAUST), Saudi Arabia. e-mail: suhaib.fahmy@kaust.edu.sa

with lower quality of results in terms of performance and
power compared to the implementation of smaller designs.

Modular Design Methodology (MDM) has been proposed
to improve the design productivity of large FPGA designs.
It divides large designs into smaller modules, compiles them
individually and assembles them to obtain a complete im-
plementation. MDM provides better quality of results and
helps designers preserve satisfactory compilation of modules.
However, the division of large designs into smaller modules
can result in a loss of inter-module connectivity information,
resulting in degradation of performance and power.

The charging and discharging of capacitive loads on the
interconnect fabric that consumes up to 80% of total FPGA
area, has been identified as the dominant power dissipation
factor on FPGAs, contributing to as much as 50% of total
dynamic power dissipation [8]. Since longer wire length
increases effective capacitance, switching activity on longer
interconnect wires should be minimized in order to reduce
power dissipation.

On FPGAs, architecture data-flow is analogous to the
switching activity of all the nets routed on interconnect fab-
ric. In order to minimize switching on longer interconnect
wires, we previously proposed an MDM-based technique
in [9], where design entities with data-flow intensive links are
grouped into a single module. The CAD tool is then instructed
to allocate these modules into a rectangular region (size and
location determined by the CAD tool). Hence the entities are
included in the same module, and the data-flow intensive links
are expected to be routed with shorter interconnect wires.

However, arbitrarily increasing the size of such modules,
i.e. grouping several entities into a single module, inversely
affects wire-length as entities with intensive data-flow links
may no longer be placed in close proximity. Hence, the module
creation step requires an upper bound for module size. As
a result, however, all high data-flow intensive links may not
be encompassed within modules, resulting in significant inter-
module data-flow. Therefore, an inter-module data-flow aware
module placement strategy is required in order to minimize
the overall power dissipation.

Modern heterogeneous FPGA architecture floorplans incor-
porate 2 types of heterogeneity. 1) Different resource types
like DSPs and BRAMs, with potential variations. For instance,
Intel FPGAs offer BRAMs with different sizes, such as M9K
(9 Kb) BRAMs and M144K (144 Kb) BRAMs, and modern
Xilinx devices include 36 Kb BRAMs and 288 Kb UltraRAMs
(URAMs). 2) Resources arrangements with variably spaced
columns. In such FPGA floorplans, the physical shape and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 2

placement of modules on the FPGA determine the availability
of different resource types and arrangements. Further, certain
column arrangements better suit modules with different re-
source mixes. Thus, module placement as well as the shape of
FPGA region where the module is mapped are both critical.
Sub-optimal assignment of shapes and locations to modules
incurs resource wastage and degrades performance and power.

In this work we propose a module placement methodology
which:
• minimizes the distance between modules with higher

inter-module data-flow, hence reducing routing power
dissipation

• estimates the performance of each module for different
FPGA regions and shapes, and hence selects the FPGA
region that gives the highest performance

The proposed technique leverages the Artificial Neural Net-
work based module performance technique proposed in [10]
in order to obtain estimated performance for different FPGA
regions. Preliminary investigation of this methodology was
presented in [11]. In this paper we extend the approach to
further reduce power consumption and improve performance
(frequency) while minimizing the runtime of the proposed
algorithm. The rest of the paper is organized as follows. In
Section II, we discuss the background and existing literature
followed by the motivation in Section III. The proposed
methodology is discussed in Sections IV through VI. The
methodology is evaluated in Section VII and we conclude in
Section VIII.

II. BACKGROUND AND RELATED WORK

Modular Design Methodology (MDM) was developed to
increase design productivity by allowing designers to compile
designs partially and preserve satisfactory partial compilations.
A MDM flow constitutes two phases: module creation and
module assembly.

In the module creation phase, identified modules of a design
are compiled for every possible location on FPGA and stored
in a module library. Module creation in Frontier [12] and
HMFlow [13] are done at a finer level where RTL components
such as multiplexers and adders are considered as modules.
BPR [7], on the other hand, creates modules with much coarser
components such as FFT and FIR filters. Module creation in
QFlow [14] is based on the rate of modifications required in
each module creating invariant and evolving sets rather than
ones based on granularity. However, all these techniques focus
on faster CAD flow runtime, but do not consider performance
or power. Our previous work in [9] suggested a methodology
to partition a large design into modules such that entities with
higher data-flow between them are grouped together, resulting
in closer proximity. Consequently, links with higher data-flow
within the modules are routed with shorter interconnect wires
leading to a reduction in routing power. However, module size
constraints could still mean some high data-flow links were not
suitably grouped.

In the module assembly phase, individual modules are
placed and routed to form the complete design and hence
finalize the compilation process. Here, the pre-compiled or

pre-synthesized modules are selected from the large module
database for each module, with the objective of reducing a
placement cost function. In Frontier [12], the placement cost
is a combination of timing and wiring cost, whereas BPR [7]
also considers expected routing congestion. In the module
assembly phase of HMFlow [13], its heuristic placer intro-
duces more parameters such as the size of modules, amount
of connectivity, and also the presence of BRAMs and DSPs in
addition to the conventional wire-lenth and timing based cost
functions. A hetereogeneous resource column based approach
to floorplanning was proposed in [15], with a focus on partial
reconfiguration. A standard cost function was altered in [16]
by adding priority levels to modules during module placement,
and in [17] by including area requirements and aspect ratios
of modules to the cost function. In our prevous work [18], the
module placement cost function was altered to perform power-
aware module placement by incorporating data-flow between
modules as a placement cost. However, most MDM work-
flows including [18], consider only one shape per pre-compiled
module during module creation. In [19], a block based com-
pilation process is proposed in order to reduce compilation
time. Modules are assigned to regions without taking the the
underlying architecture into consideration. The floorplanning
technique proposed in [20] considers the heterogeneous re-
source column arrangement in modern FPGAs. However, the
objective of that work is to find regions for each module
while optimizing the wire-length. The shape of modules is the
deciding factor in the utilization of the heterogeneous column
arrangement of FPGAs and therefore, state-of-the-art module
placement could cause suboptimal placement and resource
wastage. As shown later in Section VII, this leads to excessive
routing power consumption.

The authors in [21] extensively analyzed module shape
and have shown that multi-shaped pre-compiled modules lead
to better resource utilization. One of the reasons that multi-
shape modules have not been widely used is the increase
in module library size. To mitigate this the authors in [22]
proposed a methodology to derive different module shape
versions by partitioning a given version of a module. As a
result, they could eliminate the need for pre-compiling all the
module shape versions on every possible location on FPGA.
However, none of these attempts have eliminated the need for
a pre-compiled module library. The work in [10], proposed
an Artificial Neural Network (ANN) based methodology to
estimate performance for a given module on FPGA. The
ANN model takes module application characteristics, intended
module shape and placement information as inputs and esti-
mates performance of the module. Using this technique, one
can rapidly estimate the performance of a module for any
shape and placement on FPGA. However, the ANN model is
specific to the target FPGA which requires a one-time training
process. In [11] we presented a methodology to use the ANN
based performance estimator to obtain candidate shapes and
placements for all the modules in the design and hence select
the best module shape and placement for each module in
order to complete the compilation process. The placement
decision in that work aims to lower routing power dissipation
by reducing the distance between modules with higher inter-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 3

S1

[96,3,0]

[87904]

750
S4

[40,7,0]

[10289]

S2
[48,8,0]

[5227]

S3
[96,8,0]

[73717]

1400
7772

7774

28079

Fig. 1: A graph of subsystems.

module data-flow.
Commercial FPGA vendors provide tools to perform MDM

in their CAD software. For instance, Intel Quartus Prime
and Xilinx Vivado include incremental compilation tools for
floorplanning. However, these CAD tools do not perform
automatic and informed module creation and placement and
require developer expertise. The academic and commercial
state-of-the-art show the need for a power-aware MDM which
considers the heterogeneous column arrangements in modern
FPGAs.

III. MOTIVATION AND PROPOSED METHOD

A. Motivational Example

There are two modes of power dissipation on FPGAs; static
power dissipation and dynamic power dissipation. The former
occurs due to leakage current and the latter occurs due to
signal transitions on capacitive loads. Although static power
dissipation is considerable on modern FPGAs, dynamic power
still dominates total power dissipation [23], [24]. Dynamic
power is characterized in equation 1:

Pdyn =
1

2

∑
i∈nets

Ci.αi.v
2
dd (1)

where, nets represents all physical connections on the FPGA,
Ci is the capacitance of net i, αi is the signal toggle rate of net
i, and vdd is the operating voltage of the FPGA. According to
equation 1, high toggle rates (due to data-flow) with the higher
capacitance of longer interconnect will drastically increase
dynamic power dissipation. It should be noted that the term
communication is used as an approximation to signal toggling
(αi) due to data-flow. Communication is defined as the total
number of toggles of an RTL signal. The term subsystem
refers to a collection of RTL entities that have high data-flow
between them. Subsystems are analogous to modules that have
been created using a communication-aware module creation
methodology in state-of-the-art MDM, similar to [9].

In Figure 1, an example design is represented as a graph,
where a node in the graph represents a subsystem Si and an
edge between Si and Sj represents an inter-subsystem con-
nection Si,j . Nodes are annotated with a resource requirement
tuple (CLBs, BRAMs, DSPs) [li,mi, di] and intra-subsystem
communication αi. Intra-subsystem communication refers to
the total number of RTL signal toggles that occur between
all the entities within a given subsystem. Similarly, inter-
subsystem communication refers to the total number of RTL
signal toggles that occur between corresponding subsystems.

155.09 MHz

174.47 MHz

LUTs
BRAMs
DSPs

𝒇𝒑𝑨

𝒇𝒑𝑩

Fig. 2: Effect of footprint shape on performance.

In order to minimize dynamic power consumption, subsystem
S3 and S4 must be placed in close proximity and subsystem
S2 should be closer to subsystems S3 and S4.

A subsystem (for instance S1) can be mapped into a rect-
angular shape on the FPGA fabric. In this paper, the physical
shape and placement of a subsystem on the FPGA is referred
to as a footprint. In Figure 2, two footprints (fpA and fpB)
are shown where a particular subsystem has been mapped.
However, the resource availability and column arrangements
within the footprints are different. For instance, in fpA, the
BRAMs within the footprint are arranged in a single column,
whereas in fpB , BRAMs are arranged in three columns. As
a result, the two footprints achieve different frequencies as
shown in Figure 2.

Some footprint versions are preferable for subsystem map-
pings in terms of performance due to their resource column
arrangement [10], [21], depending on the characteristics of
the subsystem and the underlying FPGA architecture (column
arrangement). In this example, footprint fpA is preferable
for mapping subsystem S1. In addition, as discussed earlier,
subsystems with higher inter-subsystem communication must
be mapped to suitable footprints at close proximity in order to
minimize dynamic power dissipation. Therefore, this motivates
development of a subsystem mapping methodology that con-
siders both inter-subsystem communication and the resource
column arrangement on modern heterogeneous FPGAs.

B. Proposed Methodology

The following example illustrates the proposed methodol-
ogy. For each subsystem Si shown in Figure 1, a set of foot-
prints is generated for an Altera EP4CGX50 device, as shown
in Figure 3(a). Each footprint of Si is generated such that
the resource requirement for the subsystem is satisfied. The
expected performance for each footprint is estimated using the
performance estimation technique in [10], and the estimated
performance for each footprint is tabulated in Figure 3(b).
The preference for selecting a particular footprint for each
subsystem is based on its performance (preference level 1 for
the highest performance), and is marked in a different color
for clarity.

Given a graph of subsystems and a set of footprints for each
subsystem as explained above, the proposed technique aims to
achieve the following:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 4

CLBs BRAMs DSPs

(a) (c)

Preference Level:

1 2 3 4

S1 S2 S3 S4 Solution

𝒇𝒑𝟑,𝟏
𝒇𝒑𝟏,𝟒

𝒇𝒑𝟒,𝟐
𝒇𝒑𝟐,𝟐

𝑓𝑝1,4 𝑓𝑝2,2

𝑓𝑝3,1

𝑓𝑝4,2

footprint Freq.

1 𝑓𝑝1,1 195

2 𝑓𝑝1,2 190

3 𝑓𝑝1,3 186

4 𝑓𝑝1,4 183

footprint Freq.

1 𝑓𝑝2,1 202

2 𝑓𝑝2,2 200

3 𝑓𝑝2,3 199

4 𝑓𝑝2,4 195

footprint Freq.

1 𝑓𝑝3,1 195

2 𝑓𝑝3,2 189

3 𝑓𝑝3,3 185

4 𝑓𝑝3,4 182

footprint Freq.

1 𝑓𝑝4,1 199

2 𝑓𝑝4,2 198

3 𝑓𝑝4,3 196

4 𝑓𝑝4,4 195

(b)

𝑓𝑝1,2

𝑓𝑝1,3

𝑓𝑝1,1

𝑓𝑝2,1

𝑓𝑝2,3
𝑓𝑝2,4

𝑓𝑝3,2

𝑓𝑝3,3𝑓𝑝3,4 𝑓𝑝4,1

𝑓𝑝4,3𝑓𝑝4,4

Fig. 3: a) Footprint variations on FPGA. b) Performance of footprints. c) Selecting a footprint for each subsystem.

• For each subsystem, select a footprint with the highest
possible preference level

• Footprints belonging to subsystems with higher inter-
subsystem communication should be closer to each other
on FPGA

• Selected footprints for each subsystem must not overlap
in the final solution

• The final mapping solution must not over-consume rout-
ing resources

It is noteworthy that the performance of each footprint is
obtained using the Artificial Neural Network (ANN) based
module estimation technique proposed in [10]. This technique
uses a device-specific ANN to estimate the performance for
each footprint. The ANN model takes the architectural in-
formation such as resource column arrangement and delay
into consideration, so that it can accurately estimate the
performance without pre-compiling footprints on all possible
locations on the target FPGA. The footprint generation process
is further discussed in Section VI.

A potential solution for the example in Figure 3 is given
in Figure 3(c). Here, footprint versions fp1,4, fp2,2, fp3,1
and fp4,2 are chosen for subsystems S1 to S4. Selecting
footprints with a higher preference level for all subsystems
may result in overlapping areas. For instance, footprints f4,2
and fp2,2 in the solution overlap. Such overlaps are resolved
by shifting vertically, due to the uniformity of FPGA resource
columns in the vertical direction. However, vertical shifting
affects the distance between subsystems, so a careful selec-
tion between shifting and choosing non-overlapping footprints
must be made. In addition, subsystems with higher inter-
subsystem communication (for instance S3 and S4) might
obtain footprints with lower preference level in order to satisfy
the closer placement requirement.

The proposed methodology consists of 2 phases:
1) Subsystem Grouping: A pre-processing step finds the

associativity of subsystems in a given subsystem graph
by analyzing inter-subsystem connections and links. For
instance, subsystems S2, S3, and S4 in Figure 1 have
relatively high inter-subsystem communication, and are
hence considered as a group. The footprint information

is not considered in this phase to reduce problem size.
2) Subsystem Mapping: The footprints for each subsystem

are analyzed to select the best shape and location to map
each subsystem to on the target device. The subsystem
grouping information obtained in the first phase is used to
reduce the search space. For instance, subsystems S2, S3,
and S4 in Figure 1 are identified as a group and hence
should be placed in closed proximity. This is achieved
by promoting footprints fp2,2, fp3,1 and fp4,2 whose
horizontal locations, x, are relatively close.

IV. INTER-SUBSYSTEM COMMUNICATION-AWARE
SUBSYSTEM GROUPING

A. Problem Formulation

Subsystem grouping identifies subsystems that should ide-
ally be placed in close proximity. The groups are identified
using a rapid placement technique on the target device, re-
quiring the following inputs:

(i) Information about the application : G = {V,E}, where
vertices, V , and edges, E, represent subsystems V =
{S0, S1, ..., SN} and connections between them respec-
tively. Each vertex Si has a node value with the resource
requirement of the subsystem ASi = {lSi ,mSi , dSi} and
each edge ei,j has an edge cost with inter-subsystem
communication α′i,j between subsystems Si and Sj .

(ii) Parameters of the Target FPGA : The number of columns,
W , and number of rows, H , in the target FPGA along
with FPGA column arrangement, F = f1, f2, ..., fW ,
where fi = {l|m|d}, represents the resource type of
column i on the target device (l, m, and d represent CLBs,
BRAMs and DSPs respectively).

First the subsystem graph G is rearranged to G′ such
that the subsystems require only one FPGA resource type.
For instance, subsystem S1 in Figure 1 is divided into two
subsystems as shown in Figure 4(a) such that new subsystem
S1 requires only CLBs (lS1

= 96) and subsystem S1.1 requires
only BRAMs. Single resource subsystems that belongs to one
subsystem in the subsystem graph G, for example S1 and S1.1,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 5

are maintained as one subsystem by adding a very high inter-
subsystem communication N to the respective edges between
such subsystems.

Given the above inputs, and the rearranged subsystem graph
G′, the subsystem grouping problem is to find a rectangular
region Lv(xv, yv, wv, hv) for each subsystem v in G′, where
(xv, yv) are the bottom left coordinates on the FPGA device
and (wv, hv) are the width and the height of the region.
A rectangular floorplanning region also allows the proposed
flow to be further extended for use in partially reconfigurable
designs with additional architectural constraints (i.e. height
of rectangular regions must be multiples of clock regions),
wherein the rectangular shape is a requirement for the gener-
ation of valid partial bitstreams [25]. Rectangular region Lv
should meet the following requirements:
• Resource requirement of the respective subsystem ASi

must be fulfilled
• Regions are non-overlapping and must fit within the

FPGA limits W and H

(a) (b)

S1
[96,0,0]

[87904]

750
S4

[40,0,0]

[10289]

S2
[48,0,0]

[5227]

S3
[96,0,0]

[73717]

1400 7772

7774

28079

S1.1[0,3,0]

S2.1[0,8,0]

S4.1[0,7,0]

S3.1[0,8,0]

N N

NN

x S1 S1.1 S2 S2.1 S3 S3.1 S4 S4.1

1        

2        

3        

4        

5        

..        

W        

Fig. 4: (a) Divide subsystems based on resource type (G′).
(b) Traversal on point map.

The subsystem grouping problem is modeled as a Traveling
Salesman Problem (TSP) as shown in Figure 4. The main
objective is to find the horizontal coordinates of rectangular
regions, xv , for each subsystem. Figure 4(b) shows a map
for node traversal. Each column in the map has W number
of points (rows), and each point (i, j) in the map represents
the event of placing the lower left corner of the subsystem
that represented by column j at the horizontal coordinate, x,
represented by row i. A point is selected from each column
during the traversal.The points also represent a resource type.
For instance, let the FPGA column arrangement be F =
{l,m, l, l,m, ..., l}. Therefore, the points in row x = 2 are
BRAM type. Hence, the subsystems that requires only BRAMs
(ex. S1.1, S2.1) are allowed to choose points at x = 2 and
x = 5.

B. Subsystem Grouping using Ant Colony Optimization

The TSP modeled above is solved using an Ant Colony
Optimization (ACO) based algorithm. The proposed technique
uses a pheromone table similar to Figure 4(b). A cell in the

pheromone table, τSi,x represents the likelihood of selecting
column x to place subsystem Si. The pseudo-code of the
proposed ACO based placement methodology is given in
algorithm 1. In each iteration, a number of solutions are
generated by traversing the point map (lines 8–9). The best
solution in each iteration Qcurr best can update the pheromone
table by increasing the pheromone entries relevant to the
solution (lines 14–17). In addition, if Qcurr best is better than
the overall best solution Qhist best , the pheromone table is
updated with the solution again (lines 18–21). Pheromone
updates increase the likelihood of choosing a better traversal
in subsequent iterations. Once the stopping criteria is met
(maximum number of iterations or very low changes in
Qhist best), the algorithm outputs the best solution, Qhist best .

Algorithm 1 Communication-aware subsystem grouping.
1: procedure RUN ACO1(G,F)
2: INIT()
3: Qhist best ← Qinit

4: hist best ← MAX
5: while stopping criteria == FALSE do
6: Qcurr best ← Qinit

7: curr best ← MAX
8: for each ant ∈ ANTS do
9: (seqant , xant)← TRAVERSE ANT(G)

10: yant ← SELECT Y(xant , G)
11: if IS VALID(yant) == FALSE then
12: continue
13: costant ← COST(G, xant , yant)
14: if costant < curr best then
15: curr best ← costant
16: Qcurr best ← (seqant , xant)
17: UPDATE PHEROMONE(seqant , xant)

18: if costant < hist best then
19: hist best ← costant
20: Qhist best ← (seqant , xant)
21: UPDATE PHEROMONE(seqant , xant)

22: DECAY PHEROMONE
23: return Qhist best

a) Pheromone Table Initialization: At the beginning, all
subsystems have equal probability to select any x point that
matches their resource type. Therefore, we initialize all the
entries in the pheromone table to a small value in INIT ()
(line 2). This value is empirically set to 0.2.

b) Traversing: In each iteration, a set of computing
agents (artificial ants) traverse through the point map (line 9).
Each ant traverses through all the subsystems exactly once by
selecting a point from the point map. We use a random number
to select the subsystem to traverse. Point selection is done
based on the pheromone values τSi,x. Each ant produces a
solution with a sequence of subsystems (seqant) and respective
x coordinates for each subsystem xant . Sequence xant only
provides the horizontal coordinate of each subsystem (xv), and
the vertical coordinate (yv) of all the subsystems is assumed
to be 1.

In the subsystem grouping phase, the shape of a subsystem
is not prioritized. We use the following technique to infer the
rectangular region (wv, hv) each subsystem.

• For subsystems with only CLBs (ex. S3): set height(h)
to width(w) ratio close to 1 such that the resource
requirement is just satisfied

• Subsystems with other resources (ex. S3.1): considered as
a single column shape

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 6

1 32

No. of bounding box overlaps:
4 5

(a) (b)

Bounding

box for S1-S4

Bounding box

for S2-S3

S4

S2

S3S1 S4

S2

S3S1

Fig. 5: Congestion model.

Defining a rectangular region shape as discussed above may
result in overlapping subsystems. In order to resolve these
overlaps, subsystems are shifted vertically. For instance, let
two subsystems Sa and Sb be placed at xa = 10 and xb = 15,
and their rectangular regions (overlapped) are inferred to be
w = 10 and h = 5. If Sb appears in the seqant before Sa,
we shift Sa by 5 (equivalent to hb), resulting ya = 6 and
yb = 1. In this manner, the vertical position is obtained for all
subsystems (line 10). The following cost function is used to
evaluate solutions:

COST (s) =
∑
e∈E

le.α′e (2)

where le is the half perimeter wire length for the bounding
box enclosing the subsystems relevant to edge e and α′e is
inter-subsystem communication.

c) Congestion Model: Routability evaluation is an im-
portant step in a placement algorithm. Placing a large number
of components in a smaller area could lead to excessive usage
of routing resources. Typical routing algorithms avoid highly
congested areas and therefore may use longer wires to connect
components, leading to degraded quality of results (perfor-
mance and power). In the proposed approach, a bounding
box based congestion analysis is incorporated to estimate the
routing congestion similar to [26]. In this model, the FPGA
area is considered as a 2D array known as a ‘congestion
map’. All congestion map elements are initialized to zero.
For each inter-subsystem connection in Figure 1, a bounding
box can be formed as in Figure 5(a) (note that all bounding
boxes are not shown for ease of explanation). Next, congestion
map elements relevant to each bounding box are incremented.
Therefore overlapping bounding boxes reflect high congestion
regions. The congestion map relevant to the subsystems in
Figure 5(a) is shown in Figure 5(b). The congestion map is
populated for each solution. Solutions that exceed a predefined
congestion value (referred to as maximum connection density)
are discarded to avoid possible routing congestion. Maximum
connection density is an architecture-specific approximation
for the number of routing resources available per unit area. It
is experimentally obtained and defined as follows:

max connection density =
rmax

w × h
(3)

𝒔𝑒𝑞𝑎𝑛𝑡 𝒙𝑎𝑛𝑡 w h y

S4 45 9 7 1

S3 59 12 10 1

S3.1 60 1 8 1

S4.1 46 1 7 1

S1 10 11 10 1

S2.2 46 1 8 8

S2 43 8 7 8

S1.1 12 1 3 1

(a) Solution creation using the
best traversed path.

CLBs

BRAMs

DSPs

S3.1

S4

S2

S3S1

S1.1
S4.1

S2.1

(b) Display the solution on the
target FPGA.

Fig. 6: Example of a solution from the subsystem grouping
technique.

Here, rmax is the maximum number of RTL signals that fit
into a rectangular FPGA region with w columns wide and h
rows tall.

d) Pheromone Update and Decay: Pheromone table en-
tries (τSi,x) related Qcurr best and Qhist best are incremented
by 10% in order to promote better solutions in subsequent iter-
ations. It is also noteworthy that ACO mimics the evaporation
of natural pheromones such that after each iteration, all the
pheromone values in the pheromone table are reduced by a
very small amount.

C. Output of Subsystem Grouping

At the end of the ACO algorithm, each subsystem Si is
assigned a coordinate (xi, yi), indicating its position on the
target FPGA. A standard data clustering technique such as
Mean Shift Clustering [27] is used next to identify subsystem
groups. For example, seqant and xant in Figure 6a shows a
traversal solution for the subsystem graph in Figure 1. The
traversal seqant and xant are used in extracting the shape
(w, h) and the vertical coordinate(y) of each subsystem using
the methods explained earlier. Figure 6b shows the created
solution on the target FPGA. Using the Mean Shift Clustering
algorithm, the (x, y) coordinates of each subsystem in the
solution are used to identify the subsystem groups i.e. Group
{S1} and Group {S4, S3, S2} for this sample application. The
pre-processing step discussed in this section is utilized in the
next section for the final subsystem mapping phase.

V. SUBSYSTEM MAPPING

The second phase of the proposed methodology finds a
specific rectangular FPGA region (shape and location) for each
subsystem as described in the following.

A. Problem Formulation

There are four inputs required by this phase:
(i) Information about the application: Subsystem graph G =
{V,E}, as previously discussed.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 7

S1
𝑇′𝑆1 =

{𝜏𝑓𝑝1,1,
′ 𝜏𝑓𝑝1,2

′ , … } S4
𝑇′𝑆4 =

{𝜏𝑓𝑝4,1,
′ 𝜏𝑓𝑝4,2

′ , … }

S2
𝑇′𝑆2 =

{𝜏𝑓𝑝2,1,
′ 𝜏𝑓𝑝2,2

′ , … }
S3

𝑇′𝑆3 =
{𝜏𝑓𝑝3,1,

′ 𝜏𝑓𝑝3,2
′ , … }

𝜏1,4|τ4,1

𝜏1,3|τ3,1 𝜏2,4|τ4,2𝜏1,2|τ2,1 𝜏3,4|τ4,3

𝜏2,3|τ3,2

Fig. 7: Complete graph Gc respective to graph G.

(ii) Subsystem groups: GP = {gp0, gp1, ..., gpm} (identified
in Section IV), where each group gpi is subset of nodes
Si ∈ G

(iii) Set of footprint lists: L = {lS0 , lS1 , ..., lSN } , where
each list lSi contains n variations of footprints lSi =
{fpi,0, fpi,1, ..., fpi,n} of subsystem Si. A footprint (rect-
angular region on FPGA) can be represented as a tuple
fpSi,j = {xi,j , wi,l, hi,j}, where x is the bottom left
horizontal coordinate of the footprint, w and h are width
and height of the footprint.

(iv) Set of lists with estimated performance of each foot-
print: F̂ = {f̂S0

, f̂S1
, ..., f̂SN }, where each list f̂Si =

{fi,0, fi,1, ..., fi,n} consists estimated performance of re-
spective footprints of subsystem Si, where fi,j represents
the estimated performance of the footprint fpi,j .The esti-
mated performance of the footprint can be considered as
the preference level of the footprint.
Each footprint list lSi is sorted in descending order based
on respective estimated performance fi,j . The footprint
lists are generated using a target FPGA device character-
ization model, as proposed in [10].

Given the above inputs, the subsystem mapping problem
is to select a footprint fpi,j from each footprint list lSi .
The footprint selection should minimize a cost function while
resolving footprint overlaps. Similar to the subsystem grouping
in Section IV, subsystem mapping is modeled as a TSP as
follows. The subsystem graph G is transformed into a complete
graph Gc = {V ′, E′} as shown in Figure 7. Each node in
V ′ is the same as V in G and has a list of footprints that
are associated with the respective subsystem. An edge e′i,j
in E′ represents an event of choosing subsystem Sj after Si.
Therefore, there is an edge from each node to all the others
nodes in the complete graph. An edge e′i,j (between nodes
Si and Sj) is associated with a probabilistic value, where a
higher value indicates higher likelihood of choosing Sj after
Si. In addition, footprints in all the nodes carry a probabilistic
value, where a higher value represents a higher preference of
selecting the footprint fpi,j from the respective footprint list
lSi . The aim of the TSP is the following;

• find a route to visit each node in Gc
• select one footprint from each node to form a set of

footprints with minimum cost

The order in which the footprints are mapped onto the FPGA
is determined by the sequence of node traversal.

B. Subsystem Mapping using Ant Colony Optimization

The TSP model discussed above is solved using Ant Colony
Optimization (ACO). However, the TSP variant differs from
typical TSP because of the values associated with the nodes in
addition to the edges. Therefore, a modified version of ACO
is applied to the subsystem mapping problem. In the proposed
ACO technique, two types of pheromones (probabilistic val-
ues) have been used to represent the edge and node costs.

Algorithm 2 describes the proposed subsystem mapping
algorithm. RUN ACO() is similar to RUN ACO1 () in Al-
gorithm 1. In each iteration, a new population of artificial ants
produce a number of solutions by traversing Gc and selecting
a footprint for each node in V ′. The probabilistic values in
the nodes and the edges are represented as pheromones. The
best solution in the current ant population, Qcurr best , and
the overall best solution, Qhist best , increase the respective
pheromones on the corresponding nodes and edges along
the solution path. Once the termination condition is satisfied,
Qhist best is returned as the solution to the footprint placement
problem (line 24).

a) Pheromone Initialization: To promote solutions with
lower cost, pheromones are introduced to the edges and nodes
as shown in Figure 7. An edge in Gc, e′i,j (between nodes
Si and Sj), carries a pheromone value τi,j which shows
the likelihood of choosing Sj after Si. In addition to the
pheromone representation in a typical ACO, a second degree
pheromone list for each node in G′, which is represented as
T ′Si = {τ ′fpi,1 , τ ′fpi,2 , ..., τ ′fpi,n}, is included. The second
degree pheromone, τ ′fpi,j , represents the likelihood of choos-
ing the respective footprint, fpi,j , from the list lSi for the
subsystem Si.

In INIT () (line 2), the edge pheromones τi,j are initialized
to have the same value, whereas, the second degree pheromone
values τ ′i,j are interpolated based on the performance of
the respective footprint. A footprint variation with higher
performance (close to preference level 1) is promoted to
be selected. The following interpolation relation is used for
initializing second order pheromones.

τ ′i,j = 0.2 + 0.6× fi,j − fi,n
fi,1 − fi,n

(4)

It should be noted that lSi is an ordered list where fpi,1
and fpi,n are the footprint with highest and the lowest
performance, respectively.

b) Traversing: In procedure TRAVERSE ANT (), each
ant in the current population (iteration) traverses through each
node of Gc exactly once and the order of the nodes is referred
to as a sequence. The first node of the sequence is randomly
selected from Gc (lines 27–28). Grouping information has
been used in selection the next node in the sequence. A
temporary complete graph, Gc′ is updated at every node se-
lection in MODIFY PHEROMONES () in order to promote
node selection from the same subsystem group (line 32). It is
achieved by increasing the edge pheromone values of the edges
from the last selected node to the nodes in the same group
by 50%. For instance selecting S3 in Fig. 1 increases edge
pheromones τ3,2, τ3,4 in Gc′ as subsystems S2 and S4 are in

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 8

Algorithm 2 Ant Colony Optimization based algorithm for
subsystem mapping.
1: procedure RUN ACO(G,Gc, L,GP)
2: INIT()
3: Qhist best ← Qinit

4: hist best←MAX
5: while stopping criteria == FALSE do
6: Qcurr best ← Qinit

7: curr best ← MAX
8: for each ant ∈ ANTS do
9: seqant ← TRAVERSE ANT(G′,GP)

10: fpsant ← SELECT FOOTPRINTS(G′, L,GP, seqant)
11: fpsant ← RESOLVE OVERLAPS(fpsant)
12: if fpsant .isV alid() == FALSE then
13: continue
14: costant ← COST(G, fpsant)
15: if costant < curr best then
16: curr best ← costant
17: Qcurr best ← fpsant
18: UPDATE PHEROMONE(Gc, seqant , fpsant)

19: if costant < hist best then
20: hist best ← costant
21: Qhist best ← fpsant
22: UPDATE PHEROMONE(Gc, seqant , fpsant)

23: DECAY PHEROMONE(Gc)

24: return Qhist best

25:
26: procedure TRAVERSE ANT(Gc,GP)
27: rand ← RAND(1, N)
28: seq.append(Srand)
29: Gc′ ← Gc
30: for i = 1 to N-1 do
31: gp ← GET GROUP(seq[i],GP)
32: MODIFY PHEROMONES(Gc′, gp)
33: sumτ ←

∑
τseq[i],j ∀j∈Gc′,j /∈seq

34: rand ← RAND(0, sumτ)
35: for all j ∈ Gc′, j /∈ seq do
36: cummuτ ← cummuτ + τseq[i],j
37: if cummuτ ≥ rand then
38: seq.append(Srand)
39: break
40: return seq
41:
42: procedure SELECT FOOTPRINTS(Gc, L,GP, seqant)
43: L′ ← L
44: for all s ∈ seqant do
45: gp ← GET GROUP(s,GP)
46: sumτ′ ←

∑
τ ′s,j ,1≤j≤n, j∈l′s

47: rand ← RAND(0, sumτ′)
48: for j = 1 to n do
49: cummuτ′ ← cummuτ′ + τ ′s,j j∈l′s
50: if cummuτ′ ≥ rand then
51: fpsant .append(fps,j)
52: MODIFY SECOND PHEROMONE(L′, gp, fps,j)
53: break
54: return fpsant
55:
56: procedure RESOLVE OVERLAPS(fpsant)
57: for all fpj ∈ fpsant do
58: for all fpi ∈ fpsant | i < j do
59: if fpi.overlaps(fpj) == TRUE then
60: yj ← yj + get vertical shift()
61: i = 1
62: return fpsant
63:
64: procedure UPDATE PHEROMONE(Gc, seqant , fpsant)
65: for i = 1 to N-1 do
66: τi,i+1 ← τi,i+1 + ετ

67: for all fp ∈ fpsant do
68: τ ′fp ← τ ′fp + ετ′fp

the same group as S3. Next, a cumulative random distribution
is constructed using the edge pheromone values of the edges
from the last node in seq to nodes which are not in seq.
A random number (rand) between 0 and the maximum of
the cumulative random distribution (sumr) is generated, and
then an edge is determined using the random number as a
cutoff point in the distribution (lines 33-38). This process is
continued until seq is build with all the nodes in Gc.

After traversing all the nodes in the graph Gc, a foot-
print from each footprint list lSi in seq is selected in
SELECT FOOTPRINTS (). Footprint selection is based on
the cumulative spectrum of the secondary pheromone τ ′i,j
(lines 46-51). We use a footprint promoting technique to pro-
mote nearly footprints for subsystems in the same subsystem
group. For instance, if footprint fp3,10 is chosen for subsystem
S3, the second degree pheromone levels in footprint lists for
S2 and S4 are updated such that, pheromones associated with
the footprints that are closer to fp3,10 are increased by 50%.
This selection is repeated until a footprint from every node
in seq is chosen and appended to the footprint list of the
current ant fpsant . The footprint sequence fps generated by the
above process may include overlapping footprints. Therefore,
we use a simple technique in RESOLVE OVERLAPS ()
to resolve such overlaps based on the priority level of
footprints. The same cost function used in the subsystem
grouping phase, equation 2, is used in this phase as well.
It is noteworthy that vertical shifting of the footprints in
RESOLVE OVERLAPS () may shift footprints beyond the
device boundaries. Therefore, such invalid mappings are dis-
carded (lines 12-13).

c) Pheromone Update and Decay: In the
UPDATE PHEROMONES () process, the pheromone
values τi,j of the solution path edges of seqant and respective
secondary pheromones of the footprint entries in fpsant are
incremented by ετ and ετ ′ respectively. The increment values
are given in equations 5 and 6. The first value is equal to the
half of the average edge pheromone values in Gc and the
latter is equal to half of the average secondary pheromone
values in the pheromone list respective to the footprint.

ετ =
1

2
×

∑
e′∈E′

τe′/(N × (N − 1)) (5)

ετ ′fp =
1

2
×

∑
∀fpi,j∈T ′Si

τ ′i,j/N where fp ∈ lSi (6)

After all the ants in the current population finish their
traversal, all the edge pheromone values are reduced by a small
constant to mimic the evaporation of pheromones (line 23). In
the next iteration, a new ant population is created and all the
aforementioned steps are repeated. This process is continued
until the stopping criteria, i.e. maximum number of iterations,
is satisfied.

C. Footprint Locking for Rapid Convergence

As the application size grows, the number of subsystems
also increases, causing the ACO algorithm to consider a large
number of footprint list entries. Typically, ACO requires a long

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 9

CLBs BRAMs DSPs

𝑆1 𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8 𝑆9

𝑆10

𝑆11

𝑆12

Disjoint Groups

Fig. 8: Suboptimal mapping solution example.

CLBs BRAMs DSPs

A

B

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

Fig. 9: Subsystem locking example.

runtime to converge to an optimal solution and the probability
of converging to a non-optimal solution increases with the
problem size [28]. Figure 8 shows an example of converging to
a sub-optimal mapping solution with a floorplan with mapped
subsystem footprints. The footprints of subsystems S6 to S12

are placed tightly as a group while the rest of the footprints
are placed away from this group. This limits the opportunity
for global optimization to reduce overall communication for
the entire application. Therefore, in this section we discuss
techniques to improve the quality of the solution provided by
the ACO based subsystem mapping methodology.

After the first run of the ACO algorithm, we observe the
footprint mapping solution on the target FPGA and identify the
footprints which are placed in close proximity. Such footprints
are locked in order to preserve close placement, and the
subsystem mapping technique (phase 2) is re-run. These steps
are repeated until there are no subsystems to be locked.

Candidate subsystems, which are suitable for footprint
locking, are identified using the following criteria. First, the
subsystems that are placed at a close proximity are identified.
A rectangular bounding box (BB) is then defined around such
footprints as shown in Fig. 9. However, the area covered by
a bounding box should not be much larger than the total area
covered by the individual footprints. In other words, locked
footprint area should not include large empty areas. We use
the following relationship to evaluate candidate subsystems:

∑
fpi∈BB

hi × wi ≥ (δlock ×Area of the BB) (7)

Here the constant δlock (< 1) is found empirically and is
close to 1. Identification of subsystems for locking is shown
in LOCK () in Algorithm 3 (line 4), along with the overall
flow of the mapping algorithm. We start with subsystem
grouping (line 1) in order to obtain grouping information.
Then, the ACO is run iteratively, as long as subsystem locking
produces locked footprints, Lnew (Lines 3 through 9). Once
the candidate subsystems for locking are identified, we update
the respective subsystems in the subsystem graph G such that
the respective subsystems for locked footprints are merged,
and the edges in G are updated with new connections from/to
locked subsystems and with updated inter-subsystem commu-
nication. The updated subsystem graph is stored as Gnew and
accordingly a new complete graph Gcnew is also created.

Algorithm 3 Overall execution of mapping algorithm (with
subsystem locking).
1: Qinitial ← GROUPING(G)
2: while true do
3: Q← RUN ACO(G,Gc, L,Qinitial)
4: (Gnew , Gcnew , Lnew)← LOCK(Q)
5: if Lnew == L then
6: break
7: G← Gnew

8: Gc ← Gcnew
9: L← Lnew

10: return Q

VI. IMPLEMENTATION

A. Integrating Subsystem Mapping into the CAD Flow

In this section, we discuss the integration of the proposed
subsystem methodology for large FPGA designs into a com-
mercial CAD flow. We have chosen Altera Quartus and the
Altera Incremental Compilation flow [29]. However, we have
also verified that it is implementable using the Xilinx flow [30]
too. We have also integrated the subsystem generation tech-
nique [9] and subsystem performance estimator [10] in order
to have a seamless flow. The integrated framework is shown
in Fig. 10 and consists of 5 major steps.

a) Extract Parameters: The input to the framework is a
Register Transfer Level (RTL) representation of a design. The
parameters such as area of design entities and communication
frequencies between entities are extracted by performing RTL
synthesis followed by RTL Simulation. RTL code is processed
to obtain a graph representation of entity connections.

b) Subsystem Generation: RTL entities are partitioned to
form subsystems based on the communication between RTL
entities as described in [9]. The size of subsystems is limited to
have profitable subsystems which accumulate entities to max-
imize intra-subsystem communication while inter-subsystem
communication is minimized. However, exploring different
subsystem sizes is out of the scope of this work. The output of
the subsystem generation process is a list of subsystems (G)
and the enclosed RTL entities of each subsystem.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 10

RTL

Synthesis

RTL

Simulation

RTL

Design

Communication-aware

Partitioning Algorithm

LogicLock

Configuration

Quartus

Compilation

Subsystem Generation

Extract Parameters

Extract

Connection

Information

Compilation

Communication
Freq. 𝛼𝑖

Two phase Subsystem Mapping

Subsystem Grouping

Incremental

Compilation

Connection

Info. of

Modules

Area Info.

(𝑙𝑖 ,𝑚𝑖 , 𝑑𝑖)

Candidate Footprints
{ 𝑥0,0,𝑤0,0, ℎ0,0 , 𝑥0,1, 𝑤0,1, ℎ0,1 , … }

{ 𝑥1,0, 𝑤1,0, ℎ1,0 , 𝑥1,1, 𝑤1,1, ℎ1,1 , … }

{ 𝑥𝑁,0, 𝑤𝑁,0, ℎ𝑁,0 , 𝑥𝑁,1, 𝑤𝑁,1, ℎ𝑁,1 , … }

Subsystem

Parameters
𝑐0, 𝑐𝑝0
𝑐1, 𝑐𝑝1
𝑐𝑁, 𝑐𝑝𝑁

Subsystem Information

𝑠𝑢𝑏𝑠𝑦𝑠0 = 𝑣𝑎 , 𝑣𝑏, . . 𝑥0 , 𝑦0 , 𝑤0 , ℎ0
𝑠𝑢𝑏𝑠𝑦𝑠1 = 𝑣𝑖, 𝑣𝑗, . . 𝑥1 , 𝑦1 , 𝑤1, ℎ1

𝑠𝑢𝑏𝑠𝑦𝑠𝑁 = 𝑣𝑝, 𝑣𝑞, . . {𝑥𝑁 , 𝑦𝑁 , 𝑤𝑁, ℎ𝑁}

Subsystem Information(𝑮)
𝑠𝑢𝑏𝑠𝑦𝑠0 = 𝑣𝑎, 𝑣𝑏, …

𝑠𝑢𝑏𝑠𝑦𝑠1 = 𝑣𝑖, 𝑣𝑗, …

𝑠𝑢𝑏𝑠𝑦𝑠𝑁 = {𝑣𝑝, 𝑣𝑞, … }

Map on

FPGA

Sorted Footprint Lists (𝑳)
{ 𝑥0,0,𝑤0,0, ℎ0,0, 𝑓0,0 , 𝑥0,1,𝑤0,1, ℎ0,1, 𝑓0,1 , … }

{ 𝑥1,0, 𝑤1,0, ℎ1,0, 𝑓1,0 , 𝑥1,1, 𝑤1,1, ℎ1,1, 𝑓1,1 , … }

{ 𝑥𝑁,0, 𝑤𝑁,0, ℎ𝑁,0, 𝑓𝑁,0 , 𝑥𝑁,1, 𝑤𝑁,1, ℎ𝑁,1, 𝑓𝑁,1 , … }

Module Performance

Estimator

Footprint List Generation

Subsystem Mapping

S
u
b
sy

st
em

 R
e-

g
en

er
a
ti

o
n
 (

S
p
li
tt

in
g
)

L
o
ck

in
g

Fig. 10: Implementation of proposed subsystem mapping technique.

c) Footprint List Generation: The subsystems are then
isolated and separately compiled in order to obtain subsys-
tem specific parameters (required by the estimator in [10]);
number of connections (ci) and default critical path (cpi) for
each subsystem Si. These parameters are constant for all the
footprints of a given subsystem.

Next, the candidate footprints are inferred using the re-
source requirement (li,mi, di) of each subsystem. A candidate
footprint has 3 parameters; bottom left horizontal position
of the rectangular shape on target FPGA (x), width (w)
and height (h) of the rectangular region. For an arbitrary
location xi on the target FPGA, we can derive a list of
rectangular shapes on the target FPGA which satisfies the
are requirement (li,mi, di). We can extend the same idea at
many xi to obtain candidate footprints for all subsystems Si
as {(xi,0, wi,0, hi,0), (xi,1, wi,1, hi,1)...}. To avoid generating
a large number of candidate footprints, we select xi with
intervals instead of considering all possible xi, especially for
larger FPGAs. Typically the intervals in horizontal coordinate
xi are small (i.e. less than 3) and are applicable only if there
are no large differences in estimated performance.

Extracted subsystem parameters and corresponding candi-
date footprint lists are provided to the module performance
estimation engine proposed in [10]. The module performance
estimator outputs the estimated performance (Fmax) for each
candidate footprint. Footprint list (L) for each subsystem is
then obtained by annotating estimated performance (f) to
respective candidate footprint parameters. Footprint lists are
also sorted in descending order of estimated performance.
It is noteworthy that use of module performance estimator
obsoletes the large module database in typical MDM flows,
which consists of modules pre-compiled at many different
locations.

d) Two Phase Subsystem Mapping: The proposed
methodology then takes subsystem information (G) from the
subsystem generation step and corresponding footprint lists
(L) from the previous step, to select the best set of footprints.
The integration illustrated in Fig. 10 also shows a mechanism

for subsystem re-generation after the two phase mapping
process is done, and is discussed in the next sub-section.

e) Compilation: The output of the previous step is the
subsystem lists and their footprint on FPGA. These parameters
are then fed into the LogicLock feature in the Quartus tool.
LogicLocks implement the actual subsystems and footprints on
the target FPGA. After that, the Quartus compiler is invoked
to generate the bitstream.

B. Splitting Subsystem by Subsystem Regeneration

CLBs BRAMs DSPs

𝑆1

𝑆2

𝑆3

𝑆4 𝑆5

𝑆6

𝑆7, 𝑆8
𝑆9

𝑆10, 𝑆11

𝑆12

Unused FPGA

Space

20

14

Aspect Ratio=1.43

Fig. 11: Unused FPGA resources during subsystem mapping.

Despite the effectiveness of the proposed subsystem map-
ping technique, we have observed that some of the footprints
obstruct better mappings of subsystems, leading to un-utilized
space between subsystems. For instance, consider the solution
in Fig. 11 which is obtained by the proposed technique for
the test application atax′. The footprint S2 in the mapping
solution is wider than the empty space below the footprint,
leaving the FPGA area below the subsystem unused. It is
important to note that the proposed two phase subsystem
mapping approach is a deterministic approach that converges
to the best solution for given subsystems. Hence, to overcome

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 11

this issue, mapping subsystems to different footprints (with
different size and placement) does not guarantee a performance
and power optimized mapping.

A subsystem splitting technique that changes the compo-
sition of the subsystems is followed in order to overcome
such footprints. As shown in Fig. 11, footprint obstruction
typically happens due to odd-shaped footprints. We identify
these footprints by considering their aspect ratios. First we
calculate the average aspect ratio (AR) of all the footprints as
follows.

ARSi =
max (wSi , hSi)

min(wSi , hSi)
(8)

where wSi and hSi represent the width and the height of the
footprint Si respectively. If the average and standard deviation
of aspect ratios of the footprints are found AR and σAR

respectively, the odd footprints are then identified as follows:

oddfootprint =

{
1, if ARSi > AR + σAR

0, otherwise

Next we calculate the whitespace area below each odd
footprint. The odd footprint with largest whitespace area below
it is identified as the an eligible footprint for the splitting
process. For instance, footprint S2 in Fig. 11 is identified as
an eligible footprint. Eligible subsystems are first re-iterated
through the subsystem generation step with a tighter area
constraint in order to re-generate smaller subsystems. The
candidate footprint list for the new re-generated subsystems
are then obtained using the module performance estimator
as discussed in Section VI. The new footprint list and the
subsystem information is then provided to the subsystem gen-
eration and mapping (two phase subsystem mapping approach)
techniques in order to select the best set of footprints for the
regenerated subsystems. It should be noted that the footprints
of non-eligible subsystems are not changed.

VII. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the design
methodology we have proposed. The evaluation is done using
Intel FPGAs and the Intel Quartus Prime 17.1 CAD flow.
The methodology can be adapted to work with other vendor
tools. The effectiveness of the methodology is assessed for two
parameters: (i) routing power dissipation and (ii) achievable
frequency of the final compiled design on the FPGA. Power
values are obtained using Quartus PowerPlay power estima-
tion, using signal interaction data from a gate level simulation
for accuracy. The achievable frequency for each design is
extracted from the Quartus timing report after a successful
placement and routing.

We used 8 benchmark applications for the evaluation step.
The test applications are created to demonstrate the properties
of large applications, using existing benchmark suites such as
Polybench [31]. We have also tested on three different FPGAs
from two families: the EP4CGX50 and EP4CGX110 from the
Intel Cyclone 4 family, and the EP4SGX70 from the Intel
Stratix 4 family. The resource requirements of the benchmark
applications are show in Table I.

TABLE I: Resource Requirement of Benchmark Applications

Application Logic Cells BRAMs DSPs

Synth1 22,438 80 80
Synth2 22,427 80 80
Synth3 23,566 84 84
atax’ 64,169 160 160
bicg’ 61,833 200 200
gesummv’ 50,509 160 160
cholesky’ 75,004 120 120
symm’ 68,504 120 120

9
.1

%

1
4
.3

%

1
6
.0

%

9
.1

%

1
0
.1

%

6
.9

% 8
.3

% 1
0
.0

%

1
7
.3

%

2
4
.7

%

2
1
.6

%

1
0
.7

% 1
2
.8

%

9
.7

%

1
0
.6

%

1
0
.8

%

0%

4%

8%

12%

16%

20%

24%

28%

Synth1 Synth2 Synth3 atax' bicg' gesummv' cholesky' symm'
R

O
U

T
IN

G
 P

O
W

E
R

 R
E

D
U

C
T

IO
N

Over [8]

Over Quartus

Fig. 12: Routing power reduction over [9] and Quartus.

A. Evaluation of Subsystem Grouping and Mapping Technique

First, the routing power dissipation of benchmark appli-
cations, as achieved by following proposed methodology,
is compared with routing power obtained by the following
techniques:

1) Quartus: The first comparison is made against the com-
mercially available Quartus tool version 17.1. Here, we
compile the design using the Quartus CAD flow that
does not consider any communication information of the
design.

2) A subsystem generation technique in [9]: In this tech-
nique, subsystems are created using a communication-
aware design partitioning technique to minimize power
dissipation through minimization of intra-subsystem com-
munication. This methodology does not produce place-
ment constraints, but rather, placement is decided by
Quartus flow.

Fig. 12 shows the percentage power reduction using the
proposed technique. The proposed methodology outperforms
Quartus by a significant margin, reducing routing power on
average by over 14%, ranging from 9.7% to 24.7%. This
has been achieved by effectively ensuring shorter interconnect
wires for high communication links as well as considering
the heterogeneity of the FPGA. Additionally, an average
improvement of about 11.0% (ranging from 6.9% to 16.0%) is
also achieved over the communication-aware subsystem gen-
eration technique in [9]. The subsystem generation technique,
only considers the intra-subsystem communication. However,
depending on the application, there can still be links with
high inter-subsystem communication. Hence, inter-subsystem
communication-aware subsystem placement, as proposed in
this paper, is critical to achieve further power savings.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 12

TABLE II: Runtime Analysis of Subsystem Mapping

Application
Runtime of the Technique (sec)

Reduction (%)
w/o Grouping with Grouping

Synth1 1007 254 74.8
Synth2 969 235 75.7
Synth3 658 193 70.7
atax’ 491 170 65.4
bicg’ 669 204 69.5
gesummv’ 795 212 73.3
cholesky’ 693 218 68.5
symm’ 824 221 73.2

8
5
.8

7

8
8
.6

8

8
8
.0

6

3
2
0
.0

1

3
3
2
.6

2

1
1
4
.8

5

2
3
9
.8

1

1
4
6
.9

7
1
.4

6

6
7
.8

5

7
0
.5

2

2
8
7
.5

2

2
9
2

1
0
3
.8

2
1
5
.3

8

1
3
1
.1

8

7
1
.0

4

6
6
.8

2

6
9
.0

5

2
8
5
.8

3

2
8
9
.9

1
0
3
.7

1

2
1
4
.4

4

1
3
1
.1

0

50

100

150

200

250

300

350

Synth1 Synth2 Synth3 atax' bicg' gesummv' cholesky' symm'

R
O

U
T

IN
G

 P
O

W
E

R
 (

/
m

W
)

Quartus

Mapping w/o Grouping

Mapping w Grouping

Fig. 13: Effect of grouping technique on routing power.

It is important to note that the proposed methodology does
not change application characteristics or the compilation flow.
Hence, the FPGA resource consumption as well as static power
consumption remain unchanged. It has been observed that
the routing power is a dominant component in total power
dissipation for most applications. For instance, routing power
dissipation of all but one benchmark applications tested here,
ranges from 33% to 45% of total power dissipation. Only
the gesummv’ application has a relatively low routing power
dissipation of about 15% of its total power.

Secondly, the effectiveness of using the subsystem grouping
technique discussed in Section IV during pre-processing is
discussed. We compare the runtime of subsystem mapping
methodology with and without incorporating the subsystem
grouping. In Table II, the runtime of the proposed methodol-
ogy with and without integrated subsystem grouping technique
is shown. The average runtime of the two phase methodology
(with grouping) is considerably decreased by over 70% when
the solutions obtained from subsystem grouping technique is
used to reduce the subsystem mapping problem size. As shown
in Fig. 13, integrating grouping information in subsystem
mapping has not changed the effectiveness of the proposed
footprint mapping in reducing routing power, despite the
considerably lower runtime.

Fig. 14 shows the performance of benchmark applications
achieved using default Quartus compilation, our preliminary
subsystem mapping technique in [11] and using our sub-
system mapping methodology with proposed modifications.
It is evident that our methodology marginally improves fre-
quency while significantly reducing power dissipation. Test
applications we have chosen for evaluation demonstrate the

143.02 142.35 143.02

90.24

84.9

192.83

85.76

58.38

99.96 96.78 99.17

83.76

88.94

167.34

80.97

51.56

146.87
149.97

146.27

97.66 92.15

193.24

90.37

59.56

0

20

40

60

80

100

120

140

160

180

200

Synth1 Synth2 Synth3 atax' bicg' gesummv' cholesky' symm'

F
.M

a
x
 (

M
H

z)

Default Quartus Preliminary Version (Ref [5]) Proposed Methodology

Fig. 14: Effect of grouping technique on Fmax .

1
7
.3

%

2
4
.7

%

2
1
.6

%

1
0
.7

%

1
2
.8

%

9
.7

%

1
0
.6

%

1
0
.8

%

2
3
.9

%

3
1
.4

%

2
5
.8

%

1
3
.1

%

1
4
.9

%

9
.7

%

1
0
.6

%

1
0
.8

%

2
6
.8

% 3
1
.4

%

2
8
.7

%

1
4
.9

%

1
7
.4

%

9
.7

% 1
1
.6

%

1
0
.8

%

0%

5%

10%

15%

20%

25%

30%

35%

Synth1 Synth2 Synth3 atax' bicg' gesummv' cholesky' symm'

R
O

U
T

IN
G

 P
O

W
E

R
 R

E
D

U
C

T
IO

N

Mapping w Grouping

 w Locking

 w Locking and Splitting

Fig. 15: Routing power reduction due to footprint locking and
subsystem splitting.

qualities of large application, so the default Quartus compila-
tion produces solutions with degraded power. On the other
hand, typical MDM techniques we discussed in Section II
improve the design productivity but are inferior in terms
of performance compared to non-MDM flows. The reason
for low performance is because creating subsystems removes
global information and optimization across subsystems cannot
performed. However, the proposed methodology uses inter-
subsystem connection details to preserve overall performance,
while optimizing power dissipation.

B. Evaluation of Footprint Locking and Subsystem Splitting.

Fig. 15 shows the percentage routing power reduction over
Quartus using (i) the subsystem mapping technique with
grouping, (ii) the subsystem mapping technique with footprint
locking, and (iii) the complete proposed methodology with

TABLE III: Compilation Time of Subsystem Mapping

Application
Quartus
(/hours)

Proposed Technique

Processing
(/min)

Compilation
(/hours)

Total
(/hours)

Synth1 1.43 8.0 1.60 1.73
Synth2 1.20 7.7 1.80 1.93
Synth3 1.20 7.0 1.75 1.87
atax’ 2.23 11.0 2.30 2.48
bicg’ 2.58 11.1 2.88 3.07
gesummv’ 2.18 11.3 2.40 2.59
cholesky’ 2.42 11.5 2.75 2.94
symm’ 2.38 11.5 2.62 2.81

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 13

subsystem splitting. Introducing the footprint locking tech-
nique to the subsystem mapping methodology has resulted in
further improvement of the average routing power reduction
over Quartus from 14.8% to 17.5%. It should be noted that
some applications may not produce footprints that are eligible
for subsystem locking. For instance, subsystem locking is
not possible with the applications gesummv’, cholesky’ and
symm’. Splitting further improves the average routing power
reduction to 18.9%. However, the splitting technique has
not found eligible subsystems for subsystem regeneration for
applications Synth2, gesummv’ and symm’. Therefore, the
power dissipation for these applications remains the same.
The maximum reduction reported is 31.4% compared to the
Quartus flow.

Finally, a comparison of Quartus compilation time (without
subsystems) and the total runtime of the proposed subsystem
mapping technique is shown in Table III. There are two
contributing factors to the runtime of proposed technique: (i)
Processing time overhead due to footprint list generation and
running subsystem mapping algorithm – (shown in column
3) and (ii) Compilation with subsystem information using
standard CAD tools – (shown in column 4). As is evident
from Table III, total runtime of the proposed technique is
only marginally higher than the compilation time of Quartus
without subsystems.

VIII. CONCLUSION

In this paper we have presented a methodology for placing
modules in large FPGA designs. It uses a modified version of
Ant Colony Optimization to place module footprints minimiz-
ing long distance communication. Footprint placement is done
by selecting the most appropriate set of footprint versions for
each module from different variations of footprints in order
to utilize the heterogeneous resource column arrangement
in modern FPGAs. Selecting better footprints ensures the
resource column arrangement within the footprint is efficient
for better allocation of intra-module communication. Footprint
location minimizes the distance between modules with high
inter-module communication. We have introduced a footprint
merging process and footprint splitting by re-iterating module
creation (design partitioning). Further improvements to the
methodology reduced routing power by 6.5% on average.
As compared to standard Intel Quartus compilation, the new
methodology shows average routing power reduction of nearly
19% without a degradation in achievable frequency.

REFERENCES

[1] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First
Thirty Years of FPGA Technology,” Proceedings of the IEEE, 2015.

[2] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Towards uniformed representation and acceleration for deep convolu-
tional neural networks,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2018.

[3] Microsoft. (2020) Project Catapult. https://www.microsoft.com/en-
us/research/project/project-catapult/.

[4] Avnet Inc. (2020) Xilinx Automotive Solutions.
https://www.avnet.com/wps/portal/apac/products/automotive-
solutions/xilinx/.

[5] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz, “Reconfigurable
computing in next-generation automotive networks,” IEEE Embedded
Systems Letters, vol. 5, no. 1, pp. 12–15, 2013.

[6] G. Zhong, S. Niar, A. Prakash, and T. Mitra, “Design of Multiple-
target Tracking System on Heterogeneous System-on-chip Devices,”
IEEE Transactions on Vehicular Technology, 2016.

[7] J. Coole and G. Stitt, “BPR: Fast FPGA Placement and Routing Using
Macroblocks,” in Proceedings of the IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis, 2012, pp.
275–284.

[8] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm
Low-Power FPGA for Battery-Powered Applications,” in Proceedings
of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, 2006, pp. 3–11.

[9] K. Herath, A. Prakash, J. Guiyuan, and T. Srikanthan, “Communication-
aware Partitioning for Energy Optimization of Large FPGA Designs,”
in Proceedings of the on Great Lakes Symposium on VLSI, 2017, pp.
407–410.

[10] K. Herath, A. Prakash, and T. Srikanthan, “Performance Estimation
of FPGA Modules for Modular Design Methodology using Artificial
Neural Network,” in Proceedings of the International Symposium on
Applied Reconfigurable Computing, 2018, pp. 105–118.

[11] K. Herath, A. Prakash, J. Guiyuan, and T. Srikanthan, “Ant Colony Opti-
mization based Module Footprint Selection and Placement for Lowering
Power in Large FPGA Designs,” in Proceedings of the International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
2018.

[12] R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 7, no. 2,
pp. 284–305, 2002.

[13] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping,” in Proceedings of the International
Symposium on Field-Programmable Custom Computing Machines, 2011,
pp. 117–124.

[14] T. Frangieh and P. Athanas, “A Design Assembly Framework for FPGA
Back-end Acceleration,” vol. 38, no. 8. Elsevier, 2014, pp. 889–898.

[15] K. Vipin and S. A. Fahmy, “Architecture-aware reconfiguration-centric
floorplanning for partial reconfiguration,” in Proceedings of the Inter-
national Symposium on Applied Reconfigurable Computing, 2012, pp.
13–25.

[16] F. Gharibian, L. Shannon, and P. Jamieson, “Identifying and Placing
Heterogeneously-sized Cluster Groupings based on FPGA Placement
Data,” in 2014 24th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2014, pp. 1–6.

[17] M. Rabozzi, J. Lillis, and M. D. Santambrogio, “Floorplanning for
Partially-Reconfigurable FPGA Systems via Mixed-Integer Linear Pro-
gramming,” in Proceedings of the International Symposium on Field-
Programmable Custom Computing Machines, 2014, pp. 186–193.

[18] K. Herath, A. Prakash, U. Kanewala, and T. Srikanthan,
“Communication-aware Module Placement for Power Reduction
in Large FPGA Designs,” in Proeedings of the IEEE Computer Society
Annual Symposium on VLSI, 2018, pp. 209–214.

[19] Y. Xiao, D. Park, A. Butt, H. Giesen, Z. Han, R. Ding, N. Magnezi,
R. Rubin, and A. DeHon, “Reducing FPGA Compile Time with Sep-
arate Compilation for FPGA Building Blocks,” in 2019 International
Conference on Field-Programmable Technology (ICFPT). IEEE, 2019,
pp. 153–161.

[20] N. Deak, O. Cret, and H. Hedesiu, “Efficient FPGA Floorplanning for
Partial Reconfiguration-Based Applications,” in 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2019, pp. 309–309.

[21] K. Lee and P. Athanas, “Shape exploration for modules in rapid
assembly workflows,” in Prodeeings of the International Conference on
ReConFigurable Computing and FPGAs (ReConFig), 2015, pp. 1–7.

[22] F. Mao, W. Zhang, B. He, and S.-K. Lam, “Dynamic module partitioning
for library based placement on heterogeneous FPGAs,” in Proceedings
of the International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2017.

[23] N. Mehta. (2011) Xilinx 7 Series FPGAs: User Guide Lite.
https://www.eetimes.com/xilinx-7-series-fpgas-user-guide-lite/.

[24] I. Corporation. Cyclone® V FPGAs. https://intel.ly/3fs2kKI.
[25] K. Vipin and S. A. Fahmy, “FPGA dynamic and partial reconfiguration:

a survey of architectures, methods, and applications,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–39, 2018.

[26] Y. Zhuo, H. Li, and S. P. Mohanty, “A Congestion Driven Placement
Algorithm for FPGA Synthesis,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, 2006.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. X, YYYYY 2021 14

[27] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp.
790–799, 1995.

[28] H. H. Mukhairez and A. Y. Maghari, “Performance comparison of
simulated annealing, GA and ACO applied to TSP,” International
Journal of Intelligent Computing Research, vol. 6, no. 4, 2015.

[29] “Increasing Productivity with Quartus II Incremental Compilation,”
https://goo.gl/uy225f.

[30] “Vivado Design Suite User Guide-Hierarchical Design,”
https://goo.gl/6bUqqD.

[31] L.-N. Pouchet, “Polybench: The Polyhedral Benchmark Suite,”
http://web.cs.ucla.edu/˜pouchet/software/polybench/.

Kalindu Herath received his B.S (Honours) degree
in Computer Engineering from the University of
Peradeniya, Sri Lanka, in 2011 and his PhD degree
from Nanyang Technological University (NTU), Sin-
gapore, in 2020. Currently he works as a Research
Fellow at Cyber Security Research Centre @ NTU.
His research interests include developing techniques
for mapping large applications on to modern hetero-
geneous FPGAs and identifying anomalies and faults
in systems using hardware assisted techniques.

Alok Prakash received his PhD degree from
Nanyang Technological University (NTU), Singa-
pore, in 2014. He is currently a senior research fel-
low with the School of Computer Science and Engi-
neering, NTU, where he leads a team of researchers
and PhD students in developing low cost camera-
based traffic law enforcement sensors under the
TUMCreate project. His research interests include
intelligent transportation systems, especially focused
on solving the first mile last mile issues as well as
low-cost and low-power embedded systems design

with particular emphasis in mapping complex computer vision applications
on modern heterogeneous mobile SoCs. His papers have been nominated for
best paper award in DAC 2016 and HEART 2018. He is a member of the
IEEE.

Suhaib A. Fahmy (M’01, SM’13) received the
M.Eng. degree in information systems engineering
and the Ph.D. degree in electrical and electronic
engineering from Imperial College London, UK, in
2003 and 2007, respectively.

In 2007 he became Research Fellow at Trinity
College Dublin and Visiting Research Engineer at
Xilinx Research Labs, Dublin. He joined Nanyang
Technological University, Singapore in 2009 as As-
sistant Professor in the School of Computer En-
gineering. In 2015, he moved to the University

of Warwick, UK, where he was Associate Professor then Reader in the
School of Engineering. He joined King Abdullah University of Science and
Technology (KAUST) in 2020 as Associate Professor in Computer Science.
His research interests include reconfigurable computing, compute acceleration
in a connected context, and high-level heterogeneous systems design.

Dr Fahmy was a recipient of the Best Paper Award at the IEEE Conference
on Field Programmable Technology in 2012, the IBM Faculty Award in 2013
and 2017, and the ACM TODAES Best Paper Award in 2019. He is a Senior
Member of the ACM and Chartered Engineer and Member of the IET.

Thambipillai Srikanthan joined Nanyang Tech-
nological University (NTU), Singapore in 1991. At
present, he is a Professor and the Executive Di-
rector of the Cyber Security Research Centre @
NTU (CYSREN). Prior to this, he was the Chair
of the School of Computer Engineering at NTU.
He founded CHiPES in 1998 and elevated it to a
university level research centre in February 2000.
He has published more than 250 technical papers.
His research interests include design methodologies
for complex embedded systems, architectural trans-

lations of compute intensive algorithms, computer arithmetic, and high-speed
techniques for image processing and dynamic routing.

