Lightweight Programmable DSP Block Overlay for
Streaming Neural Network Acceleration

Lenos Ioannou and Suhaib A. Fahmy
School of Engineering
University of Warwick, Coventry, UK
{lioannou, s.fahmy}@warwick.ac.uk

Abstract—Implementations of hardware accelerators for neu-
ral networks are increasingly popular on FPGAs, due to flex-
ibility, achievable performance and efficiency gains resulting
from network optimisations. The long compilation time required
by the backend toolflow, however, makes rapid deployment
and prototyping of such accelerators on FPGAs more difficult.
Moreover, achieving high frequency of operation requires sig-
nificant low-level design effort. We present a neural network
overlay for FPGAs that exploits DSP blocks, operating at near
their theoretical maximum frequency, while minimizing resource
utilization. The proposed architecture is flexible, enabling rapid
runtime configuration of network parameters according to the
desired network topology. It is tailored for lightweight edge
implementations requiring acceleration, rather than the highest
throughput achieved by more complex architectures in the
datacenter.

I. INTRODUCTION

The increasing efficacy of Neural Networks (NNs) has at-
tracted interest not only in improving their accuracy, but also in
accelerating this class of workloads for real time performance.
The inherent parallelism and computational regularity in NNs
have been taken advantage of in highly parallel computing
platforms, such as multicore CPUs and GPUs, and in custom
computing architectures on FPGAs and ASICs. The ease
of accelerating NNs in highly parallel computing platforms,
through the availability of a number of frameworks, coupled
with their fast compilation, have driven wider use of such
platforms. Custom computing architectures offer additional
advantages in terms of datapath and numerical representation
optimisations, offering improved energy efficiency, which in
turn makes them ideal for power-constrained platforms at the
edge, where multicore CPUs and GPUs are unlikely to be
suitable.

Numerous approaches and methodologies have been pro-
posed in order to bridge the gap between FPGAs and highly
parallel computing platforms. High Level Synthesis (HLS)
has contributed significantly in reducing accelerator design
time, but still requires a lengthy backend toolflow. In order
to automate the mapping of Convolutional Neural Networks
on FPGAs, a variety of toolflows have been proposed [1].
The majority of these take advantage of the higher abstraction
layer offered by HLS to also provide design space exploration,
resulting in hardware implementations tailored to user re-
quirements and platform capabilities. The Xilinx Deep Neural
Network Development Kit (DNNDK) is an example of a

vendor flow for accelerating NN inference on an accelerator
architecture on FPGAs.

Most FPGA-based NN architectures operate at significantly
lower frequencies compared to the capabilities of the DSP
blocks in modern FPGAs [2]. This results in less energy
efficient implementations as leakage is clock independent [3],
and has more impact on FPGAs at newer process nodes
where leakage current is more dominant. In contrast, FPGA
implementations that achieve high operating frequencies do so
at the expense of flexibility and thus modifications to network
topology or coefficients require a new compilation.

Overlays have been proposed as a way of enabling high level
programming with rapid compilation and predictable perfor-
mance on FPGAs. When designed in an architecture-centric
manner, overlays can achieve near the theoretical maximum
frequency supported by underlying FPGA architecture, while
scaling to large overlay sizes [4]. Meanwhile, compilation does
not involve the FPGA backend flow and so can be very fast,
lightweight and vendor independent.

II. RELATED WORK

Overlays enhance flexibility in custom computing archi-
tectures by forming a coarser grained abstraction on top of
the FPGA fabric and, as a result, reduce the long compi-
lation time required by the backend toolflow. Performance
can be more predictable as it is closely tied to the fixed
performance of functional units, and routing overhead can be
reduced by taking into account the regularity of the required
data movement [5]. The authors in [6] present a family of
overlay architectures and associated design methodology. By
using datapath merging, they minimise the added overhead to
support various computations while also providing optional ad-
justable flexibility through a secondary interconnect network.
Their experiments demonstrate faster runtime compilation and
reduced area utilization, though resulting in reduced operating
frequency due to the slower operators occurring in the same
context as faster ones. Further performance improvement in
overlays can be obtained when tailoring the architecture to
heavily take advantage of the high performance DSP blocks,
that are abundant in modern FPGAs [4].

More generic NN computing architectures, like the DPU
used by the DNNDK, offer a more balanced performance
acceleration-to-flexibility and area ratio. DNNDK includes
model compression, by using data quantization and prunning,

DSP Output
A

Output
Layer

Second
Hidden
Layer

Weights

Counter Reset e
Address | Address e
LUTRAM Counter o
Input e
To the next neuron -’

First
Hidden
Layer

Input
Layer

Fig. 1. Proposed neural network overlay architecture, mimicking the structure of the network.

to more efficiently process NN inference. Various optimisation
techniques have contributed to more efficient FPGA imple-
mentations of NNs [7]. In addition to the aforementioned
data quantization and prunning, binarization [8] and use of
fixed point representations have enabled faster and more
efficient implementations at the cost of a tolerable reduction
in inference accuracy.

Fully connected layer processing can become less efficient
on CPUs due to their memory intensive patterns. This was
demonstrated in an analysis conducted on AlexNet in [9]. Two
Intel Xeon E5-2650 CPUs running at 2.4GHz were used to
measure AlexNet’s Instructions Per Cycle rate (IPC). Fully
connected layers were the lowest, compared to the other layer
types, achieving an IPC rate of less than 1, due to cache
misses in all cache levels, causing a high number of stall
cycles to fetch data from memory. Hence, we see that data flow
optimisations are also important to fully reach the processing
potential of the computing unit.

III. IMPLEMENTATION

A. Overlay

The proposed overlay aims to take advantage of DSP
blocks capabilities, while also being flexible, allowing the
configuration of coefficients for rapid neural network iteration.
The overlay is also able to adjust its processing latency to the
required topology. It is tailored for deployment at the edge by
maintaining low resource utilization while operating at near
the theoretical maximum frequency of the platform. The latter
minimises the impact of clock independent leakage current,
resulting in improved energy efficiency. More specifically,
the overlay takes advantage of the efficient mapping of the
multiply-accumulate operation, the main computation in neural
networks, on DSP blocks. Instead of targetting peak perfor-
mance however, by fully taking advantage of the parallelism,
in this overlay, each neuron’s operation is mapped to a single
DSP block. As a result, each DSP block calculates its output
sequentially, thus enabling a flexible and programmable archi-
tecture. Moreover, by being able to operate at a relevantly high

frequency, the performance overhead is somewhat mitigated.
The proposed overlay architecture is depicted in Fig. 1.

The input data along with a valid signal stream into the
overlay serially. Each neuron receives a new input which is
subsequently passed to the next neuron in the same layer.
To allow this serial computing pattern to deal with a number
of neurons at one layer that is greater than the number of
layer inputs, data flow must be stalled for a number of clock
cycles as required by the network topology. Before receiving
any inputs, the overlay is configured by setting the number of
neurons used at each layer (the reset address for each layer),
when to stall and for how many clock cycles, along with
the network weights and biases. The weights are stored in
LUTRAMs while the rest of the configurations in registers.

After the overlay is configured, the input data flows into the
first layer, from neuron to neuron, along with a valid signal
that is used to enable the address counter. The address counter
increments accordingly and addresses the LUTRAM where the
weights are stored, feeding the corresponding weight of each
input to the DSP block. The counter resets when it reaches
its configured reset address, enabling the proposed overlay
to adjust its latency, and as a result its performance, to the
topology of the configured network. The address counter is
also used to alternate between two DSP opmodes. Instead
of resetting the accumulation register at the beginning each
iteration, the DSP block OPMODE changes to add the mul-
tiplication’s product to the bias (C input of the DSP block).
Avoiding, as a result, redundant additions with zero, replacing
them instead with the bias additions that would normally take
place after all the weighted inputs have been accumulated. For
the rest of the computation, a different DSP block OPMODE is
used to accumulate the product. When the address counter of a
neuron reaches its reset address, meaning that the computation
of the neuron has completed, a pulse is generated. The pulse
is delayed by three clock cycles for synchronization, and fed
to a state machine that generates the enable signal for the
first neuron in following layer. The enable signal subsequently
propagates from neuron to neuron similarly to the first layer.

Meanwhile, a multiplexer between two layers, addressed

z
total_stall_cycles

config N E

L Ao é > XOR AND en_out
L T-FF A 1\
l st
z
when_to_stop XOR AND
>
config

Fig. 2. Stall mechanism enabling variable sized networks to be implemented.

by the counter of the first neuron in the following layer,
selects the appropriate input from the previous layer. Each
input to the multiplexer is reduced from 48 bit, the output of
the DSP block, to 27, the input of the following DSP block,
by selecting the appropriate bit range according to the fixed
point representation used. The selected output is then passed
to another multiplexer that implements the ReLU activation
function, by checking whether the MSB is set to 1, and passing
the input to the next layer accordingly.

B. Stall Mechanism

To make the processing and data flow stall for a number
of clock cycles, we set accordingly the valid signal. The
stall mechanism, shown in Fig. 2, is configured externally
before processing takes place. The valid signal is connected
to the en_in port, while the rest of the ports, are connected to
the external component, i.e. the Arm core. The stall mech-
anism takes two 5 bit inputs along with their active high
configuration signals and stores their values to registers. The
total_stall_cycles input takes the total number of clock cycles
(processing cycles + stall cycles), while the when_to_stop
input takes the number of processing cycles.

The counter increments as long as en_in is active, which
means that input data flows to the accelerator. It resets
to zero when it is synchronously reset or when it reaches
the rotal_stall_cycles. The counter output is used to de-
tect whether it has reached the point where it has to stall
(count==when_to_stop) or whether it has reached the point
to stop stalling (count==total_stall_cycles). The output flip-
flop inverses its output accordingly, and combined with en_in,
controls when to stall the overlay. Where not needed, the stall
component can be disabled by setting both, when_to_stop and
total_stall_cycles, to the same value. This causes the XOR
gate not to generate an active pulse to trigger the T flip-flop.

C. Case Study

We used the datasets and networks in Table I, trained
using Tensorflow [10] to obtain the accuracies shown. These
were chosen to represent a range of application domains and
to match or exceed the complexity of NNs that have been
more widely targetted for acceleration, for instance in [11]
and [12]. The proposed overlay, designed for inference, does
not implement an activation function at the output layer,

TABLE I
CASE STUDY NEURAL NETWORKS CONFIGURATIONS.

Dataset NN Topology Train Entries Acc. Train Test Entries Acc. Test
Customer Churn 11-6-6-1 8000 84.26% 2000 82.95%
Diabetes 8-12-8-1 768 78.39% - -
Iris 4-10-10-3 120 98.33% 30 96.67%
Overlay 11-12-10-3

since the required comparisons can be more flexibly made in
software and raw outputs can used as feedback for fine-tuning.

The proposed overlay is tailored to the features of the
DSP48E2 block on the Zynq Ultrascale+ ZU7EV. This DSP
block comprises a 27x 18 bit multiplier with a 48 bit accu-
mulator/adder. After exploring the networks and datasets in
Python, we decided on a representation with 12 fractional bits
as it results in no accuracy reduction. The overlay uses 18
bit weights, 48 bit biases, which can be configured externally,
and 27 bit inputs. By analysing the topologies of the NNs
included in this case study we arrived at an overlay with a
11-12-10-3 configuration and implemented it along with the
stall mechanism using Verilog. The proposed architecture has
been behaviourally simulated and verified against the expected
output in each dataset. The design has then been synthesised
and implemented using Vivado 2018.2 and all the results are
post place and route.

The proposed architecture can operate at maximum fre-
quency of 770MHz, which is close to theoretical maximum,
775MHz, of the devices’s DSP blocks [13]. The resource
utilization of each module is summarized in Table II. It is
important to note that the design of the stall mechanism results
in an insignificant area overhead, while the total utilization
is very small, meaning this architecture could be scaled up
significantly on this device.

TABLE II
RESOURCE UTILIZATION ON THE ZYNQ ULTRASCALE+ ZU7EV.

Module LUTs LUTRAM FFs DSPs
Overlay 796 225 2552 25
Stall Mechanism 24 0 16 0
Total 819 225 2568 25
Available 230400 101760 460800 1728

IV. RESULTS AND DISCUSSION

From the simulations, we extracted the number of clock
cycles for each network to process the first dataset entry,
labelled latency, along with the clock cycles required to pro-
cess a following entry when the pipeline is saturated, labelled
interval. We also provide the number of stall cycles to quantify
the stalling overhead. In each case we took into consideration
the maximum operating frequency of 770MHz, showing how
that translates to actual runtime in Table. III. Compared to
other FPGA implementations in the literature, the authors
in [11] implement a neural network for gas classification
on a Xilinx Zynq XC7Z010T using Vivado HLS v2016.1.
The architecture uses fixed point arithmetic and operates
at 100MHz, as well as using the more expensive Sigmoid
activation function. Parallelism is exploited with pragmas for
loop unrolling and pipelining, and they report a latency of
540ns for their simpler 12-3-1 network topology, which is
about 10x slower compared to the proposed overlay for a
8-12-8-1 network that results in a 48.026ns latency.

TABLE III
THEORETICAL TIMING RESULTS FOR THE OVERLAY.

Clock Cycles Time (ns)
Dataset Latency Interval Stall Latency Interval Stall
Customer Churn 32 11 0 41.536 14.278 0
Diabetes 37 12 4 48.026 15576 5.192
Iris 35 10 6 45.43 1298 7.788

To provide a reference for comparison we processed all
three neural networks in software on the Arm Cortex-A53
bare-metal, operating at 1.2GHz, as found in the same Ul-
trscale+ device. We also processed them on a desktop PC
running Ubuntu Linux 18.04 on an Intel Core 17-6700 CPU, at
3.40GHz. Fixed point representation was used for the software,
implemented in C. From the execution time measured and the
theoretical timings of the overlay, we calculated the inference
throughput for each network in Table. IV.

TABLE IV
INFERENCES PER SECOND ON THE DIFFERENT ARCHITECTURES.

Neural Inferences/sec.

Network Arm-A53 Core i7-6700 Overlay
@1.2 GHz @3.40GHz @770MHz

Customer Churn 0.151 x 106 3.618 x 10° 70.04 x 106

Diabetes 0.089 x 106 2.201 x 106 64.20 x 10

Iris 0.099 x 106 1.29 x 108 77.04 x 108

The proposed overlay offers a significant performance im-
provement, compared to the embedded Arm core, able to
process the networks in our case study at a significantly greater
rate. The proposed overlay is at least 19x faster than the
desktop class Intel Core 17-6700.

V. CONCLUSION

In this paper we presented a lightweight streaming neural
network overlay that is optimised for the high performance

DSP blocks in modern FPGAs and exploits their programma-
bility. The proposed overlay reduces dependency on the back-
end toolflow and enhances flexibility and programmability
of FPGAs in the neural networks domain. The implemented
overlay architecture maintains low resource utilization while
operating at near the theoretical maximum of the platform. The
high operating frequency, that also contributes in minimising
the impact of leakage current, coupled with the minimal
resource utilization and significant performance improvements,
make the proposed overlay ideal for processing at the edge.

In the future, we plan on expanding this work to support
deeper and alternative neural network topologies along with
a rapid toolflow to automate the configuration and mapping
process. This will enable for rapid deployment of neural
network accelerators on FPGAs at the edge in a context
where compilation can take place on the resource constrained
platforms themselves, independently of the vendor backend
toolflow.

ACKNOWLEDGEMENT

This work was supported in part by an IBM Faculty Award and
the UK Engineering and Physical Sciences Research Council
(EPSRC), grant EP/N509796/1.

REFERENCES

[1] S. L. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future direc-
tions,” ACM Comput. Surv., vol. 51, no. 3, pp. 56:1-56:39, 2018.

[2] B. Ronak and S. A. Fahmy, “Mapping for maximum performance on
FPGA DSP blocks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 4, pp. 573-585, April 2016.

[3] E. Wu, X. Zhang, D. Berman, and I. Cho, “A high-throughput re-
configurable processing array for neural networks,” in Proc. Field
Programmable Logic and Applications (FPL), Sep. 2017.

[4] A.K.Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented FPGA
overlays using DSP blocks,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 1628-1633.

[5] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, “DeCO:
A DSP block based FPGA accelerator overlay with low overhead in-
terconnect,” in Proc. Field-Programmable Custom Computing Machines
(FCCM), 2016.

[6] J. Coole and G. Stitt, “Adjustable-cost overlays for runtime compila-
tion,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, May 2015, pp. 21-24.

[71 E. Wang et al., “Deep neural network approximation for custom hard-
ware: Where we’ve been, where we’re going,” ACM Computing Surveys,
vol. 52, no. 2, pp. 40:1-40:39, May 2019.

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems 29. Curran Associates, Inc., 2016, pp. 4107-4115.

[9] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the network be the Al

accelerator?” in Proc. Morning Workshop on In-Network Computing,

ser. NetCompute '18. New York, NY, USA: ACM, 2018, pp. 20-25.

M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-

neous systems,” 2015. [Online]. Available: https://www.tensorflow.org/

X. Zhai, A. A. S. Ali, A. Amira, and F. Bensaali, “MLP neural network

based gas classification system on Zynq SoC,” IEEE Access, vol. 4, pp.

8138-8146, 2016.

S. Shreejith, B. Anshuman, and S. A. Fahmy, “Accelerated artificial

neural networks on FPGA for fault detection in automotive systems,” in

Proc. Design, Automation Test in Europe Conference Exhibition (DATE),

2016, pp. 37-42.

Zynq Ultrascale+ MPSoC Data Sheet: DC and AC Swithcing Charac-

teristics (DS925), V1.16, July 2019.

(10]

(11]

[12]

[13]

