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I. INTRODUCTION

With the increasing wider application of neural networks,
there has been significant focus on accelerating this class
of computations. Larger, more complex networks are being
proposed in a variety of domains, requiring more powerful
computation platforms. The inherent parallelism and regularity
of neural network structures means custom architectures can
be adopted for this purpose. FPGAs have been widely used
to implement such accelerators because of their flexibility,
achievable performance, efficiency, and abundant peripherals.
While platforms that utilize multicore CPUs and GPUs are
also competitive, FPGAs offer superior energy efficiency,
and a wider space of optimisations to enhance performance
and efficiency. FPGAs are also more suitable for performing
such computations at the edge, where multicore CPUs and
GPUs are are less likely to be used and energy efficiency is
paramount.

Research on efficient FPGA implementations of neural
networks has explored various optimisation strategies [1].
Fixed point representation offers improved area efficiency over
floating point as used in software machine learning research,
but requires analysis to ensure inference accuracy. Gains are
maximised when the chosen representation is suited to the
wordlengths of the DSP blocks on the FPGA. Parameter
pruning and binarization take advantage of the fact that neural
networks can perform well with significantly reduced preci-
sion. Such implementations are even better suited for FPGAs,
resulting in further improvements in efficiency at the cost of
a tolerable reduction in the inference accuracy.

Optimised architectures, however, are generated at the ex-
pense of flexibility, and though FPGAs do offer the flexibility
of loading new bitstreams, the long tool flow compilation
time hinders rapid development and application portability.
Although High Level Synthesis (HLS) has contributed sig-
nificantly to reducing the time needed for hardware design,
the backend tools are still time consuming. Noteworthy is
the regular structure of neural networks and the fact that
similar network topologies can be used in a broad range of
applications. Hence, while optimising a neural network for
a particular application offers efficiency improvements, the
flexibility afforded by the regularity of the network is lost.

Each neuron in a neural network computes a weighted
sum of its inputs that can be computed sequentially as a
multiply-accumulate operation, which maps well to the high
performance dynamically programmable DSP blocks of the

FPGA. Traditional synthesis approaches, including HLS, use
DSP blocks to implement multiplication and related opera-
tions, but do not take advantage of the low level flexibility
of DSP blocks, and in most cases the designs do not reach
the achievable frequency of the DSP block [2]. This also
impacts energy efficiency in newer FPGAs, since leakage
power consumption is clock independent [3].

The wider adoption of the Internet of Things is driving an
exponential growth in the deployment of resource constrained
embedded systems that operate as sensor nodes, collecting
information from their surroundings. Neural networks are
expected to have a more active role in edge computing as
they can process such information to make important deci-
sions or predictions. Computing at the edge ideally requires
high energy efficiency and low resource utilization while still
meeting real time constraints.

In this paper, we discuss the use of overlay architectures for
neural network processing on FPGAs at the edge. An over-
lay approach offers reduced compilation time, enables rapid
deployment and software like programmability when consid-
ering implementations that share similar computing patterns.
Optimising this architecture around the DSP blocks of the
FPGA also achieves significant improvements over generalised
designs [4]. Similarly, optimising overlay interconnect for the
patterns required by the application domain can dramatically
reduce area consumption [5]. The proposed overlay aims to
operate at near the theoretical maximum frequency of the DSP
blocks with minimal additional area usage.

II. NEURAL OVERLAY ARCHITECTURE

The aim of this overlay is not to offer the peak performance
in a particular neural network implementation, but rather to
offer a flexible architecture that fully exploits FPGA DSP
blocks, and enables rapid loading of weights so that hardware
acceleration can be used during the network exploration phase.

Neural networks operate in training and inference modes.
During training the coefficients, weights, and biases, are
determined using backpropagation. Once those are set, the
network can be used for inference on new data. Training can be
a very time-consuming process and usually takes place offline,
on highly parallel computing platforms. Hence, we focus on
implementing the computation for the inference, which is more
important at the edge.

The proposed neural network overlay exploits the effi-
cient mapping of the multiply-accumulate operation on DSP
blocks. Rather than fully parallelise the neural network as is
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Fig. 1: Overlay Architecture

done in most existing work, we mimic the structure of the
neural network with a single DSP block for each neuron.
This performs the required neuron calculation sequentially,
resulting in sub-optimal performance, but retaining flexibility
and programmability. And by virtue of reaching a very high
operating frequency, the performance penalty is somewhat
mitigated.

For this first study, the datasets and neural networks outlined
in Table I are used. We trained the networks in our test case
using Tensorflow [6] and obtained the accuracies shown. These
networks use the Rectified Linear Unit (ReLU) activation
function in the intermediate layers. We designed the proposed
overlay targetting the Zynq UltraScale+ ZU7EV device and
the features of DSP48E2 block. This DSP block comprises
a 27×18 bit multiplier with a 48 bit accumulator/adder. We
also take advantage of the programmability of the DSP block
by alternating between two operation modes to add the first
weighted product to the bias and to accumulate the remaining
products. After experimentation, we use 12 fractional bits as
it results in no accuracy reduction.

TABLE I: Neural networks used.

Dataset NN Topology Acc. Train Acc. Test

Customer Churn Dataset 11-6-6-1 84.26% 82.95%
Diabetes Dataset 8-12-8-1 78.39% -

Iris Dataset 4-10-10-3 98.33% 96.67%

Overlay 11-12-10-3 - -

The implemented overlay, shown in Fig. 1, uses 18-bit
weights and 48-bit biases, which can be configured externally.
The weight memory is mapped to LUTRAMs while the bias
for each neuron is mapped to a register. The input data flows
into the architecture serially, from neuron to neuron, and
the overlay adjusts its latency according to the topology of
the neural network. The implemented serial flow stalls for a
number of clock cycles when the number of neurons at a layer
is greater than the number of its inputs. We implemented the
proposed architecture using Verilog and verified each output

with equivalent execution in software.

III. CONCLUSION AND FUTURE WORK

This paper presents an overlay architecture that aims to
enable rapid deployment and software-like programmability
while reducing the compilation time of neural network im-
plementations on FPGAs. The proposed implementation aims
at operating at nearly the peak theoretical frequency of DSP
blocks on Zynq Ultrascale+ ZU7EV, by maintaining a short
critical path, with minimal resource requirements. This project
seeks to grow this overlay concept to accommodate large deep
neural networks using the same approach. Integration with a
rapid compiler flow, allowing the exploitation of FPGAs in
the design iteration phase of a neural network is also planned.
This would allow for rapid prototyping of edge deployments
and high performance that does not require detailed design
optimisation or long compilation.
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