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I. INTRODUCTION

The growth of sensor technology, communication systems
and computation have led to vast quantities of data being
available for relevant parties to utilise. Applications such as the
monitoring and analysis of industrial equipment, smart surveil-
lance, and fraud detection rely on the ‘real-time’ analysis of
time sensitive data gathered from distributed sources. A variety
of processing tasks, such as filtering, aggregation, machine
learning algorithms, or other transformations to be carried
out on this data in order to extract value from it. Centralised
computation strategies are often deployed in these scenarios,
with the majority of the data being forwarded though the
network to a datacenter environment, typically due to the lack
of required computational or storage resources at the leaves
of the network, and data from other sources or historical
data being required. This approach has also traditionally been
viewed as more scalable, as resources can be augmented
through the addition of extra compute hardware and cloud
services.

However as the amount of available and potentially useful
data to be processed grows, sending it all to a central location
leads to impractical latencies, bandwidth consumption, and
resource requirements. An alternative strategy is to deploy
‘in-network’ computation—performing some of the processing
tasks on the data as it moves through the network infrastruc-
ture towards the datacenter. While performing processing at
the very edge of the network may not be possible due to
resource constraints at these nodes, many network elements
such as routers, switches and gateways that act as intermediate
nodes utilize more capable processors and FPGAs to perform
their required functions and allow for vendor updates post
deployment. These devices can be extended to offer distributed
computation support for such applications.

Carrying out these tasks on the data in transit using compute
resources placed at network nodes as they move towards their
destination has several advantages. These tasks often reduce
the amount of data, producing some form of aggregated or
filtered results, thus reducing bandwidth requirements. Ad-
ditionally, tasks can be carried out in parallel at different
locations, and closer to the data source in a distributed
fashion, potentially reducing latencies due to data queuing and
communication delays. Making use of FPGAs deployed in the
network infrastructure also enables support for the utilization
of accelerator architectures that can boost performance for
computationally intensive processing tasks.

II. FPGAS FOR IN-NETWORK COMPUTATION

Processing tasks that are common in real time analytics
applications, such as complex event processing, aggregation,
filtering, and machine learning classifiers can often be com-
putationally intensive. Embedded software processing within
the network would introduce unacceptable delays, and hence,
these tasks would have to be carried out on more capable
hardware closer to the datacenter with similar bandwidth
costs. Hardware implementations of these tasks on FPGAs
offer substantial reductions in computation time and greater
performance per watt than CPU and GPU alternatives [1], [2].
Deploying these accelerator architectures on FPGAs such as
those already present in the network infrastructure (currently
utilised for for switching and packet processing) can allow
these tasks to be pushed further down towards the edge of the
network, reducing bandwidth. By opting for this embedded
processing approach, it also avoids the cost and complexity
of deploying ‘cloudlet’ servers that offer datacenter compute
elsewhere in the network.

This approach to in-network analytics requires a virtualised
approach to accelerator deployment, that leverages advances in
partial reconfiguration (PR) [3]. This can allow multiple pro-
cessing tasks to process data independently, and be modified
and switched out without affecting other tasks. An approach
where larger FPGAs are placed in switches with a static region
managing the networking tasks and virtualised slots enabling
compute-intensive processing is envisaged. This flexibility is
essential due to the constantly evolving nature of large data
analytics applications.

III. CURRENT WORK

We have developed a mixed integer linear programming
(MILP) model to explore the effects of placing compute and
different hardware platforms at nodes in a network. Existing
models are mostly from the sensor network space and are
typically application specific [4] assuming fixed resources at
nodes [5]. They are also focused mainly on one objective,
typically end-to-end latency. They are focused on distributing
software tasks to processors, while in our scenario a mix
of software and hardware implementations of tasks could be
selected.

Given user defined constraints, the placement of compute
tasks can be optimised to achieve the lowest latency, financial
cost, bandwidth requirements, or energy consumption, with
constraints on the other metrics not selected. Both the set
of network nodes and tasks to be carried out form directed



Fig. 1. Diagram of modelling - hardware platforms, and implementations of
tasks are assigned to nodes

acyclic graphs (DAGs). Each task must be assigned to a
network node through an ‘implementation’. Each task can
have several possible implementations with different execution
times and hardware resources required. Tasks reduce the data
they operate on by a specified factor. Nodes are also assigned
a hardware platform, for example different FPGAs, processors
or, microcontrollers each with a set of resources that can be
used to implement tasks, a power consumption, and financial
cost. The MILP takes into account all the necessary constraints
to present a feasible mapping, such as task dependencies,
resource requirements and data availability.

IV. EXAMPLE APPLICATIONS

An example of a relevant scenario is an autonomous drone
disaster management system [6]. A network of drones capture
images or video of an affected area with the goal of locating
survivors, using computer vision techniques. They transmit
the images through other drones to cluster heads in close
proximity to a base station, which then forwards it to a server
to perform the analysis. Transmitting hi-resolution images or
video is inefficient however, so performing more processing at
the drones is desirable. Other scenarios include smart traffic

Fig. 2. Example application - drones collaborate to survey disaster struck
area for survivors.

light systems, smart grid wide area monitoring, and automated
surveillance on-campus IP camera networks. Our model is at
the stage where it can be applied to these examples.

V. FUTURE WORK

In the near future we plan to construct example applications,
such as the drone example, and experiment with the placement
of compute in the network. Results can be used to validate the

model detailed in Section III, and be used with the model to
investigate what happens when the network is scaled up. These
experiments can also be used to inform the direction of the
next part of the project.

Fig. 3. FPGA infrastructure to assist with deployment of accelerator archi-
tectures onto network nodes

This will lead to the development of an FPGA framework
to support deployment of virtualised accelerators onto FPGAs
that are already used in the network infrastructure using PR
(Figure 3). We will build on previous work with ZyCAP [7].
The framework will partition spare FPGA resources into
virtual slots and manage the allocation of accelerators to
these slots seamlessly with control over the same network
interfaces. Data can be passed to the appropriate task slot if
it is available or the required task logic can be loaded into an
unused slot. The low overhead of deploying FPGAs in such
a scenario is key to the feasibility of this idea, and hence the
management framework must be capable enough to abstract
low level operations. Unlike similar works, we aim for a fully
virtualised approach that integrates compute logic onto FPGAs
already used for networking functions.
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