
Initiation Interval Aware Resource Sharing
for FPGA DSP Blocks

Bajaj Ronak
School of Computer Engineering

Nanyang Technological University
Singapore

Email: ronak1@ntu.edu.sg

Suhaib A Fahmy
School of Engineering
University of Warwick

Conventry, UK
Email: s.fahmy@warwick.ac.uk

Abstract—Resource sharing attempts to minimise usage of
hardware blocks by mapping multiple operations onto same
block at the cost of an increase in schedule length and initiation
interval (II). Sharing multi-cycle high-throughput DSP blocks
using traditional approaches results in significantly high II,
determined by structure of dataflow graph of the design, thus
limiting achievable throughput. We have developed a resource
sharing technique that minimises the number of DSP blocks and
schedule length given an II constraint.

OUTLINE

Modern FPGAs include capable embedded hard blocks like
DSP blocks, that supports configurable pipelining and dynamic
programmability, while supporting very high operating fre-
quencies. However, in many cases, the tools do not exploit all
these capabilities when mapping designs. High-level synthesis
tools enabling higher design abstraction, but these hard blocks
are still instantiated from the generated RTL, which can be
inefficient. The toolflow proposed in [1] efficiently takes a
high level design description and takes advantage of the
advanced features of DSP blocks to generate high-throughput
implementations.

Hard blocks are typically a constrained resource, and many
applications do not have througput requirements that stress
these blocks, as the surrounding circuitry often runs slower.
Hence, it is possible to share these resources and accept a drop
in effective throughput in many cases. A study presented in [2]
analysed the impact of resource sharing on the performance
of FPGA designs, highlighting cases where resource sharing
is advantageous and where it can have adverse affects. Tradi-
tionally, non-overlapping operations are mapped to the same
hardware resource to reduce resource requirements, but this
generally increases scheduling length and initiation interval
(II). Since DSP blocks require deep pipelining to run at high
frequencies, this has a significant impact on II when shared.

Traditional resource sharing implementations utilise a set of
DSP blocks, controlled through a state machine such that mul-
tiple operations can be correctly implemented using fewer DSP
blocks. Thus, the structure of the dataflow graph, i.e. width
and depth, of the design limits the best achievable II, beyond
which irrespective of the constraints on DSP blocks, II cannot
be improved. Sharing also requires the sharing operations to
be identical. We can exploit the dynamic programmability of
Xilinx DSP blocks to enable sharing of any computations that
can map to any configuration of the DSP block, offering more
opportunities for sharing.

1 2 3 4 5 6 8 11

0

20

40

60

Number of DSPs
T
h
ro
u
gh

p
u
t
(M

in
p
u
ts
/s
)

ARF Smooth Triangle

Fig. 1: Throughput improvements with increase in DSP block
usage through proposed method.

We have developed a scheduling technique, based on the
system of difference constraints (SDC) [3], which is able to
generate resource shared implementations with better IIs than
traditional techniques. Multiple sets of DSP blocks are con-
trolled using independent state machines such that operations
mapped onto each set are able to achieve the targeted II.
Our proposed scheduling technique unlocks the design space
between resource unconstrained implementations and the best
throughput possible using traditional approaches, allowing
designers more flexibility to balance resource utilisation and
throughput. We have adapted the toolflow in [1] to accept
design inputs in C/C++ and integrated the proposed technique,
which generates synthesisable RTL for an constrained II while
minimising DSP block usage and schedule length. Figure 1
shows how throughput improves with the increase in DSP
block usage. Points to the right of the dashed line are achiev-
able only using our proposed method, offering more than 5×
improvement compared to traditional best case.

REFERENCES

[1] B. Ronak and S. A. Fahmy, “Mapping for maximum performance on
FPGA DSP blocks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 4, pp. 573–585, April 2016.

[2] Y. Hara-Azumi, T. Matsuba, H. Tomiyama, S. Honda, and H. Takada,
“Impact of Resource Sharing and Register Retiming on Area and Perfor-
mance of FPGA-based Designs,” Information and Media Technologies,
vol. 9, no. 1, pp. 26–34, 2014.

[3] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on SDC formulation,” in ACM/IEEE Design Automation Confer-
ence, 2006, pp. 433–438.


