JIT Trace-based Verification for
High-Level Synthesis

Liwei Yang*, Magzhan Ikram', Swathi Gurumanif, Suhaib A. Fahmy*, Deming Chen?, Kyle Rupnow?
*School of Computer Engineering, Nanyang Technological University
t Advanced Digital Sciences Center, Singapore
J:University of Illinois at Urbana-Champaign
Email: {yang0345, sfahmy}@e.ntu.edu.sg, , {magzhan.i, swathi.g, k.rupnow}@adsc.com.sg, dchen@illinois.edu

Abstract—High level synthesis (HLS) tools are increasingly
adopted for hardware design as the quality of tools consistently
improves. Concerted development effort on HLS tools represents
significant software development effort, and debugging and
validation represents a significant portion of that effort. However,
HLS tools are different from typical large-scale software systems;
HLS tool output must be subsequently verified through functional
verification of the generated RTL implementation. Debugging
machine-generated functionally incorrect RTL is time-consuming
and cumbersome requiring back-tracing through hundreds of
signals and simulation cycles to determine the underlying error.
This challenging process requires support framework in the HLS
flow to enable fast and efficient pinpointing of the incorrectness
in the tool. In this paper, we present a debug framework that uses
just-in-time (JIT) traces and automated insertion of verification
code into the generated RTL to assist in debugging an HLS tool.
This framework aids the user by quickly pinpointing the earliest
instance of execution mismatch, paired with detailed information
on the faulty signal, and the corresponding instruction from the
application source. Using CHStone benchmarks, we demonstrate
that this technique can significantly reduce bug detection latency:
often with zero cycle detection.

Index Terms—JIT, Trace-based Verification, High-Level Syn-
thesis

I. INTRODUCTION

High level synthesis (HLS) tools, which automate transla-
tion of C/C++ algorithm implementations into register transfer
level (RTL) descriptions, have seen significant improvements
in recent years. HLS tools are large software systems, and
thus verification and debugging of HLS tools is a significant
portion of the design and development effort.

Traditionally, large scale software development uses a va-
riety of tools and techniques to support verification and
debugging efforts, including debug tools (e.g. GDB), memory
analysis tools (e.g. Valgrind), assertions and printing-based
debugging, modularization of source code for unit-testing,
and formal verification. However, although these techniques
continue to play a role in debugging of HLS tools, they are not
sufficient; these tools can help verify that an HLS tool executes
without syntax errors and produces syntactically correct RTL,
but final verification also requires that the produced RTL is
functionally equivalent to the input C/C++ source.

Functional verification of RTL is performed through sim-
ulation and comparison of output values. When an output

978-1-4673-9091-0/15/$31.00 (©2015 IEEE

mismatch is identified, the user must trace backwards through
the simulation to discover the earliest incorrect internal value;
this earliest symptom can then be used to diagnose the cause
of the problem in the HLS tool. This process may require de-
tailed backtracing through hundreds of signals over the course
of hundreds or thousands of cycles of simulated execution.
Furthermore, HLS-produced RTL is typically not intended to
be human-readable. This challenge of effectively verifying and
debugging incorrect RTL can become a bottleneck in HLS tool
development, hindering further improvement of the HLS tools.

The HLS process performs many transformations to paral-
lelize and optimize execution; thus, we cannot validate appli-
cation correctness by comparing the exact order of operations.
However, we can fundamentally characterize correct execution
with a few properties: input data received, output data pro-
duced, conditional control transitions, correct propagation of
data through data selection (PHI-node) operations, and forward
progress in execution.

In this paper, we present a framework that supports HLS tool
debug: we use just-in-time compilation and trace-generation
to generate the set of expected values for all operations that
characterize an application and automatically insert RTL ver-
ification code for each operation and value pair, together with
information about the correspondence between the RTL and
operation in LLVM-IR. Using this framework, we demonstrate
that we can detect bugs in the HLS core. Furthermore, we
demonstrate that our RTL verification code detects the earliest
instance of execution mismatch with low-latency; often zero
cycles, and always 3 or fewer cycles of simulated execution.

This paper contributes to debugging and verification of HLS
tools with:

o A JIT based implementation that automatically gathers

expected values for all characteristic operations.

o A trace-based approach to automatically insert RTL ver-
ification code for all operations that characterize correct
application execution.

o A demonstration that this technique detects mismatched
execution with low-latency.

II. RELATED WORK

Verification of an HLS tool flow is similar in concept to
verification of general purpose compilers: instead of proving

that the HLS tool (compiler) executes to completion correctly,
we must prove that output RTL (or binary) is functionally
correct. Generally, the problem of verifying a compiler is
difficult: typical compilation frameworks such as LLVM are
not formally verified; projects attempt to verify some LLVM
passes, but have not successfully produced a fully-verified
compiler [1]. Some prior work has tried to formally verify
functional equivalence between input high level sources and
the output RTL [2], [3]. However, the complex CDFG trans-
formations and hardware-oriented optimizations prove difficult
to formally verify. As the complexity of HLS optimizations
increases, this problem will only be exacerbated, especially
in a framework that has no underlying formal framework.
Because our HLS framework is built on LLVM, we cannot rely
on underlying formal verification to ensure that all compilation
transformations are provably correct.

Debugging tool-generated incorrect RTL is challenging and
for this reason, several groups have worked on debugging and
verification tools for HLS [4]-[7]. However, these techniques
concentrate on diagnosing faults under the assumption that
the input application is incorrect. These techniques provide
no further support for internal verification of HLS algorithms
to pinpoint the cause of functional incorrectness. Similarly, the
hybrid quick error detection (HQED) [8] can infer that a bug
is caused by the HLS core, but cannot pinpoint the earliest
location of functional mismatch to help diagnose the bug.

In this work, we present a framework that specifically sup-
ports HLS tool debug. We insert verification code blocks that
includes diagnostic information on the LLVM-IR instructions
and RTL variables in the generated-RTL and ensure that any
fault in RTL is detected by our framework.

III. VAST HLS AND TOOL DEBUG

Our JIT trace-based verification framework is built on VAST
HLS, an existing LLVM-based HLS framework [9], [10].
VAST HLS translates C/C++ source inputs to Verilog RTL
implementation by following typical HLS steps such as pars-
ing, compiler optimization, allocation, scheduling, binding and
RTL code generation. In addition, VAST generates a hardware-
oriented intermediate representation (IR) for hardware-specific
optimization passes; VAST keeps track of correspondence be-
tween LLVM-IR instructions and VAST-IR operations, which
is important for our purposes in trace-based verification. In
addition to our verification framework for this paper, VAST
HLS includes a large number of C++ assertions that validate
input source code and check for known potential problems in
the HLS algorithms. These assertions capture many potential
problems before RTL verification, but an HLS developer
cannot predict all possible potential bugs.

During the HLS process, the LLVM-IR (and VAST-IR) are
repeatedly transformed to perform optimizations for area and
latency of the generated hardware design. These optimizations
may parallelize operations, move operations between basic
blocks, eliminate redundant operations or duplicate operations
for improved predication, or transform operations through

constant propagation and strength reduction. All of these opti-
mizations may transform the sequence or timing of operations
while retaining functional equivalence. However, in order to
verify RTL correctness, we must characterize correct behavior
of the hardware, independent of these valid (and necessary)
area and performance optimizations.

Therefore, we specify a set of instructions which is critical
for functional correctness. In order to guarantee correctness
for both data-flow and control-flow, we verify all load/store
instructions and control-flow instructions, such as branch,
switch and ¢ instructions. By verifying this set of instructions,
we can guarantee that no functionally incorrect RTL output
can execute without violating at least one of the expected
behaviors. The only errors we cannot detect are those that
still produce functionally correct behavior despite a bug: e.g.,
divide by 1 and multiply by 1 will produce same result. How-
ever, different input vectors will detect this bug. Furthermore,
with information on the correspondence between RTL opera-
tions and LLVM-IR operations, the exact failing verification
statement can be used to diagnose the specific underlying
problem. Additional information that verifies the sequence of
loop iterations, index values, and control transitions serves to
verify internal RTL core behavior.

IV. JIT TRACE-BASED VERIFICATION

Our trace-based verification framework uses just-in-time
compilation and execution [11] to generate traces of the
sequence of input and output values for all critical instruc-
tions. Then, using those traces, RTL code generation inserts
verification code for each traced value of each instruction.

Our verification flow (orange) is integrated into the existing
VAST HLS flow (blue) as shown in Fig. 1. VAST HLS
uses Clang to parse C/C++ code into LLVM-IR and perform
HLS-independent optimizations, followed by HLS-related IR
transformations. From this IR, we perform instrumentation of
each targeted instruction type, and use JIT compilation and
execution to generate traces for each instruction. Then, during
code generation, we track correspondence between hardware
structures and the LLVM-IR instructions; for each hardware
structure with JIT trace data, we also generate verification
code. VAST HLS also automatically generates testbenches
and simulation scripts; thus, our inserted verification code is
automatically used during functional verification.

LLVM IR Instrumentation | _ | JIT Execution
Insertion Engine
Allocation JIT Trace Recording
Scheduling *
Verification Code
Binding > RTL Code Generation
Simulation RTL Output

Fig. 1: Verification Flow in VAST HLS

A. Trace Extraction

Given an input LLVM-IR application, we need to extract
traces of sequences of input and output values for each
instruction. The LLVM infrastructure provides support for just-
in-time compilation and execution of LLVM-IR modules; in
our case, we use this functionality to instrument the LLVM-IR
and produce a trace for each desired instruction.

For our set of instructions, we will need to verify both
address and data values. Furthermore, the data values may
have a variety of data types, and bit-level optimizations may
produce a variety of (non-power of 2) operand widths. Thus,
before recording values, we reformat instruction arguments to
perform pointer extraction, value alignment and masking for
the relevant bits to compare. Then, the formatted instruction
arguments are recorded to an instruction trace using a call
to our custom trace-collection function. The algorithm for
instruction instrumentation is shown in Algorithm 1. The trace-
collection function simply keeps an individual sequence of
values for every instrumented LLVM-IR instruction.

Algorithm 1: Instrumentation Algorithm

InstrumentedM < VAST Module;
def RecordTrace();
foreach instruction in InstrumentedM do
if instruction.Type € TargetTypes then
\ put instruction in TargetInstructions;
end

end

foreach instruction in TargetInstructions do

if instruction.hasPointer Arg() then
// insert Instrumented Instructions:
Addr + instruction.get Pointer Arg();
CastedAddr < PointerCast(Addr);
MaskedAddr < CastedAddr and Mask;
AlignedAddr < Shift(MaskedAddr);
RecordTrace(AlignedAddr);

end

// insert Instrumented Instructions:

Arg « instruction.getValueArg();

CastedArg < ValueCast(Arg);

RecordTrace(CastedArg);

end

After instrumentation of every desired LLVM-IR instruc-
tion, we create an LLVM execution engine that executes our
instrumented module (which generates the trace data). The
current CHStone benchmarks do not require command line
parameters, but the JIT method can provide command line
parameters if required. In this paper, we examine only the
CHStone benchmarks with a single set of input data; to detect
any data-dependent bugs, the user should use multiple sets of
input data: each with uniquely generated verification code.

The execution engine will produce a JIT trace as shown
in Fig. 1. Because of their importance for input/output and
control flow, all of the verified instruction arguments will
correspond to a register in the hardware. However, due to
the binding process of HLS, a single hardware register may
correspond to data storage for multiple different LLVM-IR in-
structions, each with a unique execution trace. Thus, the trace
data structure is organized to be aware of register binding,

and keep multiple independent (potentially interleaved) traces
for each register. For each trace, the values are stored in order
(e.g. the first execution of an instruction produces val_ex1, the
second produces val_ex2, and so on).

B. Verification Code Generation

Given the JIT trace, we can now generate the verification
code as part of the RTL code generation. As shown in
Algorithm 2, for each register and LLVM-IR instruction, we
generate a block of verification code. Each of these verification
blocks uses a trace counter to keep track of the sequence of
trace values for the specific LLVM-IR instruction. In addition
to the instruction blocks, we generate scheduling verification
and heart beat verification code blocks to verify control-flow.

Algorithm 2: Verification Code Generation Algorithm

int reg_trace_counter;

foreach register do

foreach instruction do

reg_trace_counter + +;

switch reg_trace_counter do
case /: compare(val_ex1, actual_val);
case 2: compare(val_ex2, actual_val);

endsw’

end

if /$onehot({slots}) then

$display(time, active slots, instructions);
$finish("Multiple active slots for one register!”);

end

end

if all slots are inactive then
$display(last active slot);
$finish("Heart beat stops!”);

end

For each instruction, we also insert a trace mismatch
verification block. Using the trace counter, this code block
tracks an expected value for each execution of the instruction,
and in the case of mismatch prints information about the
mismatch. The generated code also includes the corresponding
LLVM-IR instruction and its parent basic block to aid in bug
diagnosis. In the case of a trace mismatch, we also classify
mismatches into critical and non-critical faults. Critical faults
indicate unrecoverable execution mismatches, and thus we
immediately terminate simulation. Non-critical faults may be
execution mismatches due to predication (e.g. due to global
code motion): the instruction execution may be re-executed
with updated arguments, producing correct functionality. If
the fault is non-critical, we print warnings, but do not halt
simulation. If the non-critical fault represents a real fault, the
erroneous execution will propagate to a critical fault.

In addition to instruction-based verification blocks, we also
verify that each register is only used by one instruction
at a time. VAST HLS generates a one-hot finite state ma-
chine (FSM), and we know the scheduling state for each
instruction. Thus, we generate a verification block that ensures
that each instruction using a particular hardware register is
activated mutually exclusively. Failure in a one-hot verification
block is always a critical fault. As in trace mismatch, the ver-

ification code also includes LLVM-IR instruction information
to aid in bug diagnosis.

Finally, we also generate a verification block to ensure that
the FSM is always in a valid state. This heart beat block simply
ensures that at least one state is always active; if no state is
active, the RTL module FSM has died unexpectedly.

V. EXPERIMENTAL SETUP AND RESULTS

In order to demonstrate the effectiveness and improvement
of detection latency of the proposed JIT trace-based verifica-
tion, we will use our extended HLS framework with CHStone
benchmark suite [12] to debug our HLS tool. We use the
verification framework to detect 9 representative bugs in our
HLS tool. These examples should not be considered a complete
set of detectable bugs: any HLS core bug that produces
incorrect RTL output will be detected by this technique.

For each benchmark input, we use our extended VAST HLS
with verification code enabled and perform RTL verification
through simulation in Modelsim 10.1d. For each bug, it is
considered detected if one or more critical fault is detected
during simulation. We measure the detection latency by man-
ually tracing backwards from the message printed by our
verification code to the earliest instance of incorrect execution.
Because the verification code prints out information about the
cycle of mismatch, expected and actual value, and detailed
information about the LLVM-IR instruction(s) involved in
the mismatch, these print-outs aid the user in quickly and
efficiently identifying associated hardware structures such as
registers, multiplexors, scheduled FSM states, and connected
intermediate variables.

Table I shows the bug detection results for the 9 repre-
sentative HLS core bugs. The bug detection latency for 7 of
the 9 bugs is zero: at the instant the bug produces incorrect
results, the verification code detects incorrect execution and
immediately halts simulation. The only non-zero detection
latency is a bug in the translation of a combinational function;
because it takes several cycles for an incorrect computation
to propagate to a load or store, the detection latency is a few
cycles. It is important to note that the HLS development and
verification process must test the HLS core on a wide number
of benchmarks. For all of these bugs, the produced RTL is

TABLE I: HLS-Core Bug Results

Bug Related JIT
Description LLVM IR Latency Detection
Incorrect Control- JIT trace
state transition state load 0 mismatch
Missing register for Pipeline- JIT trace
MUX pipelining register store 0 mismatch
Missing register for Pipeline- JIT trace
datapath pipelining register load 0 mismatch
Incorrect computation Data—-dependent JIT trace
translation load 3 mismatch
Incorrect computation | Data-dependent JIT trace
translation store 3 mismatch
Incorrect array Initialization JIT trace
initialization load 0 mismatch
Incorrect handling of PHI-dependent JIT trace
control flow for PHI load 0 mismatch
Conflicting port Memory-port Scheduling
assignment loads 0 verification
Control state Control- Heart beat
transition broken state PHI 0 detection

incorrect in only a subset of CHStone benchmarks; often for
only one specific combination of HLS optimization options.
The modularity of VAST HLS to enable and disable individual
optimizations helped us to narrow the faulty test cases, but the
bug itself is often a corner-case combination of the program
representation and the results of multiple interrelated HLS
optimizations.

Together these 9 bugs demonstrate automated coverage of
potential errors in any portion of the HLS core: bugs in
control FSM generation, pipelining, translation of combina-
tional operations (e.g. due to bit level optimization), memory
initialization, scheduling, and binding (port assignment) are
examples that represent the entire HLS flow.

VI. CONCLUSIONS

In this paper, we developed a framework for debugging HLS
tool: we used LLVM’s just-in-time compilation and performed
trace-generation to generate the set of expected values for all
operations that characterize an application; we also performed
automated generation of RTL verification code for each op-
eration and value pair, together with information about the
correspondence between the RTL and operation in LLVM-
IR. We demonstrated that our verification code identifies the
earliest execution mismatch in any incorrect HLS-generated
RTL with low detection latency.

VII. ACKNOWLEDGEMENT

This study is supported in part by the research grant for the Human-
Centered Cyber-physical Systems Programme at the Advanced Digital Sci-
ences Center from Singapore’s Agency for Science, Technology and Research.

REFERENCES

[1] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formal
verification of ssa-based optimizations for llvm,” in ACM SIGPLAN
Notices, vol. 48, no. 6. ACM, 2013, pp. 175-186.

[2] A. Mathur, M. Fujita, E. Clarke, and P. Urard, “Functional equivalence
verification tools in high-level synthesis flows,” Design Test of Comput-
ers, IEEE, vol. 26, no. 4, pp. 88-95, July 2009.

[3] X. Feng and A. Hu, “Early outpoint insertion for high-level software
vs. rtl formal combinational equivalence verification,” in DAC, 2006,
pp. 1063-1068.

[4] K. Hemmert, J. Tripp, B. Hutchings, and P. Jackson, “Source level
debugger for the sea cucumber synthesizing compiler,” in FCCM, April
2003, pp. 228-237.

[5] J. A. N. Calagar, S. Brown, “Source-level debugging for fpga high-level

synthesis,” in FPL, September 2014.

J. Goeders and S. Wilton, “Effective fpga debug for high-level synthesis

generated circuits,” in FPL, Sept 2014, pp. 1-8.

G. Jeffrey and W. Steven, “Using dynamic signal-tracing to debug

compiler-optimized hls circuits on fpgas,” in FCCM, 2015.

[8] K. A. Campbell, D. Lin, S. Mitra, and D. Chen, “Hybrid quick error
detection (H-QED): Accelerator validation and debug using high-level
synthesis principles,” in DAC, 2015, pp. 53:1-53:6.

[6

[t

[7

—

[9] H.Zheng, S. Gurumani, L. Yang, D. Chen, and K. Rupnow, “High-level
synthesis with behavioral level multi-cycle path analysis,” in FPL, 2013.
[10] H. Zheng, S. Gurumani, L. Yang, D. Chen, and K. Rupnow, “High-level
synthesis with behavioral-level multicycle path analysis,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 33, no. 12, pp. 1832-1845, Dec 2014.
[11] Kaleidoscope: Adding JIT and Optimizer Support,
http://llvm.org/docs/tutorial/LangImpl4.html.
[12] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, “Chstone: A

benchmark program suite for practical c-based high-level synthesis,” in
ISCAS, 2008, pp. 1192-1195.

