
Efficient Overlay Architecture Based on DSP Blocks

Abhishek Kumar Jain, Suhaib A. Fahmy, Douglas L. Maskell

School of Computer Engineering
Nanyang Technological University, Singapore

Email: abhishek013@ntu.edu.sg

Abstract—Design productivity and long compilation times
are major issues preventing the mainstream adoption of FPGAs
in general purpose computing. Several overlay architectures
have emerged to tackle these challenges, but at the cost
of increased area and performance overheads. This paper
examines a coarse grained overlay architecture designed using
the flexible DSP48E1 primitive on Xilinx FPGAs. This allows
pipelined execution at significantly higher throughput without
adding significant area overheads to the PE. We map several
benchmarks, using our custom mapping tool, and show that
the proposed overlay architecture delivers a throughput of
up to 21.6 GOPS and provides an 11–52% improvement in
throughput compared to Vivado HLS implementations.

I. INTRODUCTION AND RELATED WORK

The effectiveness of FPGAs for application acceleration

has been demonstrated across a wide range of applications.

However, apart from a few specialized domains, this has not

resulted in mainstream use of FPGAs. One reason is that

design productivity remains a major challenge, restricting

the effective use of FPGA accelerators to niche disci-

plines involving highly skilled hardware engineers. High-

level synthesis (HLS) has been proposed as a way of

addressing the limited design productivity and manpower

capabilities associated with hardware design by focusing on

high level functionality instead of low-level implementation

details. However, prohibitive compilation times (specifically

the place and route times in the backend flow) still limit

productivity and mainstream adoption [1]. Hence, there is a

growing need to make FPGAs more accessible to application

developers who are accustomed to software API abstractions

and fast development cycles. Researchers have approached

this problem from many angles, including through the use

of pre-compiled hard macros in the tool flow [2], partial

reconfiguration and overlay architectures.

In the area of overlay architectures, both fine-grained and

coarse-grained architectures that map to the fine grained

FPGA fabric have been proposed. Coarse-grained overlay ar-

chitectures have a number of advantages, including reduced

compilation times, smaller configuration data sizes, applica-

tion portability across devices, better design reuse, improved

programmability and run-time management [3], [4], [5], [6].

However, these advantages come at a cost in terms of area

and performance overheads which limit overlay architectures

to relatively small to moderate applications. The primary

metrics than need to be improved include: frequency and

peak throughput of the overlay [5], configuration data size

and configuration time [4], and the throughput and area-time

product of the compute kernels on the overlay [3].

QUKU is a coarse grained overlay [3] designed to bridge

the gap between soft processors and customized circuit

implementations. It achieves an frequency of 175 MHz on a

Xilinx Virtex 4, with speedups of up to 140× and an area-

time product improvement of up to 40× compared to soft-

core processor implementations. The VDR overlay [7] is an

array of coarse-grained heterogeneous processing elements

(PEs) interconnected by a set of programmable switches. It

achieves a frequency of 172 MHz on an Altera Stratix III

with a 9× improvement in performance over a NIOS II soft

processor. No configuration or performance metrics compar-

ing to customized circuit implementations were provided.

Intermediate Fabric (IF) [4] was proposed to reduce the

compilation time associated with the conventional mapping

process targeting FPGAs. It comprises a 16-bit datapath

supporting fully parallel and pipelined implementation of

compute kernels. A 700× speedup over vendor place and

route tools is achieved at the cost of a 34–44% area

overhead. It achieves an frequency of ≈ 125 MHz on a

Altera Stratix III. An overlay architecture optimized for high

frequency and throughput was proposed in [5]. It consists

of a 24×16 overlay with a nearest-neighbor-connected mesh

of 214 routing cells and 170 heterogeneous functional units

(FU). A frequency of 355 MHz was reported when imple-

mented on an Altera Stratix IV. No performance metrics

comparing with customized circuit implementations were

reported.

Many of the overlay architectures from the literature were

developed with little consideration for the underlying FPGA

architecture. Embedded hard blocks, such as DSP blocks

provide area, performance, and power advantages over the

equivalent function implemented directly in the logic fabric.

Existing overlay architectures do not specifically use these

blocks, other than possible inference by the synthesis tools

which does not always lead to maximum throughput. Xilinx

DSP blocks have been demonstrated as enabling high speed

soft processors through their dynamic programmability [8].

In this paper, we show how the Xilinx DSP48E1 prim-

itive can be used, at near to its theoretical limits, as a

programmable PE in an efficient overlay architecture for

2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-9969-9/15 $31.00 © 2015 IEEE

DOI 10.1109/FCCM.2015.15

25

pipelined execution of compute kernels, improving both

performance and area. The main contributions can be sum-

marized as:

• An RTL implementation of a pipelined overlay archi-

tecture for Xilinx FPGAs using the DSP48E1 primitive,

achieving near maximum frequency.

• A mapping flow that takes a high level description

of a compute kernel, bypasses the conventional FPGA

compilation process, and maps to the overlay.

II. OVERLAY ARCHITECTURE AND MAPPING TOOL

The architecture of the overlay consists of a traditional,

island-style topology, arranged as a virtual homogeneous

two-dimensional array of tiles. Each tile instantiates virtual

routing resources and a functional unit (FU) and each border

instantiates routing to form the boundary at the top and right

of the array.

��

�� ��

����	
���
���
	�

���	
��
�������

��
�
�

��
	�

��
��

��
�

Figure 1: Overlay tile architecture.

A. Overlay Tile Architecture

Each tile contains a functional unit (FU) and virtual

routing resources, as shown in Fig. 1. Virtual routing re-

sources are switch boxes (SBs), connection boxes (CBs),

and horizontal and vertical channels consisting of 16-bit

routing tracks to support a 16-bit datapath. Multiple tracks

can exist in both the horizontal and vertical directions,

forming channels. The number of tracks in a channel is

the channel width (CW), and as this increases, application

routing becomes easier but at a higher area cost.

The functional units (FUs) provide the resources for

the mathematical or logical operations of the application

and consist of a programmable processing element (PE),

MUX based reordering logic and shift register LUT (SRL)

based synchronization logic for balancing pipeline latencies,

as shown in Fig. 2. The FU has 4 input and 4 output

ports logically organised at the 4 cardinal points. We use

the DSP48E1 primitive flexibly to implement computation

functions.

B. Architectural Optimization and Design Issues

This section describes some of the architectural optimiza-

tions to improve the performance of our overlay architecture.

MUL

B Register

Pre-Adder

C

M

INMODE

OPMODE

B

A

D

C

1
0

0

ALUMODE

P

16

16

16

16

5

7

4 1

4

16

SRLs

SRLDELAY 24

MUXSEL 10

Immediate 16

DSP48E1

SRLs

SRLs

SRLs

X

Y

Z

Figure 2: Functional unit architecture.

1) Frequency and Throughput Optimization: To achieve

a high frequency, thus maximizing application throughput,

we enable all three pipeline stages of the DSP48E1 primitive

in the FU, add a register at the output of each reordering

multiplexer, and register the outputs of the SRLs. As a result,

the total latency of the FU is 7 clock cycles. Additionally,

to further increase frequency and eliminate the possibility of

combinational loops in the resulting HDL we use a 16-bit

register at the output of each MUX in the CB.

2) Distinguishing PE Inputs: Any of the four inputs of

the FU can connect to any of the four inputs of the PE.

However, as the input pins of the DSP48E1 block are not

logically equivalent, we must implement reordering logic for

each input pin using a multiplexer as shown in Fig. 2. The

four outputs of the FU are wired to the single output of the

DSP block.

3) Latency Imbalance at FU Inputs: With a large pipeline

latency in each node, and the need for signal timing to

be correctly matched, balancing pipeline latencies at the

different FUs is necessary. Delays must be added to paths

to ensure that inputs to each FU are correctly aligned. We

use variable-length shift registers, implemented using the

LUT-based SRL32 primitives. The depth of the variable shift

registers is set to introduce the right amount of delay for each

path, and the maximum can be set to 16, 32, or 64 cycles,

depending on the flexibility desired. We experimentally

determine the optimal depth of the variable shift registers

for our benchmark set.

C. Mapping Tool

Implementation of the overlay architecture relies on the

conventional hardware design flow using vendor tools. This

process is performed offline and so does not impact the rapid

compilation of an application to the overlay. We use an in-

house automated mapping flow to provide a rapid, vendor-

independent, mapping to the overlay as described below.

1) C to DFG transformation: From a C description of the

compute kernel, the tool generates a dataflow graph (DFG).

A node in the DFG executes in a pipelined manner and

produces an output only when all of its inputs are ready.

Fig. 4(a) shows the nodes and edges in an example DFG.

26

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(a) Input DFG

add Imm 5 N8

O0 N9

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul N5

mul N6

sub Imm 20 N7

(b) Node-merging

O0 N7

I0 N1

mul N2

mul N3

mul Imm 16 N4

mul sub Imm 20 N5

mul add Imm 5 N6

(c) Mapped DFG

Figure 4: DSP48E1 aware mapping.

2) DSP48E1 Aware Mapping: To reduce the number of

compute nodes, we merge multiple nodes based on the

capabilities of the DSP48E1 primitive. For example, we

can use multiply-subtract and multiply-add to collapse N5-

N7 and N6-N8 in Fig. 4(a) into N5 and N6 of Fig. 4(c),

respectively. As a result, DSP48E1 aware mapping requires

only 5 DSP blocks instead of the 7 required if each node

were mapped to a single FU, as in many other overlays. This

results in the mapped DFG shown in Fig. 4(c).

3) Placement and Routing of FU Netlist: We make use

of VPR to map nodes in the graph to FUs, and edges onto

the 16-bit tracks, effectively using VPR at a higher level of

abstraction than its intended purpose.

4) Latency Balancing: To determine the latency imbal-

ance at each node, we developed a tool to parse the VPR

output files and generate a routing resource graph, which is

then used to generate the configuration of the overlay (in-

cluding the depth of each SRL) for the compute kernel and

also for generating experimental results including latency

imbalance at each node, and maximum latency imbalance

in the graph.

III. EXPERIMENTAL EVALUATION

We synthesize and map the overlay using Xilinx ISE 14.6

onto a Xilinx Zynq XC7Z020 and evaluate its performance

using 14 compute kernels. Table I shows the resources

required for the FU, FU configuration registers (FUCR), SB,

SB configuration registers (SBCR), CB and CB configura-

tion registers (CBCR), for CW=2 and CW=4. The overlay

tile contains 1 FU, 1 SB, 2CBs and their configuration

registers, while a border contains 1 SB, 1 CB and their

configuration registers. Hence for CW=2, an overlay tile

consumes 416 LUTs, 390 FFs and 1 DSP block and a border

tile consumes 112 LUTs and 76 FFs. For CW=4, an overlay

tile consumes 544 LUTs, 474 FFs and 1 DSP block while

a border consumes 192 LUTs and 120 FFs.

Table I: FPGA resource usage for overlay components

having CW=2 and CW=4

Resource CW=2 CW=4

FU FUCR SB SBCR CB CBCR SB SBCR CB CBCR

LUTs 224 0 64 0 64 0 128 0 96 0

FFs 176 66 0 8 64 6 0 16 96 12

DSPs 1 0 0 0 0 0 0 0 0 0

Peak Throughput, Resource Usage and Frequency with
Varying Size: Since the DSP48E1 can support three opera-

tions, an overlay of size N × N can support up to 3 ∗ N2

operations. Hence the peak throughput of an overlay of size

N × N is equal to 3 ∗ N2 ∗ Fmax . Resource consumption

on the Zynq, as a percentage of total resources, for CW=2

and CW=4 is shown in Figs. 3(a) and 3(b), respectively. All

these numbers are post-place and route. Fig. 3(c) shows the

decrease in frequency and increase in peak throughput as the

size of the overlay increases. A modest drop in frequency

is observed, but even for large overlays, a frequency of

300 MHZ is achieved, which is very respectable for the

Zynq. We were able to map a 15×15 overlay with CW=2

onto a Virtex-6 (XC6VLX240T) device at 315 MHz.

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F

P
G

A
re

so
u

rc
es

LUTs

FFs

DSPs

Slices

(a) Resources usage for CW=2.

2 3 4 5 6 7 8

0

20

40

60

80

100

Overlay Size (N×N)

%
F

P
G

A
re

so
u

rc
es

LUTs

FFs

DSPs

Slices

(b) Resources usage for CW=4.

2 3 4 5 6 7 8
0

200

400

600

Overlay Size (N×N)

f m
a
x

in
M

H
z

0

50

100

150

200
P

ea
k

T
h

ro
u

g
h

p
u

t

fmax for CW=2

fmax for CW=4

Peak Throughput for CW=2

Peak Throughput for CW=4

(c) Frequency trend.

Figure 3: Resource usage and frequency on the Zynq.

27

Table II: Experimental results for the implementations of the benchmark set

Benchmark Characteristics Routability Overlay Results HLS Implementation Results

Benchmark i/o op merged savings CW=2 CW=4 Latency MLI GOPS Latency Fmax GOPS Slices DSPs

nodes nodes nodes

chebyshev 1/1 7 5 28% 3×3 3×3 49 36 2.59 11 278 5.0 40 8

sgfilter 2/1 18 10 44% 4×4 4×4 54 31 6.66 11 278 5.0 40 8

mibench 3/1 13 6 53% 3×3 3×3 47 35 4.81 9 295 3.8 81 3

qspline 7/1 26 22 15% 5×5 5×5 76 64 9.62 21 244 6.3 126 14

poly1 2/1 9 6 33% 3×3 3×3 34 22 3.33 12 285 2.56 62 4

poly2 2/1 9 6 33% 3×3 3×3 29 7 3.33 11 295 2.65 45 4

poly3 6/1 11 7 36% 3×3 3×3 31 11 4.07 12 250 2.75 52 6

poly4 5/1 6 3 50% 2×2 2×2 24 12 2.22 7 312 1.87 36 3

atax 12/3 60 36 40% — 6×6 72 58 18.0 13 263 15.8 78 18

bicg 15/6 30 18 40% — 6×6 46 32 9.0 7 270 8.1 91 18

trmm 18/9 54 36 33% — 7×7 58 30 16.2 8 222 11.9 105 36

syrk 18/9 72 45 37% — 7×7 41 19 21.6 10 250 18 237 24

Benchmarks, Routability Test and Channel Width De-
termination: Table II shows the characteristics of the DFGs

extracted from the benchmarks. The first 8 benchmarks

are polynomials taken from [9]. Next 4 benchmarks are

linear algebra kernels from the PolyBench/C 3.2 benchmark

suite [10]. We use the size of 3 for single dimensional arrays

and 3×3 for two-dimensional arrays to obtain moderate

sized DFGs. We determined the minimum overlay size re-

quired for each benchmark that achieved routability. Table II

shows that linear algebra kernels are not routeable for an

architecture with CW=2. Hence, we divide the benchmarks

into two sets, set-I (first 8 benchmarks) and set-II (next 4

benchmarks). We prototype 2 overlay architectures: overlay-

I (size=5×5) with CW=2 for benchmark set-I and overlay-II

(size=7×7) with CW=4 for benchmark set-II.

Performance Evaluation: Overlay-I and Overlay-II

have a configuration size of 287 Bytes and 700 Bytes,

and can be configured entirely in 11.5 us and 28 us, re-

spectively compared to 31.6 ms for the entire PL using

PCAP, providing a 1000× improvement in reconfiguration

time. Maximum latency imbalance is the largest difference

between any two inputs for a node, labelled MLI in Table II.

We calculate the throughput for each benchmark as shown

in Table II. We also generate the RTL of the compute

kernels using Vivado HLS 2013.2 in order to compare

throughput, using fully unrolled compute kernels. Table II

shows the results for the Vivado HLS implementations of

the benchmark set.

IV. CONCLUSION

We have presented an FPGA overlay architecture that

uses the Xilinx DSP48E1 primitive as a programmable PE,

resulting in an efficient overlay architecture for pipelined

execution of compute kernels, with improved area and

performance metrics. We map several benchmarks, using our

custom mapping tool, and show that the proposed overlay

can deliver a throughput of up to 21.6 GOPS and provides

an 11–52% improvement in throughput compared to Vivado

HLS implementations. We aim to reduce the area of the

overlay further through careful optimizations of the routing

architecture.

REFERENCES

[1] G. Stitt, “Are field-programmable gate arrays ready for the
mainstream?” IEEE Micro, vol. 31, no. 6, pp. 58–63, 2011.

[2] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
and B. Hutchings, “HMFlow: accelerating FPGA compilation
with hard macros for rapid prototyping,” in IEEE Int. Symp.
Field-Programmable Custom Computing Machines, 2011.

[3] N. W. Bergmann, S. K. Shukla, and J. Becker, “QUKU: a
dual-layer reconfigurable architecture,” ACM Transactions on
Embedded Computing Systems, vol. 12, p. 63, Mar. 2013.

[4] G. Stitt and J. Coole, “Intermediate fabrics: Virtual architec-
tures for near-instant FPGA compilation,” IEEE Embedded
Systems Letters, vol. 3, no. 3, pp. 81–84, Sep. 2011.

[5] D. Capalija and T. S. Abdelrahman, “A high-performance
overlay architecture for pipelined execution of data flow
graphs,” in Int. Conf. Field Prog. Logic and Appl., 2013.

[6] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L.
Maskell, “Virtualized execution and management of hardware
tasks on a hybrid ARM-FPGA platform,” Journal of Signal
Processing Systems, vol. 77, no. 1–2, pp. 61–76, Oct. 2014.

[7] D. Capalija and T. Abdelrahman, “Towards synthesis-free JIT
compilation to commodity FPGAs,” in IEEE Int. Symp. Field
Prog. Custom Computing Machines, 2011, pp. 202–205.

[8] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The
iDEA DSP block based soft processor for FPGAs,” ACM
Transactions on Reconfigurable Technology and Systems,
vol. 7, no. 3, p. 19, 2014.

[9] B. Ronak and S. A. Fahmy, “Evaluating the efficiency of DSP
block synthesis inference from flow graphs,” in Int. Conf. on
Field Prog. Logic and Appl., 2012, pp. 727–730.

[10] L. Pouchet, “Polybench: The polyhedral benchmark suite,
v3.2,” 2011.

28

