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Abstract—Dynamically adaptive systems respond to environ-
mental conditions by modifying their processing at runtime,
selecting alternative configurations of computation. While FPGAs
with partial reconfiguration (PR) seem to offer an ideal platform
for flexible hardware, designing such systems is difficult, and
no standardised model and methodology exists. We present
CoPR, a fully automated framework for implementing PR based
adaptive hardware systems on the Zynq family of hybrid FPGAs.
The designer specifies a set of valid configurations comprising
hardware modules. CoPR automates partitioning of modules into
regions, floorplanning on the FPGA fabric, and generation of
partial bitstreams. The runtime framework offers an abstracted
view of system configuration through an API that allows the
designer to focus on adaptation software without considering
details of the underlying hardware. We present a case-study on
the design of a multi-standard adaptive radio system.

I. INTRODUCTION

Dynamically adaptive systems (DASs) continuously monitor
their environment and adapt their behaviour in response to
changes in environmental conditions [1]. They are able to
deal with uncertainty in system environment through their
adaptability. A DAS can be considered as a collection of
different system operating modes, called configurations, of
which only one is active at any given point in time [2]. A
configuration is a valid combination of primitives which map
to operations implemented in software or hardware, and is
suited to certain operating conditions. At runtime, changes in
the operating environment cause a DAS to switch its configu-
ration to adapt to new conditions. The configuration switching
operation, reconfiguration, is controlled and managed by a
configuration manager (CM) that monitors parameters and
applies adaptation algorithms. DASs have demonstrated appli-
cations in home automation [1], communication systems [3],
and military systems [4].

Although extensive research has been done on software
DASs, there has been limited work on mapping to hard-
ware. As autonomous and adaptive systems rely on an ever-
increasing number of sensors, with increasing fidelity, the
computational processing required to implement advanced
applications is exceeding what can be done in software,
especially in embedded, portable, and mobile scenarios. Field
Programmable Gate Arrays (FPGAs) offer hardware flexibility

by allowing a circuit to be changed by loading a new bitsteam
(configuration information). Partial Reconfiguration (PR) is
even more appropriate as it allows part of the FPGA configu-
ration memory can be overwritten at runtime, thus modifying
the behaviour of only parts of a circuit, while the remainder
continues to function. This capability, formerly only offered
for high-end FPGAs, is now supported across most FPGAs
from Xilinx [5], and recently, Altera [6]. PR enables systems
that swap different configurations into the FPGA fabric at
different times. Harnessing this capability in a systematic
manner can enable the design of hardware DASs that offer the
parallel, high-performance processing necessary for modern
applications with the flexibility needed for adaptation.

While there is a healthy body of work on designing partially
reconfigurable systems, focus has primarily been on time
multiplexing a small FPGA by breaking a large application
into a set of smaller tasks that are then swapped in and out
of the FPGA according to the order and dependency among
these tasks [7]. This allows use of a smaller FPGA than
would otherwise be required for a fully spatial implementation,
reducing cost. In such cases, the reconfiguration order, and
hence adaptability, is restricted to a sequence determined at
design time from the application description. As a result, the
control mechanism is simple.

With DASs, we know in advance what configurations are
possible, and the adaptation mechanism is more complex,
relying on real-time processing of environmental information
for decision making. Such adaptation is more suited to soft-
ware implementation where advanced learning and recognition
algorithms can be easily applied. This is where application
experts innovate to improve robustness, generality, and appli-
cation performance. The challenge then is how to integrate
this adaptation layer with the underlying hardware to offer the
benefits of hardware performance and software flexibility.

Hybrid FPGA platforms such as the Xilinx Zynq offer new
opportunities for DAS implementation by tightly integrating
processors with a reconfigurable fabric. The compute-intensive
configurations can be implemented on the reconfigurable fab-
ric while complex adaptation algorithms can be implemented
in software, making them easily programmable. Such soft-
ware/hardware systems are crucial to implementing new gener-
ations of cyber-physical systems with complex processing [8],978-1-4673-7501-6/15/$31.00 c©2015 IEEE



many of which have adaptive requirements.
DAS implementation on partially reconfigurable FPGAs

comprises three important aspects. The first is a definition of
regions on the device called partially reconfigurable regions
(PRRs) that will house the hardware modules to be recon-
figured at runtime. For each of these, we must generate a
set of valid bitstreams to be loaded at runtime. The second
is the underlying mechanism by which such bitstreams are
stored and loaded at runtime. The final aspect is the high-
level application code that manages reconfiguration at runtime
in response to environmental changes.

PR research has focussed primarily on overcoming the
limitations of vendor tools, typically through augmentation
in the middle of the flow, and custom bitstream generation
approaches. Although models have been proposed for mapping
adaptive system descriptions to FPGAs, actual implementation
of the resulting systems remains challenging [4], [9]. A fully
automated flow that allows designers to map DAS applications
to a PR implementation on a hybrid FPGA without the need
for FPGA design expertise has so far failed to materialise.
We believe this is an essential step in PR achieving more
widespread adoption, as it is the application experts who can
apply PR to realistic and emerging applications. A high-level
flow, and clear interface to runtime adaptation software are
crucial for such a framework.

Our main contributions in this paper are as follows:
• A proposed approach for modelling adaptive hardware

systems for implementation on hybrid FPGAs.
• An automated end-to-end tool flow, suitable for non

experts, that maps high-level DAS descriptions to a real
implementations on hybrid FPGAs.

• A runtime configuration manager that provides an API
for describing adaptation through an abstraction with
automated seamless management of the PR process.

The rest of this paper is organised as follows: Section II
discusses related work, Section III presents adaptive systems
mapping, Section IV introduces the proposed tool flow, Section
V presents a case study using the proposed method, and
Section VI concludes the paper.

II. RELATED WORK

Partial reconfiguration has been the subject of significant
research effort in recent years, however, much of the work
has focussed on low-level techniques for overcoming the
many limitations of vendor-provided tool flows. These include
ways of using the same bitstream for modules in different
locations [10] and run-time relocation of modules to maximise
free capacity [11]. Such low-level techniques are highly-
architecture dependent, resulting in complications when new
architectures emerge. Furthermore, despite a significant body
of contributions in such areas, this has not resulted in a more
widespread adoption of PR. We argue that this is because the
primary obstacle to adoption is not technical limitations, but
rather design complexity.

Some research efforts recognised this challenge, and pro-
posed operating systems for managing FPGAs [12]. Many of

these were concerned only with a fixed hardware configura-
tion. Others supported loading of modules at runtime [13],
but did not offer any abstraction of the management process.
Other frameworks focussed solely on the use of PR to time
multiplex the tasks of a large application [14].

Some more recent tool flows include OpenPR [15], which
provides more placement flexibility that the vendor flow, and
GoAhead [16] which improves on the way PR designs are
routed. These tools can help overcome some limitations of
the official flows, but do not address the high-level/abstract
design issues. The use of an embedded processor to manage
PR in the case of a time-multiplexed application has also been
previously proposed [17]. An integrated high level synthesis
framework for PR was proposed in [18], but the high level
model is translated into a system model for simulation and a
physically-aware architecture description that targets a virtual
architecture, and hence cannot be mapped to real devices. The
object-oriented framework in [19] abstracts runtime manage-
ment through a Java-like language, but does not deal with the
hardware aspects of PR design. A layered approach to PR
systems is presented in [20]. It enables user-level applications
to manage tasks running on the FPGA with reconfigura-
tions translated into the appropriate low-level operations, but
minimal detail on the design specification is provided. The
framework in [21] proposes a separate control and data plane
with an abstracted interface between them, but PR is still
managed using low level functions in software.

Our main objective is to provide a high-level abstract view
of PR for hardware DAS implementation with minimal need
for FPGA architecture knowledge. This means a designer
should be able to assemble hardware modules into a set of
configurations, label them with relevant labels, then write
adaptation software that references these labels, with all under-
lying operations managed automatically. These include design
time tasks: partitioning the FPGA into regions, assigning
modules to regions, creating wrappers for the region con-
figurations, floorplanning PRRs on the FPGA, and exposing
the configuration interface; and runtime tasks: interfacing the
designer’s adaptation code with the framework, automatic
storing and loading of bitstreams as needed, and applying
reconfiguration. Rather than circumvent the restrictions im-
posed by vendor flows, our approach optimises and automates
through integration with the tools. This makes the framework
portable as the vendor tools and architectures evolve. Our
focus on modelling is the software-hardware system, and not
the adaptation approach itself, since such techniques have
already been proposed [22], and we aim to provide flexibility
in this regard.

III. MAPPING ADAPTIVE SYSTEMS

This section describes different aspects of a DAS and its
mapping on hybrid FPGAs.

A. System Decomposition

The system level architecture we propose is depicted in
Fig. 1. The overall system is divided into two logical planes,
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Fig. 1. The control and data planes of a DAS.

namely the control plane and the data plane, adapted from
the model in [23]. The configurations that complete data
processing comprise the data plane, while the control plane
monitors and regulates system state, managing reconfiguration.
The data plane can be made to support intensive computation
by mapping parts of it to hardware. Meanwhile, the control
plane typically functions at a much lower data rate, but might
use complex sequential algorithms, and is hence more suitable
for software implementation.

The data plane is composed of several functional units or
primitives, such as M1, M2, M3 and M4, interfaced with each
other, as shown in Fig. 1. We define the atomic functional
unit as a module, such as an edge detector in an image
processing system, or a modulator in a radio system. Each
module may have a set of parameters which determine its
operating characteristics, such as the cut-off frequency of a
filter module. These parameters can be modified at runtime to
control the modules and thus data plane behaviour.

The control plane implements the DAS configuration man-
ager (CM). The CM monitors and regulates system state by
implementing the observe, decide, act loop [3]. This con-
stantly monitors the system environment to detect changes in
operating conditions called events. These events are analysed
to decide whether changes in system state are required and
how to reach the intended state through actions. Control
plane actions usually involve modification of the data plane
(reconfiguration) to support operation in the new environment.

B. Models of Computation

We model the data plane using Kahn Process Networks
(KPNs), where a number of concurrent processes interact with
each other through communication links [24]. Processes are
functions executing asynchronously, which map input data
elements or tokens to output tokens. Processes can interact
with each other only through the communication channels,
which are modelled as First-in First-Out (FIFO) queues with
unbounded capacity. Each channel can possibly contain an
infinite number of tokens, each of which can be produced
and consumed only once. Writes to channels are non-blocking
(write operations succeed immediately) but read operations
are blocking. In other words, a process is stalled until it
receives sufficient data from the input channels to satisfy
the operation. Non-blocking writes mean each channel should
have infinite capacity. KPNs are highly suitable for modelling

steaming applications such as video and audio processing,
signal processing, and 3D multimedia applications [25], which
are classical targets for FPGA implementation.

One difficulty with implementing KPNs in hardware is the
requirement for unbounded channel FIFOs. To map KPNs to
hardware, some restrictions and assumptions must be made.
The FIFOs between the processes (modules) must be bounded
in size and writes to them are blocked until there is sufficient
space. If the output of one channel is shared by multiple
processes (modules), read operations are blocked until all the
consumer processes are ready to accept data. To avoid dead-
locks, applications are restricted to unidirectional dataflow.
In most streaming applications we are concerned with, this
restriction is not problematic as dataflow is inherently unidi-
rectional. We adopt the AXI4-Stream interface to implement
inter-module communication due to its high throughput, and
since Xilinx has adopted it as the standard for interfacing IP
cores since the 6-series FPGAs. The first or last module in a
chain is implemented in software, allowing the user application
to source/sink data to/from the hardware chain. In the case of
external interfaces like an RF interface, these interact directly
with the hardware data plane modules using the same AXI4-
Stream signalling.

C. Modelling Adaptation

A set of modules in the data plane which implements
a mode of functionality is called a configuration. For ex-
ample in Fig. 1, {M1,M2,M3,M4} comprise a configura-
tion. In a video processing system, these could be a {filter,
edge detector, hough transform} processing chain. The con-
figuration gives a static snapshot of dynamic system operation.
When the system adapts to a new configuration, one or
more modules are replaced with new ones. This form of
configuration switching is called a structural reconfiguration.

Alternatively, one or more parameters of the existing mod-
ules can be modified without replacing the modules them-
selves. This could be for actions like updating the coefficients
of a digital filter. We call this form of reconfiguration a
parametric reconfiguration, which is usually achieved through
modifying a module’s internal registers. Ideally a system
designer should be able to model both these types of recon-
figuration in a way that suits the application without worrying
about how they are actually implemented.

D. Zynq Architecture

New hybrid reconfigurable devices, such as the Xilinx Zynq
are an ideal choice for implementing DASs as they include
a powerful processor, standard communication infrastructure,
and an integrated reconfigurable fabric [26]. The Zynq tightly
couples a dual-core ARM Cortex A9 processor with a re-
configurable fabric as shown in Fig. 2. The ARM processor
communicates with on-chip memory, memory controllers, and
peripheral blocks through AXI interconnect. Together, these
hardened blocks constitute the Processor System (PS). The
PS is attached to the Programmable Logic (PL) through
multiple AXI ports, offering high bandwidth between the
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Fig. 3. Two rows of the Zynq PL showing different tile types.

two key components of the architecture. The PS processor
configuration access port (PCAP) supports full and partial
configuration of the PL.

Optimising PR based designs requires a solid understanding
of the underlying configurable fabric architecture. Like other
Xilinx FPGAs, the Zynq configurable fabric (PL) is divided
into a number of rows and columns. Resources such as CLBs,
Block RAMs, etc. are arranged in a columnar fashion extend-
ing the full height of the PL. A tile is one row high and one
column wide, and contains a single type of resource, as shown
in Fig. 3. The basic unit for defining a partially reconfigurable
region (PRR) is a tile and a tile cannot be shared between
multiple regions. For the Zynq PL, one CLB tile contains 50
CLBs, one DSP tile contains 20 DSP Slices, and one BRAM
tile contains 20 Block RAMs arranged vertically. Present
partial reconfiguration tool flows require the designer to know
these low level architecture details for system implementation
and optimisation. In our tool-flow, these details are abstracted
away from the designer’s point of view but are used internally
by the tool to optimise implementation.

E. Architecture Mapping

The DAS data plane is implemented on the Zynq PL with
the software modules in the PS communicating through DMA
over an AXI4-Stream interface. For maximum performance,
it is preferable for a software module to only be used at the
beginning or end of a hardware processing chain. Structural
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Fig. 4. Mapping of the proposed model to the Zynq architecture.

reconfiguration of the data plane is achieved by configuring the
PRRs with appropriate partial bitstreams. The control plane
is implemented as two logically separate software components
called the adaptation manager and the configuration manager
running on the Zynq ARM processor as shown in Fig. 4. The
adaptation manager is software written by the system designer
that implements the observe, decide, act loop discussed in
Section III-A in an implementation independent format. It
communicates with the configuration manager through the
API provided by our framework. The configuration manager
performs the architecture dependent structural and paramet-
ric reconfigurations by loading specific partial bitstreams or
varying module register contents.

The adaptation manager can implement simple state ma-
chines or advanced techniques for adaptive system manage-
ment [22]. Since the adaptation manager is written at a higher
level and abstracted from the details of PR implementation by
the configuration manager, this allows adaptation techniques
to be explored independently of actual implementation. A
lightweight AXI4-Lite interface is used between the control
and data planes for managing parametric reconfiguration and
monitoring events in the data plane.

IV. TOOL FLOW

Fig. 5 shows the proposed DAS design tool flow called
CoPR for Zynq. The flow includes both software and hard-
ware, accepts user specifications, applies optimisation algo-
rithms, and interfaces with vendor tools through a set of
custom scripts. The designer describes the overall system as
a set of different configurations, each composed of modules
from a library of parametrised modules, or custom modules
designed to the required interface specification. They also
describe how the system should adapt between different valid
configurations in software. CoPR takes these descriptions and
creates a working partially reconfigurable system without the
designer needing to work at the detailed hardware level.

A. Specification

The primary designer inputs to CoPR are the configuration
and adaptation specifications. The configuration specification



Configurationb
Specification

Resourcebcalculation

Partitioning

Floorplanning

HardwarebIntegration

PARbandbBitGen

config.b
Manager

Softwarebintegration

Reconfig.b
Controller

Softwarebcompilation

Hardware Flow Software Flow

Adaptation
Specification

Bitstreams Softwarebexecutable

User

Vendorbtools

CoPR

Module
Library

Adaptation
APIs
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1 <configurations >
2 <config name="tx_chain">
3 <module name="encoder",source="encoder.v",input="DMA">
4 <parameter standard="enc1"/>
5 </module>
6 <module name="modulator",source="modulator.v",input="encoder">
7 <parameter standard="mod1"/>
8 </module>
9 </config>

10 <config name="rx_chain">
11 <module name="demodulator",source="demodulator.v"input="DMA">
12 <parameter standard="dmod1"/>
13 </module>
14 <module name="decoder",source="decoder.v",input="demodulator">
15 <parameter standard="dcod1"/>
16 </module>
17 </config>
18 ...
19 </configurations >

Fig. 6. Configuration specification in XML format. Each configuration is
specified by its name and the list of modules it connects.

details the different valid system configurations and the corre-
sponding library modules present in each configuration. It is
entered in XML format as shown in Fig. 6. Each configuration
has an associated name and the associated modules in the
processing chain. For each module, the HDL source file (in
Verilog) and its data source in the processing chain are also
specified. A special setting (input = DMA) indicates the start
of the chain with a software source supplying data over
DMA. While selecting modules, the user can specify which
parameters they require access to at run-time and constrain
their possible values. These parameter modifications may lead
to parametric or structural reconfiguration, which the runtime
takes care of.

Module parameters can be changed at runtime, and as
discussed in Section III-C, typically result in setting inter-
nal register values. CoPR automatically analyses parameter
definitions and elaborates the configuration specification to
include additional configurations resulting from parametric
reconfiguration of the system. The distinction between para-
metric and structural reconfiguration is thus abstracted from
the designer’s point of view, so that they have a unified model

for reconfiguration.
The adaptation specification contains the software code for

the adaptation manager described in Section III-D. Since the
low-level configuration management details are transparent to
the adaptation manager, it is implemented based on the con-
figuration names specified in the configuration specification
using general API functions.

B. Partitioning and Interface Generation
CoPR first uses the vendor synthesis tool (XST) to synthe-

sise all modules for the target FPGA to determine resource
requirements. The partitioning step involves determining the
number of reconfigurable regions (PRRs) and allocating mod-
ules to them. This step can significantly impact the resource
utilisation and reconfiguration time of the final implemen-
tation. We use our automated approach in [27] which uses
configuration information, and low-level architecture details to
arrive at an efficient partitioning. This step produces a list of
PRRs and the corresponding module allocation to them. The
Configuration Manager (CM) is also generated in this phase.
It offers the generic interface to the designer’s adaptation
specification, translating all reconfiguration requests at runtime
into low-level operations as required based on the resulting
partition.

Wrapper modules that instantiate the required modules are
then generated for each PRR, ensuring a unified interface
across different configurations. A pr system top wrapper is
also generated which instantiates and connects all the PRRs
as black boxes. The generated wrapper module is in IP core
format, which can be directly imported to Xilinx’s XPS
tool flow. As detailed in Section III-D, using a consistent
interface (AXI4-Stream and AXI4-Lite) across all the modules
enables automatic wrapper generation and automatic region
instantiation.

C. Floorplanning
The next step is to determine the physical locations of the

PRRs on the PL fabric. Regions must be rectangular in shape
and should not overlap. As discussed in Section III-D, the
basic unit for floorplanning is a tile. The kernel tessellation
approach in [28] is used to generate an efficient floorplan,
resulting in a user constraints file (UCF) that specifies the
coordinates of all PRRs.

D. Hardware Integration
At this stage the designer can add the outputs of partitioning

(pr system top wrapper) and floorplanning (UCF file) to a
Zynq embedded project using the Xilinx XPS software. The
AXI4-Lite interfaces of the wrapper module coming from
the reconfigurable modules are connected to a processor AXI
master interface. This step can also be automated, but designer
input offers the flexibility to choose additional system periph-
erals and to connect the input/output data stream from the PR
system either to the system memory or to external peripherals.
The designer is offered the choice between using the PCAP
controller in the PS, or the faster ZyCAP controller [29] we
provide as part of CoPR.



E. Placement and Routing and Bitstream Generation

The designer now runs the CoPR automation scripts which
direct the vendor placement and routing tools, then the bit-
stream generation tool to generate all the necessary partial
bitstreams and the full system bitstreams. The generated partial
bitstreams must then be copied to an SD card which is inserted
in the board. At system start-up, these partial bitstreams
are copied to DRAM automatically by the reconfiguration
manager, for optimal reconfiguration performance. CoPR is
written in Python and integrates with Xilinx command-line
tools and EDK 14.6.

F. Software Implementation

As described in Section IV-A, the adaptation specification is
programmed by the user, referring to the configuration names
defined in the configuration specification. Presently it is to be
written in C compatible with the Zynq ARM compiler. CoPR
automatically generates the configuration manager (CM) based
on the configuration specification and the output of the parti-
tioning step.

API functions are provided for determining the present
configuration (get_config()) and for changing configu-
ration (set_config(configuration_name)). The de-
signer does not need to know which partial bitstream corre-
sponds to which configuration or where they are stored. The
configuration name used in the function is the same as the one
specified by the user in the configuration specification file.

Additional get_param(module,parameter) and
set_param(module,parameter,value) functions
are provided for accessing hardware module parameters and
modifying them. Changing parameters sometimes leads to the
reconfiguration of modules, which is automatically handled by
the CM. Unlike other PR management flows, the user does not
have to explicitly call the partial bitstreams corresponding to a
specific configuration. This means that the software developer
can think in terms of modules and configurations, rather than
bitstreams or regions. All required PRR reconfigurations and
parameter changes are handled automatically. Fig. 7 shows
a sequence diagram corresponding to a set_config()
function call from the adaptation manager which results in
two PRR reconfigurations. The CM seamlessly manages the
process in a way that is transparent to the designer.

The CM also contains the ZyCAP driver which takes care
of bitstream caching and is non-blocking in nature, meaning
the low-level reconfiguration tasks do not adversely impact
other running software. The software modules are compiled
to generate the final software executable.

V. CASE STUDY

To demonstrate the effectiveness of CoPR, we implement
a multi-standard cognitive radio transmitter, comprising the
blocks shown in Fig. 8. The baseband transmitter can be
configured with different OFDM symbol lengths and frame
formats to support three standards: IEEE 802.11, IEEE 802.16,

Adaptation Mngr. Config. Mngr. ZyCAP Data Plane

set config()

config bit()

reconfig.

config bit()

reconfig.

Fig. 7. Sequence diagram showing a set_config() function call causing
reconfiguration of two regions.
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Fig. 8. An active processing chain for the radio transmitter case study.

and IEEE 802.22. An active transmission chain has the struc-
ture shown in Fig. 8. The main specifications of the transmitter
blocks are summarised in Table I.

TABLE I
PROCESSING SPECIFICATIONS FOR THE CASE STUDY.

Specifications IEEE 802.11 IEEE 802.16 IEEE 802.22

FFT size (NFFT ) 64 256 2048

CP Length 16 32 512

Number of data carriers 48 192 1440

Number of pilots 4 8 240

Modulation schemes QPSK, 16-QAM, 64-QAM

The Modulator supports QPSK, 16-QAM, and 64-QAM
modulation schemes. The Pilot Ins. block forms the OFDM
symbol according to the specification of the different IEEE
standards. The preamble (used for active gain control, frame
detection, synchronisation and channel estimation at the re-
ceiver) is inserted by the Preamble Ins. block. The IFFT block
performs the inverse-fast Fourier transform (IFFT) to modulate
the sub-carriers in the frequency domain. The parameters
of the pilot (NUM PILOT), preamble (CP LEN) and IFFT
(LEN) modules are standard-dependent and their modification
leads to structural reconfiguration. Overall, combining the
different OFDM standards and modulation schemes, there are
9 valid configurations, as shown in Table II.



TABLE II
RADIO TRANSMITTER CONFIGURATIONS.

Configuration Modulator Pilot Preamble IFFT
Tx 11 Q QPSK PI11 PR11 IFFT11

Tx 11 16 QAM16 PI11 PR11 IFFT11

Tx 11 64 QAM64 PI11 PR11 IFFT11

Tx 16 Q QPSK PI16 PR16 IFFT16

Tx 16 16 QAM16 PI16 PR16 IFFT16

Tx 16 64 QAM64 PI16 PR16 IFFT16

Tx 22 Q QPSK PI22 PR22 IFFT22

Tx 22 16 QAM16 PI22 PR22 IFFT22

Tx 22 64 QAM64 PI22 PR22 IFFT22

1 <configurations >
2 <config name=" conf_802_11">
3 <module name=" modulator", source =" modulator.v", input ="DMA">
4 <parameter SCM="QPSK ,QAM16 ,QAM64"/>
5 </module >
6 <module name="pilot", source =" modulator.v", input =" modulator">
7 <parameter NUM_PILOT ="4"/>
8 <parameter TYPE ="0"/>
9 </module >

10 <module name=" preamble", source =" pilot.v", input=" pilot">
11 <parameter CP_LEN ="16"/ >
12 </module >
13 <module name="ifft", source ="ifft.v", input=" preamble">
14 <parameter LEN ="64"/ >
15 </module >
16 </config >
17 ...
18 </configurations >

Fig. 9. Configuration specification in XML format for 802.11 standard.

In the configuration specification, only three are listed
(conf 802 11, conf 802 16 and conf 802 22) with a mod-
ulator parameter (SCM) that has three possible values, result-
ing in the 9 configurations. Fig. 9 shows the configuration
specification for the IEEE 802.11 configurations. Note that
from the designer’s perspective, there are 3 radio chains
with 3 possible modulation schemes each, set by the SCM
parameter, which can take any of the three values (QPSK,
QAM16 and QAM64). A single configuration is expanded
into three separate configurations by CoPR during the con-
figuration specification analysis. The parameter specifying the
pilot TYPE can also accept different runtime values, which
determines the sub-carrier type (such as null, data, positive
pilot, negative pilot). But modifying this parameter causes no
structural reconfiguration since this parameter only sets an
internal register through the AXI4-Lite interface.

1 ...
2 switch(configuration) {
3
4 case conf_802_11:
5 if (gpio == 2) {
6 mod = get_param(modulator ,SCM);
7 if (mod == "QPSK")
8 set_config(conf_802_16);
9 else if (mod == "QAM16")

10 set_config(conf_802_22);
11 }
12 else if (gpio == 3)
13 set_param(modulator ,SCM,"QAM64")
14 break;
15 ...

Fig. 10. Adaptation specification code excerpt.

The adaptation manager is written in C as a state machine
where each state represents a configuration listed in the
configuration specification file as shown in Fig. 10. External
events to trigger changes in configuration were emulated using
physical input pins that initiate a request to the reconfiguration
manager.

The baseband transmitter is implemented on a Xilinx ZC702
evaluation board hosting a Zynq XC7Z020. Running the
proposed partitioning flow on the configuration specification
generates a design with two PRRs, one containing only the
Modulator and the other containing the Pilot, Preamble, and
IFFT blocks. This reflects the expectation we might have,
given the different configurations, but importantly, the designer
need not determine or even be aware of this.

In Table III, we compare the resource requirements for
the design generated by CoPR, and using standard module-
based partitioning. A static fully-multiplexed implementation
is included for reference.

TABLE III
RESOURCE UTILISATION FOR DIFFERENT IMPLEMENTATIONS.

Implementation Registers LUTs BRAMs DSPs
Static 23223 17701 18 30
Single Region 15094 11089 11 15
Four Region 15364 11851 11 15
Proposed framework 15114 11204 11 15

It is clear that the PR approaches offer a significant saving
over a multiplexed static implementation in terms of area.
The scheme proposed by CoPR is also more efficient than
a standard one-region-per-module scheme, while being within
1% of the resource usage of the most resource efficient single-
region scheme.

TABLE IV
RECONFIGURATION TIME FOR PR AND NON-PR DESIGNS.

Scheme Bitstream (Bytes) Reconf. time (ms)
Full reconfiguration 4045564 31.12

Single Region 706192 5.18

Four Regions
Region-1 14544 0.11
Region-2 14544 0.11
Region-3 677104 5.12
Region-4 14544 0.11

Total 720736 5.45

Proposed PR method
Region-1 14544 0.11
Region-2 691648 5.07

Total 706192 5.18

Table IV shows the reconfiguration times for different
schemes using the Zynq PCAP (to allow for comparison with
a full reconfiguration). Using the ZyCAP controller included
in CoPR would reduce reconfiguration time by a factor of
3. A single region scheme requires the whole region to be



reconfigured any time one module is reconfigured. Since the
total resource requirement for the four region scheme is higher,
the total reconfiguration time is higher than the arrangement
determined by CoPR. CoPR places the modulator in its
own region, minimising the time taken to switch modulation
schemes too.

We have seen that CoPR generates an efficient PR design
in terms of both reconfiguration time and area, and does so
without the designer working at the FPGA architecture level.
Details of the physical implementation are adapted to allow the
adaptation specificaiotn to be programmed at a higher level,
greatly easing the design of PR systems.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced CoPR, a framework for the design of
dynamically adaptive hardware systems using partial recon-
figuration on Xilinx Zynq hybrid FPGAs. It takes a high-
level description of an adaptive system, automatically parti-
tions the design into reconfigurable regions and determines
a floorplan. Runtime adaptation control is also automatically
generated, isolating the designer from the low-level aspects
of the implementation. We have shown an example cognitive
radio application to demonstrate the effectiveness of CoPR.

We are working on porting the reconfiguration manager
to Linux and integrating CoPR with the new Xilinx Vivado
tool flow. CoPR is available as open source software to allow
adaptive systems designers to more easily implement adaptive
hardware systems using PR on hybrid FPGAs [30].
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