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The iDEA DSP Block-Based Soft Processor for FPGAs
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DSP blocks in modern FPGAs can be used for a wide range of arithmetic functions, offering increased
performance while saving logic resources for other uses. They have evolved to better support a plethora of
signal processing tasks, meaning that in other application domains they may be underutilised. The DSP48E1
primitives in new Xilinx devices support dynamic programmability that can help extend their usefulness; the
specific function of a DSP block can be modified on a cycle-by-cycle basis. However, the standard synthesis flow
does not leverage this flexibility in the vast majority of cases. The lean DSP Extension Architecture (iDEA)
presented in this article builds around the dynamic programmability of a single DSP48E1 primitive, with
minimal additional logic to create a general-purpose processor supporting a full instruction-set architecture.
The result is a very compact, fast processor that can execute a full gamut of general machine instructions.
We show a number of simple applications compiled using an MIPS compiler and translated to the iDEA
instruction set, comparing with a Xilinx MicroBlaze to show estimated performance figures. Being based on
the DSP48E1, this processor can be deployed across next-generation Xilinx Artix-7, Kintex-7, Virtex-7, and
Zynq families.
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1. INTRODUCTION

The flexibility of field programmable gate arrays (FPGAs) has been their key feature
and arises primarily from an architecture that provides a large amount of fine-grained,
general-purpose resources. However, as FPGAs have found use in particular applica-
tion domains and particular core functions have become almost uniformly required,
manufacturers have sought to improve their architectures through the provision of
hard blocks. Following the addition of memory blocks, hard multipliers were added to
speed up common signal processing tasks. These later evolved into multiply-accumulate
blocks, often used in filters. Since then, DSP blocks with a wide range of arithmetic
capabilities have become standard on all architectures across manufacturers and price
points.

The DSP48E1 primitive [Xilinx 2011b] is found on Xilinx Virtex-6, Artix-7, Kintex-7,
and Virtex-7 FPGAs, as well as the Zynq-7000 hybrid ARM-FPGA platform. It
boasts increased capabilities over previous generations of DSP blocks and is highly
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customisable. One key feature of this primitive that has motivated and enabled the
work presented in this article is its dynamic programmability. The DSP48E1 datapath
can be customised at runtime to compute a number of different functions, for example, it
is possible to use just the multiplier or to combine it with the accumulator or postadder,
as well as to include the preadder. The function to compute can be selected at runtime
on a cycle-by-cycle basis by modifying control signals. This enables the same primitive
instance to be used for different functions if a controller is added to appropriately set
the configuration. The DSP48E1 has a wider datapath, operates at higher frequency,
accepts more inputs, and is more flexible than previous DSP blocks. While these more
capable DSP blocks were previously only found in high-end FPGAs, the decision to
include them across all 7-series devices means that designs tailored to them are still
portable within the same vendor’s FPGAs, making architecture-targeted designs more
feasible.

The DSP48E1 primitive is composed of a preadder, multiplier, and adder/subtracter/
logic unit (ALU). These functions are all frequently required in typical DSP algorithms
like finite impulse-response filters. Though primarily intended for DSP applications,
the DSP48E1 can also be used in any application that requires high-speed arithmetic,
and the synthesis tools will infer them whenever wider arithmetic operations are used.
DSP blocks are more power efficient, operate at a higher frequency, and consume
less area than the equivalent operations implemented using the logic fabric. As such,
they are heavily used in the pipelined datapaths of computationally intensive applica-
tions [de Dinechin and Pasca 2011; Xu et al. 2014]. However, we have found that DSP
block inference by the synthesis tools can be suboptimal [Ronak and Fahmy 2012] and
the dynamic programmability feature is not mapped except in very restricted cases.
As the number of DSP blocks on modern devices increases, finding ways to use them
efficiently outside of their core application domain becomes necessary.

Today, FPGAs are often used to implement full systems rather than just accelera-
tors, hence processors have become a more important feature of many FPGA designs.
Previous attempts at introducing Power PC hard processors in the Virtex II Pro [Xilinx
2011c] and Virtex 4 FX [Xilinx 2010] were not entirely successful as a particular fixed
processor may not suit the wide range of applications that might be implemented on an
FPGA. Hence, “soft” processors built using logic resources have continued to dominate.
They have the advantage of flexibility; a designer can choose which features are needed
for their particular application. One issue with many soft processor designs is that they
pay little attention to the underlying architecture and hence exhibit poor performance.
While vendors do offer their own optimised designs, we have yet to see a processor
design built from the architecture up.

In this article, we present the design of a lightweight extension architecture built
around the DSP48E1 primitive, resulting in a lean, comprehensive, general-purpose
processor called iDEA. The design of iDEA is very much architecture focused, in order
to offer maximum performance while being as lean as possible. This work is a proof-
of-concept demonstration of how dynamic programmability of the DSP block means
the resources can be used beyond the current limits of synthesis inference for arith-
metic. This article details the architecture and instruction set, the design process, and
presents detailed performance results and further discussion beyond those presented
in Cheah et al. [2012a]. We feel this work has significant potential when one considers
the large number of such primitives available, even on low-end FPGAs. A lean soft
processor such as iDEA could serve as the basis for a massively parallel architecture
on reconfigurable fabric and enable research on how best to arrange and program such
systems.

iDEA is being released to the wider community in the hope that it will spur further
research [Cheah 2013].
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The remainder of this article is organised as follows. Section 2 covers related work,
while Section 3 discusses the functionality of the DSP48E1. Section 4 presents the
iDEA architecture and Section 5 details the instruction set. Section 6 discusses hard-
ware implementation results. Subsequently, Section 7 describes how we have compiled
and simulated small benchmark applications for iDEA and the resulting performance.
Finally, Section 8 concludes the article and presents our future work.

2. RELATED WORK

While pure algorithm acceleration is often done through the design of custom parallel
architectures, many supporting tasks within a complete FPGA-based system are more
suited to software implementation. Hence, soft processor cores have long been used
and now, more often than not, FPGA-based systems incorporate some sort of processor.
A processor enhances the flexibility of hardware by introducing some level of software
programmability to the system.

Although a hard processor can offer better performance than an equivalent soft
processor, they are inflexible and cannot be tailored to suit the needs of different ap-
plications. Furthermore, their fixed position in the fabric can complicate floorplanning,
and a large amount of supporting infrastructure is required in logic. If such a processor
is not used or underutilised, it represents a significant waste of silicon resources.

Meanwhile, soft processors have been widely adopted in many applications due to
their relative simplicity, customisability, and good tool-chain support. Soft processors
can be tailored to the specific needs of an application and, since they are implemented
entirely in the logic fabric, additional features can be easily added or removed at
design time. Commercial soft processors include the Xilinx MicroBlaze [Xilinx 2011a],
Altera Nios II [Altera 2011], ARM Cortex-M1 [ARM 2011], and LatticeMico32 [Lattice
Semiconductor 2009], in addition to the open-source Leon3 [Aeroflex Gaisler 2012].

Generally, FPGAs are used when there is a desire to accelerate a complex algorithm.
As such, a custom datapath is necessary, consuming a significant portion of the de-
sign effort. Soft processors generally find their use in the auxiliary functions of the
system, such as managing noncritical data movement, providing a configuration in-
terface [Vipin and Fahmy 2012], or even implementing the cognitive functions in an
adaptive system [Lotze et al. 2009]. The flexibility of their programming lends ease of
use to the system without adversely impacting the custom datapath.

FPGA vendors provide processors that are generally restricted to their own plat-
forms, limiting device choice when such cores are used in a design. Some effort has
been put into porting these cores to alternative architectures [Plavec et al. 2005;
Kranenburg and van Leuken 2010; Barthe et al. 2011]. However, the more generalised
a core, the less closely it fits the low-level target architecture and hence the less effi-
cient its implementation in terms of area and speed. This trade-off between portability
and efficiency is an important choice that must be made by the system designer.

Research on soft processors has focused on a variety of issues, including the influ-
ence of the underlying FPGA architecture on their performance. The work in LaForest
et al. [2012] exploits the low-level features of the FPGA architecture to design a mul-
tithreaded 10-stage processor that can run at the block RAM maximum of 550 MHz
on a Stratix IV device. No programming model was discussed in that work. The work
in Buciak and Botwicz [2007] utilises the full 36-bitwidth of a block RAM to design
36-bit instructions for improved performance. In addition, a number of application-
specific soft processors have been proposed, including networking-oriented [Buciak
and Botwicz 2007] and floating-point-specific [Kathiara and Leeser 2011; Lei et al.
2011] architectures.

Vector soft processors have also been proposed, where a single instruction operates
on an array of data. The work in Yu et al. [2008] explores a vector processor as an
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alternative to a custom hardware accelerator, further extended in Yiannacouras et al.
[2008] to a system that includes a main processor and a vector coprocessor. CUSTARD
[Dimond et al. 2005] is a multithreaded soft processor that uses custom instructions
for parallelising applications. A new soft vector architecture is proposed in Chou et al.
[2011]; the architecture uses a different storage medium, namely a scratchpad mem-
ory, in place of the typical register file. This work was further optimised in Severance
and Lemieux [2012] to improve performance and area. fSE [Milford and McAllister
2009] uses the dynamic programmability of the DSP48E1 primitive and extends logic
around it to support a set of instructions for signal processing operations. They demon-
strate a MIMO sphere decoder using these processors in Chu and McAllister [2010].
That work, however, is restricted to the instructions required in a specific domain and
generalisation is not discussed.

The motivation behind this work lies in the dynamic programmability of modern
DSP blocks, as well as the advantages we believe this offers in terms of using these
resources beyond the original intent of DSP applications and basic arithmetic through
the standard synthesis flow. As Xilinx now includes these primitives across all their
products from low-cost to high-end, it becomes imperative to find more general ways
to exploit them and an architecture-specific design that can still find general use while
remaining somewhat portable.

In Cheah et al. [2012b], we explored how a DSP block could be controlled to allow it to
implement general instructions. In Brosser et al. [2013], we applied the same principle
to basic floating-point operations and in Cheah et al. [2012a], we extended this idea
and presented the first discussion of the iDEA soft processor and some preliminary
results. iDEA incorporates standard, general processing instructions to enable a wide
spectrum of applications, instead of limiting the instructions to only cater to specific
domains. In this article we explore the motivation further, discuss design optimisations,
and present a much wider range of results including a detailed motivation for building
a custom compiler.

3. THE DSP48E1 PRIMITIVE

3.1. Evolution of the DSP Block

The Xilinx DSP48E1 primitive is an embedded hard core present in the Xilinx Virtex-6
and new 7-series FPGAs. Designed for high-speed digital signal processing computa-
tion, it is composed of a multiplier, preadder, and arithmetic logic unit (ALU), along
with various registers and multiplexers. A host of configuration inputs allow the func-
tionality of the primitive to be manipulated at both runtime and compile time. It can be
configured to support various operations like multiply-add, add-multiply-add, pattern
matching, and barrel shifting, among others [Xilinx 2011b]. As DSP blocks evolved
from simple multiplier blocks to include extra functions, control inputs were added to
allow functionality to be modified.

Over time, numerous enhancements have been made to the architecture to improve
speed, frequency, logic functionality, and controllability. Table I presents a comparison
of previous iterations of the DSP block from Xilinx. The input wordlengths have in-
creased, along with more supported functions, and the maximum frequency has risen.
ALU-type functionality has also been incorporated, allowing logical operations. Fur-
ther functions such as pattern detection logic, cascade paths, and SIMD mode are all
incorporated into the latest DSP48E1 primitive.

This work has been motivated by a recognition of the possibilities afforded by the
dynamic programmability of the Xilinx DSP block. Other vendors’ blocks are designed
only to support basic multiply and add operations, in a few combinations, in contrast
to the many possible configurations for a DSP48E1. Furthermore, other DSP blocks
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Table I. Comparison of Multiplier and DSP Primitives in Xilinx Devices

Max
Freq Port Width ALU Control Pre- Patt.

Primitive Device (MHz) Mult A B C D Function Signals add Detect
MULT18X18S Virtex-2 105 18×18 18 18 — — — — No No
DSP48A Spartan-3A 250 18×18 18 18 48 18 add, sub opmode Yes No
DSP48A1 Spartan-6 250 18×18 18 18 48 18 add, sub opmode Yes No
DSP48 Virtex-4 500 18×18 18 18 48 — add, sub opmode No No
DSP48E Virtex-5 550 25×18 30 18 48 — add, sub, opmode, No Yes

logic alumode
DSP48E1 Virtex-6 600

25 × 18 30 18 48 25
add,
sub,
logic

opmode,
alumode,
inmode

Yes Yes
Artix-7 628

Kintex-7 741
Virtex-7 741

Fig. 1. Architecture of the DSP48E1.

have their configuration fixed at design time, meaning their functionality cannot be
dynamically modified. Hence, the basic premise behind this work is not currently
applicable to other vendor’s DSP blocks at present.

3.2. Xilinx DSP48E1 Primitive

Figure 1 shows a representation of the DSP48E1 slice with three ports, A, B, and C,
that supply inputs to the multiplier and add/sub/logic block, as well as port D that
allows a value to be added to the A input prior to multiplication. We later discuss why
the D input is not used in iDEA.

In general, the datapath of all arithmetic operations can be categorised into mul-
tiplier and nonmultiplier paths. The data inputs of a multiplier path are fed to a
multiplier unit before being processed by the ALU unit. Except for multiply and shift,
other operations bypass the multiplier and the data travels through the nonmultiplier
path. As shown in Figures 2 and 3, the ALU unit is utilised in both multiplier and
nonmultiplier paths.

The functionality of DSP48E1 is controlled by a combination of dynamic control
signals and static parameter attributes. Dynamic control signals allow it to run in
different configuration modes in each clock cycle. For instance, the ALU operation can
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Fig. 2. Datapath for multiplication. Path C is not used.

Fig. 3. Datapath for addition. The extra register C0 balance the pipeline.

be changed by modifying ALUMODE, the ALU input selection by modifying OPMODE,
and the preadder and input pipeline by modifying INMODE. Other static parameter
attributes are specified and programmed at compile time and cannot be modified at
runtime. Table II summarises the functionality of the dynamic control signals.

3.3. Executing Instructions on the DSP48E1

Four different datapath configurations are explained here to demonstrate the flexibility
and capability of the DSP48E1 in its various operating modes.

3.3.1. Multiplication. In multiplication, input data is passed through ports A and B as
the first and second operand, respectively, with port C unused. Four register stages,
A1, B1, M, and P, are enabled along the multiplication datapath to achieve maximum
frequency. A simplified version of the datapath is shown in Figure 2. The number
of registers in the multiplier input path is controlled by the parameters AREG and
BREG that are fixed at compile time. Inputs are registered by A1 and B1 prior to
entering the multiplier, while final results emerge at register P two cycles later. In other
multiplication-based operations, the P output is fed back to the ALU for accumulation
purposes.

3.3.2. Addition. When not using a multiplier, inputs A, B, and C are fed straight to
the ALU unit. To compensate for bypassing of the M register, registers A2 and B2 are
enabled to keep the pipeline length the same. When the multiplier is bypassed, the
first operand is split over ports A and B, while port C carries the second operand. In
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Table II. DSP48E1 Dynamic Control Signals

Signal Description
ALUMODE Selects ALU arithmetic function
OPMODE Selects input values to ALU
INMODE Selects preadder functionality and registers in path A,

B and D
CARRYINSEL Selects input carry source
CEA1, CEA2 Enable register A1, A2
CEB1, CEB2 Enable register B1, B2
CEC Enable register C
CEAD Enable register AD
CED Enable register D
CEM Enable register M
CEP Enable register P

Fig. 4. Datapath for compare. Pattern detect logic compares the value of C and P.

order to match the pipeline stages of paths A and B, an extra register is placed in the
logic fabric in addition to the internal C register, as shown in Figure 3.

3.3.3. Compare. The compare operation can be configured using a nonmultiplier dat-
apath with additional pattern detect logic enabled. The pattern detect logic compares
the value in register P against a pattern input. If the pattern matches, the patterndetect
output signal is set to high. The pattern field can be obtained from two sources, namely
a dynamic source from input C or a static parameter field.

Figure 4 shows the datapath of a compare operation. Path A:B carries the first
operand while path C carries the second operand that is the value to be compared
against. The comparison is made between P and C. Prior to reaching P, all input data is
processed by the ALU so we must ensure the value carried by A:B remains unchanged
through the ALU. Logical AND is applied between A:B and C through the ALU. If the
two values are equal, the result at P is the same A:B, since ANDing a value with itself
returns the same value. At the pattern detect logic, the P output is again compared
with C and if P is equal to C, the status flag patterndetect is set to high. Otherwise, if
the pattern does not match, the status flag is set to low. In iDEA, we use subtraction
followed by a comparison on the output, performed in logic, to test equality, greater
than, and less than.

3.3.4. Shift. Shift shares the same datapath configuration as multiply. Data is shifted
left n bits by multiplying by 2n. This requires additional logic for a lookup table to
convert n to 2n before entering path B. For a shift right, higher-order bits of P are

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 19, Publication date: August 2014.



19:8 H. Y. Cheah et al.

Fig. 5. Datapath for shift. An extra shift LUT is required.

Table III. Operations Supported by the DSP48E1

DSP Stage
Operation INMODE OPMODE ALUMODE Path 1 2 3
mul 10001 0000101 0000 mult A1, B1 M P
add 00000 0110011 0000 non-mult A1, B1, C0 A2, B2, C P
sub 00000 0110011 0011 non-mult A1, B1, C0 A2, B2, C P
and 00000 0110011 1100 non-mult A1, B1, C0 A2, B2, C P
xor 00000 0110011 0100 non-mult A1, B1, C0 A2, B2, C P
xnr 00000 0110011 0101 non-mult A1, B1, C0 A2, B2, C P
or 00000 0111011 1100 non-mult A1, B1, C0 A2, B2, C P
nor 00000 0110011 1110 non-mult A1, B1, C0 A2, B2, C P
not 00000 0110011 1101 non-mult A1, B1, C0 A2, B2, C P
nand 00000 0110011 1100 non-mult A1, B1, C0 A2, B2, C P
mul-add 10001 0110101 0000 both A1, B1, C0 M, C P
mul-sub 10001 0110101 0001 both A1, B1, C0 M, C P
mul-acc 10001 1000101 0000 both A1, B1, C0 M, P P

used instead of the normal lower-order bits. Logical shift left, logical shift right, and
arithmetic shift right can all be achieved using the DSP48E1 slice.

The preceding examples demonstrate the flexibility of the DSP48E1 primitive. In
a similar manner, we can enable a number of different instructions as detailed in
Table III.

4. PROCESSOR ARCHITECTURE

iDEA is a scalar processor based on a load-store RISC architecture. The main advan-
tage of using RISC is the uniform instruction set that leads to more straightforward
decode logic and simpler hardware. It is worth noting that this decision is to allow us
to demonstrate the feasibility of our approach, but alternative architectures are some-
thing we hope to explore in the future. iDEA executes 32-bit instructions on 32-bit
data. Only a single DSP48E1 is used, with much of the processing for arithmetic, log-
ical operations, and program control done within it. The overall architecture is shown
in Figure 6.

We use a RAM32M LUT-based memory primitive for the register file and a
RAMB36E1 block RAM primitive for instruction and data memory. While synthesis
tools can infer primitives from high-level code, this work is all about leveraging
the wide array of low-level functions supported by the DSP48E1, so we directly
instantiate the primitive to exercise full control over it. The synthesis tools are
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Fig. 6. iDEA processor block diagram.

currently unable to take full advantage of the dynamic programmability of the DSP
block. Similarly, the RAM32M is directly instantiated for efficiency.

4.1. Instruction and Data Memory

The instruction and data memories are built using Block RAMs (BRAMs). BRAM read
and write operations require only 1 clock cycle and the user has the option to enable
an internal output register to improve the clock-to-output timing of the read path. The
internal register is located inside the BRAM itself and, if enabled, improves the timing
by 2.7× at the cost of an extra clock cycle of latency.

Adding another register in the logic fabric to register the output of the BRAM further
improves timing. Without this, the critical path runs from the BRAM to the register of
the next pipeline stage. For example, if the logic output register of the instruction mem-
ory is absent, the critical path will terminate at the pipeline register of the instruction
decode stage.

We implement the instruction and data memories through inference rather than
using direct instantiation or the CORE generator, as this eases design and portability
while still offering the maximum performance.

4.2. Register File

The register file uses the vendor-supplied RAM32M primitive. This is an efficient quad-
port (3 read, 1 read/write) memory primitive that is implemented in LUTs. The four
ports are required to support two reads and one write in each clock cycle; block RAMs
only provide two ports. To implement a 32 × 32-bit register file, 16 of these primitives
are aggregated. While manual instantiation ensures only the required logic is used. The
RAM32M is an optimised collection of LUT resources, and a 32 × 32 register file built
using 16 RAM32Ms consumes 64 LUTs while relying on synthesis inference resulting
from usage of 128 LUTs.

Using a block RAM for the register file may be beneficial as it would offer a signifi-
cantly higher register count, however, this would require a custom design to facilitate
the quad-port interface. In replication, an extra BRAM is needed to support each addi-
tional read port while the number of write ports remains unchanged. If banking is used,
data is divided across multiple memories, but each read/write port can only access its
own memory section. Similar to replication, banking requires 2 BRAMs for a 3-read,
1-write register file.
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Table IV. Frequency for Different Pipeline
Configurations of the DSP48E1 in Virtex-6

Speed-2

Pipeline Freq. (MHz)
3-stage without pattern detect 540
3-stage with pattern detect 483
2-stage without pattern detect 311
2-stage with pattern detect 286
1-stage without pattern detect 233
1-stage with pattern detect 219

Creating multiported memories for an arbitrary number of ports out of BRAMs is
possible, but entails both an area and speed overhead. In LaForest and Steffan [2010],
an implementation using Altera M9K BRAMs for a 2-write, 4-read multiported memory
achieves a clock frequency of 361 MHz, a 52.3% drop in frequency against a distinct
M9K primitive. Hence, since we are targeting a design that is as close to the silicon
capabilities as possible with as small an area as possible we do not use BRAMs for the
register file, though this would be an option for more advanced architectures.

4.3. Execution Unit

In a load-store architecture, operands are fetched from the register file and fed into
the ALU for processing. The results are then written back into the register file after
processing is complete. If a memory write is desired, a separate instruction is needed to
store the data from a register into memory. Likewise, a similar separate instruction is
required to read from memory into the register file. Other than arithmetic and logical
instructions, the execution unit is responsible for processing control instructions as
well, however, memory access instructions do not require processing in the execution
unit and hence it is bypassed for memory read/write operations.

The execution unit is built using the DSP48E1 primitive as the processing core. Only
through direct instantiation can we exploit the dynamic flexibility of the control signals
of the DSP block.

All three pipeline stages of the DSP48E1 are enabled to allow it to run at its maxi-
mum frequency. With only a single stage enabled, the highest frequency achievable is
reduced by half. Table IV shows the advertised frequency for different configurations
of the primitive. To further improve performance, a register is added to the output
of the primitive, helping to ensure that routing delays at the output do not impact
performance. As a result, the total latency of the execution unit is 4 clock cycles.

The DSP48E1 primitive is able to support various arithmetic functions and we aim
to utilise as many of these as possible in the design of our execution unit. Due to
the adverse impact on the frequency of enabling the pattern detector, we instead use
subtraction with a subsequent comparison for this purpose. This also allows us to test
for greater than and less than, in addition to equality.

DSP48E1 features that are relevant to iDEA functionality are:

—25×18-bit multiplier;
—48-bit Arithmetic and Logic Unit (ALU) with add/subtract and bitwise logic

operations;
—ports A and B as separate inputs to the multiplier and concatenated input to the

ALU;
—port C as input to the ALU;
—INMODE dynamic control signal for balanced pipelining when switching between

multiply and nonmultiply operations;
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—OPMODE dynamic control signal for selecting operating modes;
—ALUMODE dynamic control signal for selecting ALU modes; and
—optional input, pipeline, and output registers

Incorporating the D input and preadder would make the instruction format more
complex, likely requiring it to be widened, and would also require a more complex
register file design to support four simultaneous reads. Preliminary compiler analysis
on a set of complex benchmarks has shown that patterns of add-multiply-add/sub
instructions are very rarely used. Since we do not have access to intermediate stages of
the pipeline within the DSP block, we can only create a merged instruction when three
suitable operations are cascaded with no external dependencies, hence the benefits of
incorporating the D input and preadder into iDEA are far outweighed by the resulting
cost, and so we disable them.

4.4. Other Functional Units

All other functional units are implemented in LUTs. These include the program counter,
branch logic, control unit, status register, input map, and an adder for memory address
generation. All the modules are combinational circuits except for the program counter
and status register that are synchronous. These modules occupy minimal LUT and
flip-flop resources as the bulk of processor functionality is inside the DSP48E1, thus
achieving a significant area and power advantage over a LUT-based implementation.

5. THE IDEA INSTRUCTION SET

The iDEA instruction set is listed in Table V. Though not as extensive as more advanced
commercial processors, it is sufficient for illustrating the functionality of iDEA in
executing arithmetic and data processing applications. A uniform 32-bit instruction
width is used. Unlike a typical execution unit that processes only two input operands,
our execution unit is capable of processing three input operands and the instruction
format is designed to cater for a third operand field to reflect the extra processing
capability, as detailed in Table VI.

5.1. Input Mapping

The location of input operands in the register file is specified in an instruction. Register
file locations are addressed using the Ra, Rb, and Rc fields while immediate operands—
represented by #imm11 and #imm16–are hard-coded. The width of operands is fixed at
32 bits and immediate operands of less than 32 bits are sign-extended to the width
of the desired word. The input ports of the DSP48E1 have widths of 30 bits, 18 bits,
and 48 bits for ports A, B, and C, respectively; these widths are distinct and not byte-
multiples. To process 32-bit operands, data must be correctly applied to these inputs.

The execution unit is designed to take two new 32-bit operands, addressed by Ra and
Rb, in each clock cycle. In the case of 2-operation, 3-operand instructions, a third 32-bit
operand addressed by Rc is also used. Mapping a 32-bit operand to the DSP48E1 input
ports requires it to be split according the ports that it is mapped to, particularly for
ports A and B, which are concatenated for ALU functions. The dataflow through the
DSP48E1 can be represented as

P = C + A : B, (1)

and

P = C + A× B, (2)

where P is the output port of DSP48E1. The + operation is performed by the DSP48E1
ALU and can include add, subtract and logical functions.
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Table V. iDEA Instruction Set

Instruction Assembly Operation
Arithmetic/ Logical
nop nop none

add add rd, ra, rb rd[31:0] = ra[31:0] + rb[31:0]

sub sub rd, ra, rb rd[31:0] = ra[31:0] − rb[31:0]

mul mul rd, rb, rc rd[31:0] = rb[15:0] × rc[15:0]

mac mac rd, rb, rc, rp rd[31:0] = rb[15:0] × rc[15:0] + rp[31:0]

madd madd rd, ra, rb, rc rd[31:0] = ra[31:0] + (rb[15:0] × rc[15:0])

msub msub rd, ra, rb, rc rd[31:0] = ra[31:0] − (rb[15:0] × rc[15:0])

and and rd, ra, rb rd[31:0] = ra[31:0] and rb[31:0]

xor xor rd, ra, rb rd[31:0] = ra[31:0] xor rb[31:0]

xnr xnr rd, ra, rb rd[31:0] = ra[31:0] xnr rb[31:0]

or or rd, ra, rb rd[31:0] = ra[31:0] or rb[31:0]

nor nor rd, ra, rb rd[31:0] = ra[31:0] nor rb[31:0]

not not rd, ra, rb rd[31:0] = ra[31:0] not rb[31:0]

nand nand rd, ra, rb rd[31:0] = ra[31:0] nand rb[31:0]

Data Transfer
mov mov rd, ra rd[31:0] = ra[31:0]

movu movu rd, #imm16 rd[31:16] = #imm16[15:0]

movl movl rd, #imm16 rd[15:0] = #imm16[15:0]

ldr ldr rd, [ra, rb] rd[31:0] = mem[ra[31:0] + rb[31:0]]

str str rd, [ra, rb] mem[ra[31:0] + rb[31:0]] = rd[31:0]

Program Control
cmp cmp rd, ra, rb rd = 1 if ra[31:0] < rb[31:0]

cmp rd, ra, #imm11 rd = 1 if ra[31:0] < #imm11[10:0]

b b #target21 pc = #target21[20:0]

cb{cond} cb ra, rb, #target11 (ra condition rb) pc = #target11[10:0]

Table VI. iDEA Processor Instruction Format

Data Processing 31 28 27 26 25 21 20 16 15 11 10 6 5 0

add/sub/logic reg Cond S* 0 Opcode Rd Ra Rb 0 0 0 0 0 0
add/sub imm Cond S* 1 Opcode Rd Ra #imm11
mul reg Cond S* 0 Opcode Rd 0 0 0 0 0 Rb Rc 0
mac/madd/msub reg Cond S* 0 Opcode Rd Ra Rb Rc 0

Data Transfer
movu/movl imm Cond 0 1 Opcode Rd #imm16
ldr Cond 0 0 Opcode Rd Base Ad. Offset Ad. 0 0 0 0 0 0
str Cond 0 0 Opcode 0 0 0 0 0 Base Ad. Offset Ad. Rd 0

Program Control
cmp reg Cond S* 0 Opcode Rd Ra Rb 0 0 0 0 0 0
cmp imm Cond S* 1 Opcode Rd Ra #imm11
b Always 0 0 Opcode #target21
cb Cond S* 0 Opcode Rd Ra #target11

Eq. (1) shows the flow for a 2-operand, single-operation instruction. The first operand,
Ra, is mapped and sign-extended to the 48-bit port C. The second 32-bit operand, Rb,
must be split across ports A and B; the least significant 18 bits are assigned to port B
and the most significant 14 bits sign-extended to port A. This is valid for operations
that do not require a multiplier.

Eq. (2) shows a 3-operand, 2-operation instruction where Ra is mapped to port C,
while Rb is assigned to port A and Rc to port B. The width of Rb and Rc is limited to 16
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Table VII. Port Mapping for Different Arithmetic Functions

Assembly Inst. Operation Port A (30b) Port B (18b) Port C (48b)
add Rd, Ra, Rb
add Rd, Ra, #imm11

C + A:B
C + A:B

16{Rb[31]}, Rb[31:18]
30{1’b0}

Rb[17:0]
7{imm[10]}, imm[10:0]

16{Ra[31]}, Ra[31:0]
16{Ra[31]}, Ra[31:0]

sub Rd, Ra, Rb C − A:B 16{Rb[31]}, Rb[31:18] Rb[17:0] 16{Ra[31]}, Ra[31:0]
mul Rd, Rb, Rc C + A× B 15{Rb[15]}, Rb[15:0] 2{Rc[15]}, Rc[15:0] 48{1’b0}
madd Rd, Ra, Rb, Rc C + A× B 15{Rb[15]}, Rb[15:0] 2{Rb[15]}, Rc[15:0] 16{Ra[31]}, Ra[31:0]
movl Rd, #imm16 C + A× B 30{1’b0} 18{1’b0} 32{1’b0}, imm[15:0]

Fig. 7. 2-operand input map.

Fig. 8. 3-operand input map.

bits for multiplication. In the case of multiply only, port C is set to zero. In multiply-add,
multiply-sub, or multiply-acc, port C carries nonzero data.

The DSP48E1 can be dynamically switched between operations defined by Eqs. (1)
and (2) through the INMODE, OPMODE, and ALUMODE control signals. Table VII
illustrates the port mappings for some common instructions while Figure 7 and Figure 8
show how the fields in the instruction are mapped to an operation in the DSP48E1
execution unit.
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Table VIII. Frequency and Area for iDEA and MicroBlaze

Stages Freq. (MHz) Registers LUTs DSP48E1
iDEA
5 193 273 255 1
6 257 256 254 1
7 266 308 263 1
8 311 319 293 1
9 405 413 321 1
9 LUTs 173 571 864 1
MicroBlaze
3 189 276 630 3
5 211 518 897 3

5.2. DSP Output

The multiplier in the DSP48E1 enables multiplication and shift to be efficiently per-
formed. With the ALU that follows it, two consecutive arithmetic operations on the
same set of data can be performed, including multiply-add and multiply-accumulate.
The DSP48E1 primitive produces an output of 48 bits through port P, regardless of the
type of arithmetic operation; the least significant 32 are written back to the register
file.

It is important to note that the multiplier width is only 25×18 bits. To fully im-
plement a 32×32 multiplier, three DSP48E1 primitives can be cascaded together,
but this triples the resource requirement for the benefit of only a single instruction.
Hence, we restrict multiplication to 16×16 bits, producing a 32-bit result that still
fits the iDEA specification. A wider multiplication would not be beneficial since the
result would have to be truncated to fit the 32-bit data format. For operations that
involve the multiplier, data inputs are limited to 16 bits while for other operations
they are 32 bits. If a wide multiply is required, it can be executed as a series of 16-bit
multiplications.

For floating-point operations, we can use the compiler to translate them into a series
of steps that can be executed using the DSP48E1 primitive as per the method in Brosser
et al. [2013].

6. IMPLEMENTATION RESULTS

In this section, we analyse the area and performance of iDEA and provide an at-
a-glance comparison with MicroBlaze, a commercial soft-core processor from Xilinx.
In Section 7, we benchmark a few general-purpose applications to demonstrate the
functionality of iDEA.

All implementation and testing was performed on a Xilinx Virtex-6 XC6VLX240T-2
device as present on the Xilinx ML605 development board.

6.1. Area and Frequency Results

Table VIII shows the post-place-and-route implementation results for iDEA and Mi-
croBlaze. For iDEA, the implementation is performed using Xilinx ISE 14.5 while
MicroBlaze is implemented using Xilinx Platform Studio (XPS) 14.5. Both implementa-
tions include memory subsystems and the processor core and a total of 4KB is allocated
for instruction and data memory for each of the processors.

As the Xilinx DSP48E1 and RAMB36E1 primitives used in iDEA are highly pipelin-
able, we study the effect of varying the number of pipeline stages from 1 to 3. This
translates to an overall processor pipeline depth of 5 to 9 stages. As expected, a deeper
pipeline yields a higher clock frequency; from the minimum pipeline depth of 5 to a
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Table IX. iDEA in Artix-7, Kintex-7, and Virtex-7

Resource Virtex-6 Artix-7 Kintex-7 Virtex-7
Slice Registers 413 416 420 420
Slice LUTs 321 324 343 324
RAMB36E1 2 2 2 2
DSP48E1 1 1 1 1
Freq (MHz) 405 281 410 378

maximum pipeline depth of 9, the clock frequency increases by 52% at a cost of 33%
more slice registers and 20.5% more slice LUTs. The extra slice registers and LUTs are
consumed by extra registers external to the DSP block, required to maintain alignment.

In order to quantify the benefit of using the DSP48E1 in the manner we have, we
coded the exact behaviour of the DSP-based execution unit and implemented it in the
logic fabric. Table VIII shows that a LUT-based equivalent occupies 38% more registers
and 169% more LUTs compared to iDEA. Apart from slice logic, the tool still synthesized
a DSP block for the 16×16 multiplication, whereas the LUT-based equivalent achieved
a clock frequency of 173 MHz, just 42% of iDEA’s frequency.

The MicroBlaze results are presented purely to give a sense of relative scale and we
do not claim that iDEA can replace MicroBlaze in all scenarios. To make the compar-
ison fairer, we configure the smallest possible MicroBlaze while keeping all the basic
functionality necessary to run applications. Extra peripherals and features that are
not available in iDEA, such as cache, memory management, and the debug module,
are disabled. The multiplier is enabled and set to the minimum configurable width of
32 bits. Other hardware like the barrel shifter, floating-point unit, integer divider, and
pattern comparator are disabled.

MicroBlaze can be configured with two different pipeline depths-3 stages for an
area-optimized version or 5 stages for a performance-optimized version. The 5-stage
MicroBlaze uses 25% more slice registers and 179% more slice LUTs. MicroBlaze in-
cludes some additional fixed features such as special-purpose registers, instruction
buffer, and bus interface that contribute to the higher logic count. These MicroBlaze
features are not optional and cannot be removed by the end-user. MicroBlaze also sup-
ports a wider multiplication width of 32 × 32, resulting in the use of 3 DSP48E1 slices
instead of one. A 3-stage area-optimized MicroBlaze occupies 33% fewer slice registers
and 96% more LUTs than iDEA. A reduced 5-stage version of iDEA would be on par
with the 3-stage MicroBlaze in terms of frequency and slice registers, but still consume
59% fewer slice LUTs.

To confirm the portability of iDEA, we also implemented the design on the Xilinx
Artix-7, Kintex-7, and Virtex-7 families. The resource consumption and maximum
operating frequency post-place-and-route, shown in Table IX, are mostly in line with
the Virtex-6 results, with the low-cost Artix-7 exhibiting reduced frequency. These
results may improve slightly as tools mature, as is generally the case for new devices.

6.2. Optimising the Number of Pipeline Stages

A crucial question to answer is how to balance the number of pipeline stages with the
frequency of operation. Enabling extra pipeline stages in FPGA primitives allows us
to maximise operating frequency as demonstrated in the previous section, however, we
must also consider how this impacts the processor as a whole, as well as the resulting
costs in executing code. Table X shows a breakdown of the pipeline stages of each
stage of the processor, alongside the resulting achievable frequency for different overall
pipeline depths. Note that we have taken the best result where different breakdowns
are possible. It is clear that 9 pipeline stages provides the highest performance in terms
of operating frequency. However, this comes at a cost: since iDEA is a simple processor
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Table X. iDEA Achievable Frequency for Different
Pipeline Lengths

IF ID EX WB Total Freq. (MHz)
1 1 2 1 5 193
2 1 2 1 6 257
3 1 2 1 7 266
3 1 3 1 8 311
3 1 4 1 9 405

Fig. 9. Cycle count and execution time for FIR application with varied number of pipeline stages.

with no data forwarding, we must insert empty instructions to overcome data hazards.
With a longer pipeline, more of these are needed, thus impacting the actual runtime.

As an example, we take an FIR filter application and investigate the result of increas-
ing the number of pipeline stages on the total number of cycles required after insertion
of blank instructions and factoring in the increased frequency. We do this using the
compiler and simulator detailed in Section 7. The FIR example is representative of the
other benchmarks we will describe in Section 7 in this regard.

Looking at Figure 9, the cycle count shows only a slight increase, namely, 1.7%, from
5 to 6 and 6 to 7 pipeline stages, while from 7 to 8 and from 8 to 9 stages we see a
steep increase of 18.9% and 15.9%, respectively (note that the different optimisation
levels are discussed in Section 7). This can be explained by the fact that from 5 stages
to 6 or 7, only IF stages are added to the pipeline. IF stages are placed before ID in
the pipeline, which means that they will not contribute to latency when waiting for a
previous instruction to finish, as IF stages can overlap with the previous instruction.
This is illustrated by Figure 10, showing the execution of two consecutive instructions
in iDEA for 6, 7, and 8 pipeline stages. In this example, the second instruction depends
on the result of the first instruction.

By adding EX/MEM stages as we do when increasing from 7 to 8 or 8 to 9 pipeline
stages, we add one extra clock cycle of latency for dependent instructions, resulting
in one extra NOP being inserted to resolve the dependency. This extra NOP adds to
the instruction count, hence the increase in cycle count seen in Figure 9 can be fully
attributed to the added NOP insertions required. Adding different types of stages will
impact the cycle count in different ways, depending on how the instructions can overlap
when there is a dependency and also on how branching is implemented. While adding
IF stages will not increase the number of NOPs inserted to resolve dependencies, it
will still increase the number of cycles that are lost when branching, because of the
added delay between fetching the branch instruction to the actual update of the PC.
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Fig. 10. Dependency in iDEA pipeline for 6, 7, and 8 stages.

This explains why there is a slight increase from 5 to 6 and from 6 to 7 stages. However,
this has a comparatively small impact on cycle count for most programs. As expected,
-O0 has a much higher cycle count than the other optimisation levels, while for FIR,
the -O3-optimised code benefits greatly from loop unrolling and shows a much lower
cycle count than -O2.

The execution-time graph brings together the cycle count and operating frequency
presented in Table X. It shows a steep improvement from 5 to 6 stages and from 8 to 9
stages, attributable to the large frequency increases between these numbers of stages.
Going from 7 to 8 stages, the percentage of increases in cycle count and frequency are
roughly equal, resulting in almost equal execution time. The 9-stage pipeline gives the
lowest execution time for FIR, despite having the largest number of NOP insertions.
This result applies to the other benchmarks as well, making the 9-stage pipeline the
best performing overall. These 9 stages are divided as follows: 3 stages for instruction
fetch, 1 stage for instruction decode, 4 stages for execute, and 1 stage for write-back.
Not all instructions require the full 9 stages, for example, branch instructions and data
memory accesses execute in fewer cycles.

7. IDEA SIMULATOR AND BENCHMARKS

Having built iDEA, we would now like to evaluate its performance for executing appli-
cations. It is important to state that iDEA is, by definition, a lean processor for which
performance was not the primary goal. Additionally, as of now, there is no optimised
compiler for iDEA, so the results presented in this section are aimed primarily at
proving functionality and giving a relative performance measure. Only with a custom
compiler can we extract maximum performance and enable the use of iDEA’s unique
extra capabilities.

For the MicroBlaze results, the C applications are compiled using the C compiler from
the Xilinx Software Development Kit 14.5 (SDK), mb-gcc. The compiler automatically
ensures it does not generate instructions for features of the MicroBlaze that have been
disabled in our implementation.

We have prepared a number of small application benchmarks and gather results
using an instruction-set simulator written for iDEA. Using the simulator, we obtain
performance metrics such as instruction count and number of clock cycles, as well as
ensuring logical and functional correctness. Since we do not have a custom compiler,
we chose an existing MIPS I compiler that supports an instruction set similar to that
of iDEA. The benchmark programs are written in C and compiled to elf32-bigmips
assembly code using the mips-gcc toolset. The instructions generated must be trans-
lated to equivalent iDEA instructions. The simulator consists of an assembly code con-
verter and a pipeline simulator. The complete tool chain from C program to simulator
is illustrated in Figure 11.
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Fig. 11. Simulator and tool-chain flow.

7.1. Assembly Converter

The assembly converter takes as its input an elf32-bigmips format assembly file, the
standard assembly code format produced by mips-elf-gcc. By setting the appropriate
flags, -c -g -O, the compiler bypasses the linker, instead giving only the assembly code.
This assembly code is converted to the format used by the iDEA simulator and then pro-
cessed to prepare for execution in the simulator. These preparations include expanding
pseudo-instructions found in the assembly code, performing instruction substitutions
where necessary to fit the iDEA instruction set, NOP insertion to resolve dependen-
cies, and classification of instructions for collation of statistics. The simulator’s data
memory is preloaded with the data specified in the elf32-bigmips assembly code. This
preloaded data includes constants declared in the original C program. Because the
iDEA architecture does not currently implement hardware stalling or data forwarding,
dependencies have to be resolved in software. The code is checked for dependencies and
NOP instructions are inserted where necessary to avoid data hazards.

A dependency is detected if the operand register of an instruction is equal to the
destination register of a previous instruction that has not yet completed its write-back.
For example, in the 8-stage pipeline of Figure 10, a dependent instruction can only be
fetched after four instruction cycles to ensure correct computation. NOPs are inserted
to resolve the dependency.

Overlapping stores are defined as any store instructions with references to the same
memory location. After the data dependencies have been found in this first iteration,
all branch and jump targets are reevaluated according to the new instruction memory
locations. In the third and final iteration, branches and jumps are checked for depen-
dencies across PC changes, which may require additional NOPs to be inserted. Finally,
the branch and jump targets are again reevaluated and the final instruction list with
the inserted NOPs is passed to the simulator.

7.2. Simulator

The simulator can be configured to model a variable number of pipeline stages and dif-
ferent pipeline configurations. All iDEA instructions that are used in the benchmarks
are supported by the simulator. The simulator models the iDEA pipeline stage-by-stage
and the execution of the instructions as they pass between stages. The register file, data
memory, and instruction memory are modelled individually as separate modules. The
statistics collected during the simulation run are cycle count, NOP count, simulation
runtime, and core cycle count.

We manually insert the start and end tags in the assembly source code to define
where the computational cores of the programs start and end, with the purpose of
eliminating initialization instructions from the final cycle count. The results presented
in Section 7.4 are the core cycle counts.

7.3. Benchmarks

Seven benchmarks, briefly presented shortly, are used to evaluate performance. They
are written in standard C with an internal self-checking loop to verify correctness
and to reduce simulator complexity. The applications are fundamental loops; they are
kernels of larger algorithms and often the core computation loops of more extensive,
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Fig. 12. Comparison of execution time of iDEA and MicroBlaze at maximum pipeline stages.

practical applications. For example, sorting algorithms are commonly found in network-
ing applications, FIR and Median are found in digital signal processing applications,
and CRC in storage devices and matrix multiplication in linear algebra.

—Bubble. This is a bubble sort on an array of 50 random integers.
—CRC. This is an 8-bit CRC on a random 50-byte message.
—Fib. This calculates the first 50 Fibonacci numbers.
—FIR. This is an FIR filter using 5 taps on an array of 50 integers.
—Median. This is a median filter with a window size of 5, on an array of 50 integers.
—MMult. This consists of matrix multiplication of two 5 × 5 integer matrices.
—QSort. This is a quick-sort on an array of 50 random integers.

These benchmarks are sufficient to demonstrate the complete tool chain of iDEA includ-
ing compiler, simulator, and processor. We aim to explore more complex benchmarks
after building a custom compiler, also allowing us to present more accurate performance
metrics as the code will be optimised for the special features of iDEA.

The instruction count and clock-cycle count for MicroBlaze are obtained by test-
bench profiling using an HDL simulator, as the current Xilinx tools do not provide
an instruction-set simulator for MicroBlaze. The testbench and simulation files for
MicroBlaze are automatically generated by XPS. In the testbench, we added a mod-
ule that tracks the instruction count in every clock cycle. The tracker is started at
the beginning of a computation and terminates once it is complete. With every valid
instruction issued, the instruction counter is incremented. The total number of clock
cycles is determined from when the tracker starts until it terminates. The start and end
signals are obtained from the instruction opcode in the disassembly file, while the C
code is compiled by mb-gcc into an .elf executable. This can be viewed as a disassembly
file. From this, we locate when a computation starts and ends and the correspond-
ing program-counter address. Once the tracker module encounters these addresses, it
accordingly starts and stops the count tracking.

7.4. Execution Results

With a compiler, we can generate instruction code for iDEA for the benchmarks at dif-
ferent optimization levels. Figure 12 shows the total execution time of both processors
for all seven test applications (Bubble, Fibonacci, FIR, Median, matrix multiplication,
Quick-sort and CRC) at four different optimisation levels (O0, O1, O2, O3).

Overall, iDEA has a higher execution time compared to MicroBlaze due to the
insertion of NOPs to handle data hazards. Figure 13 shows the relative execution
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Fig. 13. Execution time of iDEA relative to MicroBlaze.

time of iDEA with MicroBlaze normalised to 1 for each optimisation level. Of all the
benchmarks, CRC is the only application that has faster execution time on iDEA than
MicroBlaze; despite a higher number of clock cycles, the improved frequency of iDEA
results in a lower execution time.

In most benchmarks, the NOP instructions make up the vast majority of the total
instructions executed, that is, between 69.0% and 86.5%. This can partially be traced
to the compiler, that, targets the MIPS platform rather than iDEA and, therefore, does
not generate efficient code. The compiler follows the MIPS conventions for register
usage, resulting in many NOPs being inserted to resolve dependencies. Currently, the
same registers are often reused for consecutive instructions (v0 and v1 in the MIPS
convention), thereby creating dependencies that have to be resolved by NOP insertion.
Spreading out register usage over the whole register file would significantly decrease
the NOP count, however, at the moment this must be done manually due to the lack of a
compiler targeted to iDEA. These factors together contribute to a significant overhead
added by the inserted NOP instructions.

The effect of register reuse is particularly evident in FIR and matrix multiplication.
At optimisation level -O3, the loop is unrolled to a repeated sequence of add and store
instructions without any branching in between. While the absence of branching reduces
the branch penalty, the consecutive dependency between the instructions demands that
NOPs be inserted, causing an increase in overall execution time.

Recall that memory operations consume fewer cycles as they do not use the execution
unit. Hence, if instructions are fetched in successive clock cycles with no change in
program flow, the effect of a long pipeline is not prevalent. However, when the sequence
of instructions is altered as in the case of branching, the penalty or loss of useful
instruction cycles is more severe. As the branch decision is determined at the end of
the pipeline stage, the penalty incurred is 8 clock cycles.

In order to maintain the leanness of iDEA, we have avoided the addition of data
forwarding or stalling. This makes the compiler critical in extracting maximum per-
formance. An ideal compiler for iDEA would rearrange instructions to exploit the NOP
slots and make use of composite instructions where several operations can be executed
with a single instruction. With the availability of two arithmetic components in iDEA
(or three in the DSP48E1 if the preadder is enabled), we can explore the possible
benefits of this. For example, two consecutive instructions mul r3, r2, r1; add r5,
r4, r3 have a read-after-write dependency and NOPs have to be inserted to allow the
result of the first instruction to be written back to the register file before execution
of the second. By combining these into a single instruction mul-add r5, r1, r2, r4,
two instructions can be executed as one, reducing the number of useful instructions
required to perform the same operations and also removing the necessity for NOPs in
between.
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Fig. 14. Relative execution time of benchmarks using compound instructions.

The three-operand multiply-accumulate instruction maps well to the DSP48E1 block
and is supported by the iDEA instruction set. To explore the potential performance im-
provement when using composite instructions, we examine the FIR and Mmult bench-
marks after modifying the code to use the mac instruction. Currently, this modification
is done manually, as the compiler does not support this instruction. We manually iden-
tify the pattern mult r3, r1, r2; add r4, r4, r3 and change it to mac r4, r1, r2.
A compiler could automatically identify the multiply-accumulate pattern and make
use of the instruction.

Figure 14 shows the relative performance when using these composite instructions
compared to the standard compiler output (normalised to 1). We see that the use of
composite instructions in a 9-stage iDEA pipeline can indeed provide a significant per-
formance improvement. FIR-O1 shows the best execution-time improvement of 18%,
while the -O0 optimisation levels for both benchmarks show only slight improvements
of 6% and 4% for FIR and Mmult, respectively. The benchmarks that are shown here use
computation kernels that are relatively small, making the loop overhead more signifi-
cant than the computations themselves and thus limiting the potential for performance
savings. For more complex benchmarks, there is a greater potential for performance
improvement resulting from the use of compound instructions. Our preliminary anal-
ysis shows that it is possible to extract opportunities for compound instructions in
common embedded benchmark programs, not just programs that are domain specific
such as DSP processing or media processing.

However, there are still limitations in the DSP block architecture and in the design
of iDEA that cannot be addressed without a custom compiler. On the hardware side,
to support 4-operand instructions would require the register file to handle four reads
and one write per cycle, which is not possible with the RAM32M.

7.5. Summary

The small benchmark results in this section demonstrate that iDEA is functional and
offers performance comparable to other soft processors. iDEA does suffer a long dat-
apath and, when padding dependent instructions with NOPs, significant overhead is
introduced. To truly exploit its capabilities, a custom compiler is required that can over-
come issues related to register reuse and can support the use of compound instructions.
With the custom compiler we are working on, we intend to extend our experimental
analysis from small benchmarks to more practical fixed-point embedded application
benchmarks.

8. CONCLUSION

This article has presented iDEA, an instruction-set-based soft processor for FPGAs
built with a DSP48E1 primitive as the execution core. We harness the strengths of the
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DSP48E1 primitive by dynamically manipulating its functionality to build a load-store
processor. This makes the DSP48E1 usable beyond just signal processing applications.

As iDEA is designed to occupy minimal area, the logic is kept as simple as possi-
ble. By precluding more complex features such as branch prediction, we are able to
minimise control complexity. The processor has a basic, yet comprehensive enough in-
struction set for general-purpose applications. We have shown that iDEA runs at about
double the frequency of MicroBlaze while occupying around half the area. iDEA can
be implemented across the latest generation of Xilinx FPGAs, achieving comparable
performance on all devices.

We presented a set of seven small benchmark applications and evaluated the per-
formance of iDEA by using translated MIPS-compiled C code. We showed that, even
without an optimised compiler, iDEA can offer commendable performance, though it
suffers significantly from the need for NOP insertion to overcome data hazards. We
also evaluated the potential benefits of iDEA’s composite instructions, motivating the
need for a custom compiler to maximise performance.

Our current and future work is focused on developing a custom compiler that can
produce more efficient programs for iDEA. This will allow us to explore more complex
benchmarks and present more representative performance results. We are also keen to
explore how such a lean processor might be used in a massively parallel manner, given
the high number of DSP48E1s on modern FPGAs.
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