DyRACT: A Partial Reconfiguration Enabled
Accelerator and Test Platform

Kizheppatt Vipin, Suhaib A. Fahmy
School of Computer Engineering
Nanyang Technological University, Singapore
{vipin2,sfahmy } @ntu.edu.sg

Abstract—Integrating FPGAs with a general purpose com-
puter remains difficult, but recent efforts have resulted in open
frameworks that offer a software API and hardware interface
to allow easier integration. However, such systems only support
static FPGA designs. With the addition of partial reconfiguration
(PR) support, such frameworks can enable more effective use of
FPGAs. Now, designers can incorporate hardware accelerators
within their software applications, and these can be loaded dy-
namically as required. We present a PR-enabled FPGA platform
that allows user modules to be loaded onto the FPGA, inputs
to be applied, results obtained, and functions to be swapped at
runtime. The interface and PR management logic are part of
the static region, while multiple accelerators can be loaded using
high level functions provided by the API. Reconfiguration and
data transfer are both managed over the PCle interface from the
host PC, with communication throughput of more than 1.5 GB/s
(75% of peak PCle bandwidth) and reconfiguration of a large
accelerator in 20 ms.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGA) offer improved
performance over software for many applications, while main-
taining a higher level of flexibility compared to dedicated
hardware. As a result, they have been used in a wide variety
of application domains, including bioinformatics [1], radio
systems [2], and computer vision [3]. Though the development
time for designing FPGA systems is much improved over
ASICs, validating FPGA applications on real hardware remains
challenging. A key reason is that managing interfaces to the
FPGA and the flow of data is cumbersome and typically ad-
dressed in an ad-hoc manner, precluding re-use. This difficulty
in integrating FPGAs within general computing systems is also
one of the key barriers to the use of FPGA accelerators within
larger software systems, where the efficiency of this coupling
must be maximised.

Recently, researchers have developed open source frame-
works to enable easier interfacing between a host PC and
FPGA boards [4], [5], [6]. These frameworks offer an API
that abstracts the interface, enabling FPGA designs to be
accessed efficiently from software on the host. However, these
platforms only support static FPGA designs, and in some cases
require a system reboot in order to change the FPGA design.
Where multiple designs, or alternative variations of a design,
need to be tested, this can lengthen test iterations, adding to
development effort.

Ideally, users would like to use FPGAs within a host PC
for acceleration of compute intensive tasks within the context
of a larger software application [7]. In addition to requiring

an abstracted interface as provided by the aforementioned
frameworks, such a scenario makes sense when multiple differ-
ent accelerators can be configured as application requirements
change during runtime. Existing frameworks require full FPGA
reconfiguration to be managed through an external interface
like JTAG, requiring additional driver support, and represent-
ing a challenge in settings where non-standard connections
are not supported. The long time required to reconfigure also
means an “on demand” approach to loading accelerators is
infeasible.

We propose that both FPGA configuration and data transfer
be managed over a single PCle interface to the host, resulting
in high throughput data transfer and fast reconfiguration.
This requires partial reconfiguration (PR), with communication
infrastructure and reconfiguration management placed in the
static region, allowing the physical link to be maintained dur-
ing reconfiguration of the accelerator(s) in the reconfigurable
region.

When using an FPGA to host accelerators, it is essential
that reconfiguration time be minimised as the reconfiguration
overheads can obliterate any hardware acceleration benefit [8].
Again, reconfiguration through JTAG is unsuitable due to its
long latency in the order of seconds. Reconfiguration from
external non-volatile memory is another option but is severely
limited by a storage capacity of just a few bitstreams. The
dedicated internal configuration access port (ICAP) on Xilinx
FPGAs can enable reconfiguration within a few milliseconds.
Hence, enabling reconfiguration over the PCle interface, by
way of the ICAP also opens up the possibility for regular
reconfiguration from software, with practically unlimited bit-
stream storage capacity.

A further benefit of this approach is that FPGA designs
that themselves use partial reconfiguration can also be system-
atically validated, without the need to develop low-level recon-
figuration management infrastructure. As PR finds wider use
in domains such as software defined radio [9] and audio/video
processing [10], providing a simple way to test such systems
becomes more important.

In this paper, we present the open source DyRACT frame-
work which offers a Dynamically Reconfigured Accelerator
Testbed, interfacing an FPGA board with a host PC over PCle,
using PR to manage reconfiguration. It allows:

1) Loading of a partial bitstreams and passing of data
in and out of accelerators.

2) Incorporation of hardware accelerators in software
applications with minimal reconfiguration overhead.

3) Testing of partially reconfigurable systems with an
abstracted management API.

4) A shorter iteration cycle for testing multiple FPGA
hardware modules.

The rest of this paper is organised as follows: Section II
discusses related work, Section III presents the DyRACT ar-
chitecture and the functional descriptions, Section IV presents
the implementation details, performance characterisation and
a case study, and Section V concludes the paper.

II. RELATED WORK

Numerous approaches to interfacing FPGAs with host
PCs have been proposed to support hardware accelerators
in software applications. A PCI-X based interface was de-
scribed in [11] achieving a throughput of up to 667 MB/s.
SIRC [4] is interfaces a Windows host PC and an FPGA board
over Ethernet but fails to offer the throughput capabilities
often required for such software-hardware systems. Recently,
frameworks that interface over higher throughput PCI Express
(PClIe) links, such as RIFFA [5], [12] and OCPI, have emerged.
These frameworks enable static FPGA designs to be accessed
through an abstracted software API on the host, including
hooks for different programming languages. In previous work,
we introduced an open source framework with extended FPGA
interface support including PCle, DRAM and Ethernet [6].
Up to four bitstreams are stored in the on-board non-volatile
memory and the FPGA is configured through an external
reconfiguration interface. In some cases, these frameworks
require a host reboot when the FPGA application is recon-
figured, or they rely on PCle features that can be unreliable
to support hot-reconfiguration. Furthermore, loading new user
logic requires complete re-implementation of the full design,
including fixed communication infrastructure. This can lead to
issues with timing closure for large designs, and consumes
considerable time. Hence, the use of these frameworks in
the context of dynamically reconfigurable accelerators is not
possible.

Apart from verifying static FPGA designs, there are few
mature approaches for testing partially reconfigurable systems.
A functional approach was proposed in [13], however a real
hardware test using bitstreams requires considerable effort
in implementing the full communication and reconfiguration
architecture. PR also has benefits in testing static designs,
and has been demonstrated as an effective technique for fault
injection to study the effects of radiation and single event
upsets (SEUs) [14], [15]. Supporting PR through an abstracted
interface can hence offer benefits in the test of both PR and
non-PR designs.

Reconfiguration time remains an important aspect in any
PR system or framework. If not managed efficiently, reconfigu-
ration can consume a considerable proportion of overall system
execution time [16], [17]. While PR is supported through the
JTAG interface, internal controllers such as the ICAP offer
much better performance, as they provide direct access to the
configuration memory from the FPGA fabric. Some have even
suggested alternative external interfaces like RS-232, though
the achievable throughput is clearly limited [18]. Vendor-
provided ICAP controllers offer poor throughput (~4-10
MB/s) when bitstreams are pre-stored in off-chip memory [19],

Control Logic

User Logic

»(Receive Engine

t 4

» PIO Interface

> pSG-1 <> <>Strm-1 IF

<« .. Mgmt 5]
Xilinx | Global g %
PCle Endpoint 5 . ©

(x4 Gen 2) RegisterSet| | Config. PSG2 <> < <« >strm-2 IF

— Controller i) -
[=2]
o
i o |
-
le—{ Transmit Engine L | PSA ¢_>
"] psG4 |«l> <>stm-41F

Fig. 1. DyRACT hardware architecture.

though the ICAP interface itself is capable of much higher
throughput. As a result, a number of custom reconfiguration
controllers have been proposed that offer higher throughput
(~400 MB/s) [20], [21]. However, in a number of cases
bitstreams are assumed to be in either internal block memories
or off-chip memory, without any systematic way of managing
bistreams.

In this paper, we propose to load (partial) bitstreams over
the PCle interface that is also used for data communication.
This has been demonstrated by Xilinx, but with a low recon-
figuration speed of 30MB/s and supporting only a one-time
reconfiguration [22]. This approach was improved in [23], en-
abling multiple reconfigurations, but the reconfiguration speed
remained low due to the lack of DMA support.

In this paper, we present the DyRACT framework, incorpo-
rating a hardware design and associated software interface for
loading designs into an FPGA over a static PCle interface,
then allowing high throughput communication between the
host and accelerator. DyRACT supports the use of dynamically
reconfigured hardware accelerators within applications running
on the host PC. This also enables easier hardware validation
of designs including iterative testing. Finally, it is possible to
use this framework to test PR systems without the need for
building significant infrastructure. Reconfiguration and data
throughput are shown to be close the the theoretical maximum
supported by the PCle interface. We are releasing DyRACT to
the community to enable easier validation and implementation
of FPGA-based designs.

III. HARDWARE-SOFTWARE ARCHITECTURE

DyRACT is comprised of the control logic and user logic,
as shown in Fig. 1. The control logic implements interface
management, reconfiguration control, and clock management,
while the user logic implements the custom hardware accelera-
tor. The control logic is implemented in the static region, while
the user logic is implemented in a partially reconfigurable
region (PRR), which can be reconfigured at runtime over
PCle. Some of the low level components are adapted from our
previous driver [6], though the DRAM and Ethernet interfaces
have been removed. The following subsections describe each
block in detail.

A. PCle Endpoint block

We use the Xilinx PCle Integrated Endpoint Block, config-
ured for PCle Gen 2 x4 link width as the physical interface.

Theoretically this gives a maximum throughput of 2 GB/s per
direction in full-duplex mode, and this is portable across all
Virtex-6 and Virtex-7 FPGAs. The backend of the PCle block
is a 64-bit wide AXI4-Stream interface clocked at 250 MHz.

B. PCle transaction layer

The Endpoint block is directly interfaced with the receive
and transmit engines, which together act as the PCle transac-
tion layer. Here, transaction layer packets (TLPs) are generated
and consumed, representing the unit of communication for
PCle. The receive engine decodes received TLPs and routes
them to the appropriate target. The transmit engine generates
memory read TLPs during DMA operations to fetch data from
host memory, memory write TLPs to transmit data from the
FPGA to host memory, and completion TLPs in response to
read requests from the host.

C. Global Register Set

This module implements all the control and status regis-
ters required for interface, communication and configuration
management. The control register is used to initiate DMA
operations between the host and FPGA, as well as to trigger
reconfiguration operations. The status register is updated after
each DMA or reconfiguration operation, allowing the host to
ascertain operation completion. Separate address and length
registers are used to enable multiple concurrent DMA opera-
tions between the host and user stream interfaces.

D. PCle Stream Generator (PSG)

The PCle Stream Generators (PSG) act as the DMA
controllers between the host and user stream interfaces. Our
framework supports a configurable number of PSGs, with each
one managing a single user stream interface. The present im-
plementation supports up to 4 concurrent streaming interfaces
to user logic.

Since a single read request cannot be larger than 4KB
(as per the PClIe protocol), a PSG has to make multiple read
requests to the host during DMA write operations (from host to
FPGA). When an endpoint device makes multiple outstanding
read requests, the completion packets may return out of order.
Typically, the endpoint is forced to make a new request only
after receiving the data for the previous request. This can
severely degrade performance since there can be a large latency
between a memory read request and its completion. To achieve
full bandwidth during DMA write operations, the FPGA must
be able to issue back to back read requests to the host while
managing out of order completions.

We exploit the fag number field in the PCle packet headers
to implement virtual channels, which enable multiple outbound
read requests. The tag management is implemented with the
help of one FIFO and a unique tag number for each channel.
Multiple outbound read requests are generated up to the
number of virtual channels. When packets are received in
response to the read requests, logic checks the tag number
and routes the data to the appropriate FIFO. Later, a read
sequencer is used to reorder the data by reading sequentially
from the FIFOs.

PCle read request

100MHz

Rd_Clk

Conf. request Prog_full Lt
Wr_En

Conf. done Rd_En

Wr_Clk Fifo_empty

&

En

250MHz

64 Wr Data Rd_Datal>2

Async. FIFO

Y

Data

Config. Data ICAP

Fig. 2. Configuration controller showing interface connections.

E. PCle Stream Arbitrator (PSA)

Arbitration logic is required to fairly serve the requests
from multiple PSGs accessing the transaction layer. Our design
is scalable with the current implementation supporting up
to 256 stream interfaces with round-robin arbitration among
them.

F. Configuration Controller

The configuration controller is a key feature of this frame-
work. It manages partial reconfiguration of the user logic.
It is an improved version of our previous open source PR
controller designed to operate in processor-less systems [24].
The controller instantiates the internal configuration access
port (ICAP) as shown in Fig. 2. Two independent state ma-
chines, the configuration state machine (CSM) and the ICAP
state machine (ISM), manage low-level reconfiguration. The
configuration operation is triggered by the control register
after the host configures the partial bitstream size and its
location in the host memory in the global register set. The
CSM generates memory read requests to the host to receive
the partial bitstream. Received bitstream data is stored in an
8KB asynchronous asymmetric FIFO, with a 64-bit write port
clocked at 250 MHz. The CSM generates a new read request
only when all data corresponding to the previous request is
received and there is sufficient space in the FIFO. Unlike
PSGs, the configuration controller does not implement virtual
channels since the maximum reconfiguration speed supported
by the ICAP is only 400 MB/s so they are not needed.

The ICAP state machine (ISM) constantly monitors the
read port of the FIFO for bitstream data. The FIFO read port
is 32 bits wide, clocked at 100 MHz — the maximum clock
frequency supported by the ICAP. As soon as the FIFO empty
signal is de-asserted, the ISM fetches data from the FIFO
and writes it to the ICAP. Since the FIFO depth is double
the maximum PCle read request size, the bitstream read from
host memory can overlap with ICAP transactions, maximising
reconfiguration throughput.

G. Clock Management

One restriction in PR-based designs is that the reconfig-
urable region cannot contain any clock modifying logic such
as mixed mode clock managers (MMCMSs). This means the
required user logic clock frequency must be provided from the
static region. By default, all user stream interfaces run at the
PClIe interface clock frequency (250 MHz). But it is possible
that some user logic implementations cannot achieve this

TABLE 1.

FRAMEWORK USER APIS.

API Name

Description

fpga_send_data (channel,
data, len, block)

fpga_recv_data (channel,
data, len, block)

fpga_reconfig(bitstream)

fpga_wait_interrupt
(channel)

fpga_reg_wr (addr, data)
fpga_reg_rd (addr)

user_set_clk (frequency)

Initialize a DMA transfer between the host and
channel of array data of length len
channel: USERPCIE]..4

block: blocking/non-blocking
when target is USER interface

selection

Similar to fpga_send_data () but to read
data from the host

Reconfigure the FPGA with the specified bit-
stream

Synchronization function for data transfers.

Write single 32-bit register
Read single 32-bit register
Set the clock frequency to the user logic. (250,

200, 150 and 100 MHz)

frequency. Lowering interface clock frequency compromises
throughput for all user logic implementations, so instead, we
allow the user to modify interface clock frequency at runtime.
This is supported through our software API, which uses the
dynamic reconfiguration port (DRP) of the MMCM.

H. User Logic Adapter

One major challenge associated with PR designs is achiev-
ing timing closure. Since the the routing of the static design
does not change with each different PR bitstream, it is essential
that the static logic achieve timing closure even for very
large user logic. To preserving the routing between the static
and reconfigurable regions, the tools automatically instantiate
proxy logic on each region boundary (static <+ reconfigurable)
crossing net. Proxy logic is implemented in LUTs that act as
pass-through for routing preservation.

Proxy logic can deteriorate timing performance and their
placement can exacerbate this problem. In our experiments,
we found the Xilinx implementation tools place proxy logic
inefficiently, causing large net delay and thus failing to achieve
the 250 MHz user interface clock frequency. One possible
solution for this is to constrain the locations of all proxy
logic close to the interface boundary. Since the user interface
contains hundreds of signals, this is not practical.

The user logic adapter instead instantiates AXI4-Stream
FIFOs in between each PSG and its corresponding user stream
interface. These FIFOs reside in the reconfigurable region and
their locations are manually constrained close to the region
boundary. This causes the implementation tools to place the
proxy logic close to the interface boundary and thus helps
with timing closure. This adapter is automatically added to
the design by our development infrastructure and users do not
have to consider it when designing their user logic.

1. Software Infrastructure

The software component of DyRACT consists of a PCle
driver and a user library supported on Linux. The low level
PClIe driver is an extensively modified version of the RIFFA
driver with the user library providing different communication
APIs as listed in Table I. The fpga_send_data () and
fpga_recv_data () functions are used for DMA transfer
between the host and user stream interfaces. The specific user

Fig. 3.

Virtex-7 floorplan for DyRACT.

stream interface number is provided as an argument to these
APIs. The fpga_reconfig () function is used to initiate
a reconfiguration operation by specifying the partial bitstream
corresponding to required user logic.

The send and receive operations can act in both blocking
and non-blocking modes. In blocking mode, the API call
returns only after the DMA operation is complete while in non-
blocking mode the API returns immediately after initiating a
transfer. Non-blocking operations are supported only for data
transfers below 4 MB, since data transfers above this size
require two buffers and interrupt based buffer management.
Non-blocking mode transfer enables overlapping DMA op-
erations to multiple stream interfaces and overlapped read-
write operations providing better throughput for small data
transfers. Non-blocking transfers must be synchronised with
the fpga_wait_interrupt () function before starting a
new DMA operation to the same channel.

IV. IMPLEMENTATION AND CHARACTERISATION

In this section we discuss the implementation details of
DyRACT on multiple target FPGAs. Detailed communication
and reconfiguration performance numbers are reported. We
also present an example application built using the proposed
platform to demonstrate its functionality.

A. Implementation

Xilinx ISE and PlanAhead 14.6 were used for implemen-
tation. The proposed platform was implemented and hardware
validated on a Xilinx ML605 evaluation board containing a
Virtex-6 XC6VLX240T FPGA and on a VC707 evaluation
board containing a Virtex-7 XC7VX485T FPGA. The static
and reconfigurable regions are area constrained and interface
FIFOs are location constrained as shown in Fig. 3. Without the
location constraints, the implementation cannot achieve timing
closure on the Virtex-6 for region crossing signals, although
this is not an issue on the Virtex-7 due to its higher fabric
speed.

The resource utilisation, with 4 user stream interfaces en-
abled, is shown in Table II. On the Virtex-6 FPGA the platform
consumes about 6% of both logic and BRAMs. On the Virtex-
7, logic consumption is about 3% and BRAM utilisation is
about 2.5%. Although some unused resources cannot be used

Throughput (MBytes/sec)

25 |- —w— PCle Read

—w— PCle Write

—#— PClIe Overlapped
T 1 1 1

I N N I N T B |

MMM MmMMMMMMMMBOA

Y S 5SS 55583593990
=== === =

N - N F 0 © 3 F 0o~

~ — M © N oo

[—

1KB -
2KB -
4KB -
8KB -
16KB -
32KB |-
64KB |-
128KB -
256KB |-

Data Size

Fig. 4. PCle communication bandwidth (PCle Gen 2 x4 configuration).

by the user logic due to the rectangular shape requirement for
the reconfigurable region (as per Xilinx guidelines), about 80%
of the FPGA area is available for user logic implementation.

B. DyRACT Development Framework

Xilinx supports PR based system design through PlanA-
head [25], which requires the designer to follow specific
implementation steps, that non-expert developers find difficult
to follow. As part of DyRACT, we provide command-line
scripts which automate these PR design steps. With slight mod-
ifications, the scripts can support accelerator implementation in
multiple reconfigurable regions with independent management
of data transfer between each region and the host. The scripts
use pre-synthesised netlists and placed and routed control logic
for the static region, while automatically incorporating the
specific user logic into the design to generate the full and
partial bitstreams. This provides several advantages:

e The pre-routed control logic has already achieved
timing closure using specific location constraints.

e Designers are not required to undertake manual floor-
planning.

e Using pre-routed control logic considerably reduces
overall tool execution time.

e Since the specific IP-cores are already routed, issues
related to software version differences are avoided.

If designers are interested in additional exploration of the
platform, they can completely reimplement the control logic
using the corresponding HDL design files and modify the user
constraints file (UCF).

TABLE II. DYRACT RESOURCE UTILISATION

FPGA Virtex-6 LX240T Virtex-7 VX485T

Module Regs LUTs BRAMs Regs LUTs BRAMs
PClIe Core 791 738 4 1402 923 4
Transaction layer 1058 727 0 1069 613 0
DMA Control 2711 2809 12 2564 2519 12
Config. Control 451 328 2 298 261 2
Clock management 85 84 0 85 73 0
User Adapter 1556 791 8 1556 792 8
Total 6652 5477 26 6974 5181 26

At first initialisation, a full bitstream is stored in on-board
flash memory to configure the FPGA at system boot-up time —
this contains the full static system and empty user logic. The
provided reconfiguration API function (fpga_reconfig())
can be used in the user’s application C code to reconfigure the
FPGA with the specified user partial bitsreams, as generated
by the scripts. These calls can be incorporated within a larger
software application to load an accelerator, pass data to it,
and retrieve the results. Since reconfiguration is managed over
the same interface, and accelerators can be loaded without
breaking the interface, multiple accelerators can be loaded in
succession. The API also enables designers wanting to test a
dynamically reconfigurable system to do so without the need
for building any PR management circuitry.

C. Characterisation

The host machine for the performance validation was an
HPZA420 workstation with an Intel Xeon E5-1650 3.2 GHz
CPU, the Intel C600/X79 series chipset, and 16 GB of DRAM,
running Ubuntu 12.04 LTS. A stream based user logic design
capable of sourcing and sinking an infinite amount of data, is
used to determine data throughput. The performance measure-
ments were done with the help of Performance Application
Programming Interface (PAPI) [26]. Overheads such as DMA
controller configuration, interrupt latencies and the interrupt
service routines are included in all measurements.

Fig. 4 shows the PCle communication throughput between
the host and FPGA. Write performance peaks at 1542 MB/s
and read performance peaks at 1513 MB/s, which is more than
75% of the theoretical maximum PCle throughput. Further
performance improvement is difficult due to packet overheads,
host machine limitations and limited packet buffering in the
FPGA. It can be seen that for transfers above 4 MB in size,
both read and write performance improve due to the double
buffering scheme used in the host machine. The benefits of
non-blocking data transfer for overlapped read-write operations
is also demonstrated. Using this method, it is possible to
achieve a throughput of up to 2.1 GB/s for data transfers below
8 MB in size.

We also measured the latency for accessing individual
registers implemented in the global register set and in the user
logic. A single register write operation takes 133 ns and a
single register read takes 1448 ns. Latency for write operation
is much lower than that of read operation since the host can
post a write operation without waiting for the data to be
physically written into the register but is blocked in the read
case until the valid data is received.

Meanwhile, reconfiguration over the PCle interface
achieves a throughput of up to 365 MB/s, which is more
than 91% of the maximum supported ICAP throughput. For
the target Virtex-6, with presented area constraints, the un-
compressed partial bitstream size is 7.036 MB, which can be
configured in 20.6 ms. For the Virtex-7, the partial bitstream
size is 16.85 MB and it can be reconfigured in 46 ms. JTAG
based reconfiguration would take about 11 and 21 seconds for
the Virtex-6 and Virtex-7 FPGAs respectively. The ML605 also
has a 16 MB platform flash which can store a single bitstream
with reconfiguration taking about 100 ms. The VC707 has a
128 MB BPI flash which can store up to 4 bitstreams and

TABLE III. PERFORMANCE COMPARISON FOR SOFTWARE, HARDWARE

AND HARDWARE-SOFTWARE IMPLEMENTATIONS.

Implementation Reconfig. Time Processing time/frame Throughput

(ms) (ms) (frames/sec)
Software 0 1.023 976
Hardware 0 0.153 6510
Software-Hardware 3.698 0.355 2812

reconfiguration takes 130 ms. Storing bitstreams in the flash
is a time consuming operation taking up to 20 minutes on
ML605 and 30 minutes on the VC707. Hence, none of these
other reconfiguration approaches makes sense for dynamically
reconfiguring the user logic, especially if this is done for
an accelerator within a larger software program, where such
latency can nullify any performance advantage. The provided
function calls make it possible to incorporate fast reconfig-
uration seamlessly into a user application. Reconfiguration
performance can also be improved by enabling bitstream
compression with the amount of compression dependent on
the logic in the bitstream. For the case study below, containing
1577 registers and 1464 LUTs, the partial bitstream size was
reduced to 1.29 MB using the Xilinx-supported compression
method, allowing the accelerator to be reconfigured in under
3.6 ms.

D. Case Study

To demonstrate the effectiveness of DyRACT in the context
of a software application with hardware accelerators, an exam-
ple video processing application was implemented and tested.
The application implements several filters: a thresholder, in-
verter, Gaussian filter, Laplace filter and Sobel edge detector.
These were implemented in user logic running at 250MHz
with a 64-bit streaming interface. The application processes a
continuous stream of 640x480 greyscale video frames with 8
bits per pixel resolution, to produce a continuous stream of
output data. As a streaming application, the hardware latency
is purely a function of the pipeline. Identical filters are imple-
mented in software (using C) for performance comparison.

Partial bitstreams corresponding to each of these filters are
stored in a bitstream library in the host machine. Data is sent
and received from the FPGA board using the API functions
in non-blocking fashion (streaming). The software application
can change from one filter to another, triggering a reconfigura-
tion each time. Table III presents a performance comparison for
the inversion filter when implemented as a standalone hardware
module, as a pure software implementation, and as a hardware
accelerator within software code.

A standalone hardware implementation clearly provides
the highest performance. Meanwhile, integrating a hardware
accelerator using the proposed framework increases perfor-
mance by nearly 3x compared to pure software. The re-
duction in the performance compared to pure hardware is
attributed to the communication latency between the host
and the FPGA and the overheads associated with DMA and
interrupt management. This underlines the importance of the
communication between the FPGAs and the host machines
when FPGAs are used to implement accelerators in larger
software applications. Improved performance is expected when
the framework is implemented on newer FPGAs that support

higher PCle throughput. Reconfiguration over PCle allows a
new filter to be reconfigured in under 4 ms (due to bitstream
compression), corresponding to the processing time for 10
frames. Hence, as expected, overall performance improves
as the processing time increases compared to reconfiguration
time. The case study demonstrates a fully functional integration
of accelerators reconfigured over PCle and integrated within a
software application.

V. CONCLUSIONS AND FUTURE WORK

We have presented DyRACT, a platform that uses partial
reconfiguration to provide a full API for implementing hard-
ware accelerators within software applications, and enables
testing of multiple hardware modules in quick succession. The
DMA based streaming architecture achieves more than 75%
of the theoretical PCle interface bandwidth, hence allowing
high throughput data transfer between host and accelerator.
Partial reconfiguration over PCle reduces reconfiguration time
to a few milliseconds compared to several seconds for JTAG.
The unified communication and reconfiguration infrastructure
avoids the need for proprietary software drivers and dedicated
external wiring to the JTAG port. By combining high data
throughput and fast reconfiguration, it becomes feasible to
implement software applications with hardware accelerators. A
video processing cast study was presented, demonstrating the
reconfiguration, and data throughput capabilities of DyRACT.

We intend to further improve performance by supporting
FPGAs with faster PCle interfaces. Reconfiguration perfor-
mance can be further improved by over-clocking the ICAP
port, and safe methods are under investigation. We are also
working on support for multiple FPGA boards in the same
host machine, and abstracted management of reconfigurable
regions.

Finally we are publicly releasing this platform and de-
velopment framework to encourage more people to explore
integration of hardware accelerators in software applications,
and to ease testing of multiple hardware designs [27].

REFERENCES

[1] M. C. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model,
and D. DiSabello, “Achieving high performance with FPGA-based
computing,” Computer, vol. 40, no. 3, p. 50, 2007.

[2] . Lotze, S. A. Fahmy, J. Noguera, L. Doyle, and R. Esser, “An FPGA-
based cognitive radio framework,” in Proceedings of IET Irish Signals
and Systems Conference, 2008, pp. 138—143.

[3] S. Jin, J. Cho, X. Dai Pham, K. M. Lee, S.-K. Park, M. Kim, and
J. W. Jeon, “FPGA design and implementation of a real-time stereo
vision system,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, no. 1, pp. 15-26, 2010.

[4] K. Eguro, “SIRC: An Extensible Reconfigurable Computing Com-
munication APL” in Proc IEEE International Symposium on Field-
Programmable Custom Computing Machines, 2010, pp. 135-138.

[5] M. Jacobsen, Y. Freund, and R. Kastner, “RIFFA: A Reusable Integra-
tion Framework for FPGA Accelerators,” in Proc. IEEE International

Symposium on Field-Programmable Custom Computing Machines, Apr.
2012, pp. 216-219.

[6] K. Vipin, S. Shreejith, D. Gunasekera, S. Fahmy, and N. Kapre,
“System-level FPGA device driver with high-level synthesis support,”
in International Conference on Field Programmable Technology (FPT),
2013, pp. 128-135.

[7] S. Ludwig, R. Slous, and S. Singh, “Implementing photoshop filters
in Virtex,” in Proceedings of International Conference on Field Pro-
grammable Logic and Applications, 1999, pp. 233-242.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration
management on the Xilinx Zynq,” IEEE Embedded Systems Letters,
vol. 6, 2014.

J. Delahaye, J. Palicot, C. Moy, and P. Leray, “Partial reconfiguration
of FPGAs for dynamical reconfiguration of a software radio platform,”
in Proceedings of IST Mobile and Wireless Comms. Summit, 2007.

S. Bouchoux, E. Bourennane, and M. Paindavoine, “Implementation of
JPEG2000 arithmetic decoder using dynamic reconfiguration of FPGA
)7 in International Conference on Image Processing (ICIP), 2004.

R. D. Chamberlain, B. Shands, and J. White., “Achieving real data
throughput for an FPGA co-processor,” in Proc. Workshop on Building
Block Engine Architectures for Computers and Networks, 2004.

M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration
framework for FPGA accelerators,” in Proc. International Conference
on Field-Programmable Logic, Sep. 2013.

L. Gong and O. Diessel, “Resim: A reusable library for RTL simulation
of dynamic partial reconfiguration,” in Proceedings of International
Conference on Field-Programmable Technology (FPT), 2011, pp. 1-8.

L. Antoni, R. Leveugle, and B. Feher, “Using run-time reconfiguration
for fault injection in hardware prototypes,” in Proceedings of Inter-
national Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT), 2002, pp. 245-253.

L. Sterpone and M. Violante, “A new partial reconfiguration-based fault-
injection system to evaluate SEU effects in SRAM-Based FPGAs,”
IEEE Transactions on Nuclear Science, vol. 54, no. 4, pp. 965-970,
Aug 2007.

K. Bondalapati and V. K. Prasanna, “Dynamic precision management
for loop computations on reconfigurable architectures,” in Proceedings
of IEEE Symposium on Field Programmable Custom Computing Ma-
chines (FCCM), 1999, pp. 249-258.

J. Tripp, , H. Mortveit, A. Hansson, and M. Gokhale, “Metropolitan
road traffic simulation on FPGAs,” in IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM), 2005, pp. 117-126.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

R. Fong, S. Harper, and P. Athanas, “A versatile framework for
FPGA field updates: an application of partial self-reconfiguration,” in
Proceedings of International Workshop on Rapid Systems Prototyping,
2003, pp. 117-123.

C. Claus, F. H. Muller, J. Zeppenfeld, and W. Stechele, “A new
framework to accelerate Virtex-II Pro dynamic partial selfreconfigu-
ration.” in Proceedings of IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW), 2007.
M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial reconfigu-
ration speed investigation and architectural design space exploration,” in
Proceedings of International Conference on Field Programmable Logic
and Applications (FPL), 2009, pp. 498-502.

S. Liu, R. N. Pittman, and A. Forin, “Minimizing partial reconfiguration
overhead with fully streaming DMA engines and intelligent ICAP
controller,” Microsoft Research, Tech. Rep. MSR-TR-2009- 150, Sept.
20009.

S. Tam and M. Kellermann, “Xapp883: Fast configuration of PCI
express technology through partial reconfiguration,” Xilinx Inc., Tech.
Rep., Nov. 2010.

P. Ostler, M. Wirthlin, and J. Jensen, “FPGA bootstrapping on PCle
using partial reconfiguration,” in Proceedings of International Confer-
ence on Reconfigurable Computing and FPGAs (ReConFig), 2011, pp.
380-385.

K. Vipin and S. Fahmy, “A high speed open source controller for
FPGA partial reconfiguration,” in Proceedings of IEEE International
Conference on Field-Programmable Technology (FPT), 2012, pp. 61—
66.

PlanAhead User Guide, Xilinx Inc., Jun. 2013.

Performance application programming interface (PAPI). University of
Tennessee. [Online]. Available: http://icl.cs.utk.edu/papi/docs/
DyRACT repository. [Online]. Available:
https://github.com/archntu/dyract

