Efficient Mapping of Mathematical Expressions
into DSP Blocks

Bajaj Ronak, Suhaib A. Fahmy
School of Computer Engineering
Nanyang Technological University, Singapore
{ronakl,sfahmy } @ntu.edu.sg

Abstract—Mapping complex mathematical expressions to DSP
blocks through standard inference from pipelined code is inef-
ficient and results in significantly reduced throughput. In this
paper, we demonstrate the benefit of considering the structure
and pipeline arrangement of DSP blocks during mapping. We
have developed a tool that can map mathematical expressions
using RTL inference, through high level synthesis with Vivado
HLS, and through a custom approach that incorporates DSP
block structure. We can show that the proposed method results
in circuits that run at around double the frequency of other
methods, demonstrating that the structure of the DSP block must
be considered when scheduling complex expressions.

I. INTRODUCTION

FPGAs have always provided programmable logic and
routing interconnect to support implementation of arbitrary
circuits, however the cost of this flexibility has been that they
are slow and consume significantly more power when com-
pared to ASIC implementations. As FPGAs have gained wider
adoption across application domains, vendors have sought to
improve the efficiency of mapping often used functions. Hence,
hard macro blocks have been introduced that implement these
functions directly in silicon, thus consuming less area and
power, and running at a higher clock speed that the equivalent
function implemented in logic.

DSP blocks are an example of this trend. Since FPGAs are
primarily used to accelerate complex computation through the
use of custom datapaths, a key factor in overall performance
is the efficiency of fundamental arithmetic operations. These
capable blocks offer high throughput for arithmetic functions
and flexibility to enable simple processors to be built [1].

While functions that fit in a single DSP block can be
synthesised efficiently from pipelined RTL code, we have
found that more complex functions requiring multiple DSP
blocks suffer from lower performance [2]. A standard RTL de-
scription of a mathematical function can be heavily pipelined,
for example after each operation, however, since this pipelining
may not take into account the structure and internal stages of
the DSP block, the resulting synthesised design may exhibit
sub-standard performance since the DSP blocks are combined
in a way that does not allow them to run at full speed.

In this paper, we compare the performance, in terms of area
and speed, when mapping mathematical expressions through
a standard RTL approach, high-level synthesis, and a method
that considers the internal structure and pipelining of the DSP
block. We focus on arithmetic dataflow graphs containing
multiple addition/subtraction and multiplication operations. We

have developed a tool that takes an input expression and
generates synthesisable RTL code using standard pipelining
techniques, along with a version based on DSP block structure,
and finally a Vivado HLS implementation. Xilinx tools are then
used to implement the variations and report the resulting re-
source requirements and frequency. We show that considering
the internal structure and pipeline stages of the DSP block
offers a throughput advantage of over 100% with a marginal
change in resources, compared to a pipelined RTL or Vivado
HLS implementation.

II. RELATED WORK

As DSP blocks can offer increased performance when
mapping applications, many signal and image processing and
other algorithms have been optimised with implementations
tailored to make use of the features of the DSP block.

Meanwhile, system design is increasingly being done at
higher levels of abstraction. The main challenge here is that
some optimisations made in the conversion to RTL may
prevent efficient mapping to the hard macros available in the
device. HLS tools may fully schedule the graph in a way that
does not suit DSP blocks running at full speed.

FloPoCo [3] is an open-source tool which generates custom
floating-point cores, outputting synthesisable VHDL, leverag-
ing the DSP blocks and memories available on modern FPGAs.
However, it only considers DSP blocks as fast multipliers, and
does not consider the other sub-blocks, except insofar as the
synthesis tools are able to infer them.

General mapping to hard blocks has been considered in
various implementation flows. Verilog-to-Routing (VTR) [4]
is an end-to-end tool which maps a Verilog description of a
circuit to an FPGA architecture. Its front-end synthesis uses
ODIN-II [5], which is optimised for some embedded blocks,
but, complex embedded blocks are considered “black boxes”.

As of yet, we have not found tools that can automatically
map to flexible, multi-function hard macro blocks in an effi-
cient way. Standard pipelined RTL works for a simple datapath
with just a single DSP block, but when more complex functions
requiring multiple DSP blocks to be composed together are
synthesised, the performance is generally poor with regard to
the capabilities of the hard marco.

III. DESIGN TECHNIQUES

There are three main stages in the DSP48E1 pipeline: a pre-
adder, a multiplier, and an ALU stage. Specific configuration

inputs allow the dataflow through the DSP block to make use
of whichever of these features are required. Expanding the set
of possible configuration options results in a set of 29 different
DSP Block datapath configurations.

Given an add-multiply datapath, a designer can implement
it in a number of ways. A very simple approach is to elaborate
the function in a combinational manner, add a number of
pipeline stages at the end, and let the synthesis tool retime
the circuit. While not an ideal approach, one might expect the
synthesis tools to be able to do this correctly. An experienced
designer, on the other hand, would likely write a pipelined RTL
representation of the function. A common practice is to add
a pipeline stage after each computational node, and balance
the other branches of the pipeline to maintain alignment. In
this scenario, the final schedule is explicitly determined by
the designer, and the synthesis tools use this to infer DSP
blocks. Another approach that has increased in popularity is
to define the function in a high level language and rely on high-
level synthesis tools to map this to a hardware implementation.
Some tools offer the user a range of options for how deep to
pipeline and how many resources to use.

None of these techniques, however, take into account the
internal structure of the DSP block. In a combinational imple-
mentation with retiming, we might expect the synthesis tools
to be able to do this, however, the results obtained show that
retiming large functions fails to add enough pipeline stages.
In a scheduled pipelined RTL implementation, the designer
has already fixed the operation schedule, and so, only where
parts of the graph map suitably to DSP blocks, will inference
be efficient. Finally, high-level synthesis tools map to generic
intermediate RTL that is similar in nature to that generated by
an experienced designer.

Considering the internal structure of DSP blocks, we pro-
pose a technique for which the expression is first decomposed
into portions that can be mapped to DSP blocks, and then the
required pipelining applied, with consideration for the structure
and pipeline of these individual blocks.

It is worth noting that the approach of direct instantiation
of DSP blocks may not be a preferable method where the
flow graph is only a part of a larger system. To overcome this,
we also propose a method which is DSP architecture aware,
but, implements the RTL equivalent of DSP blocks, instead of
instantiating them directly.

The proposed tool we have developed takes an expression
as input and generates the implementation methods discussed
above automatically, allowing us to compare their performance
in a systematic and fair way. We now discuss how these
different techniques are implemented in our proposed tool.

A. Combinational Logic with Retiming: Comb

For Comb, all the nodes of the flow graph are implemented
as combinational logic. We then add extra pipeline registers at
the output node. We enable the register balancing feature in
Xilinx ISE, allowing the tool to retime the design by moving
the registers to intermediate stages.

B. Scheduled Pipelined RTL: Pipe

For Pipe, we create both As Soon As Possible (ASAP) and
As Late As Possible (ALAP) scheduled variations.

C. High-level Synthesis: HLS

We use Vivado HLS from Xilinx for this approach, mainly
because it is likely to be the most architecture aware of
any of the high-level synthesis tools available. Each node is
implemented as an expression, and directives are used to guide
the RTL implementation to fully pipeline the design.

D. Direct DSP Block Instantiation: Inst

The tool decomposes an expression into DSP blocks.
Subgraphs of the expression that match one of the 29 templates
we have identified are extracted and for each, a DSP48El
primitive is directly instantiated, with all the control signals
set as required.

E. DSP Architecture Aware RTL: DSPRTL

Rather than instantiate the primitive, we replace each
instance of a template with RTL code that directly reflects the
template’s structure. This variation will make it clear whether
it is the instantiation of the primitives, or the structure of the
graph that has a fundamental effect on the resulting circuit.

F. Ensuring Fair Comparison

There are a number of factors that could impact the fairness
of comparison. First, the overall latency of an implementation
may impact the resource requirements as extra registers are
needed to balance the different paths. At the same time, we
would not like to adversely affect the efficiency of standard
approaches. For the Comb implementation, we add as many
retiming pipeline stages after the combinational logic as are
determined by the Inst method. For the Pipe methods however,
we let the schedule determine the number of stages. In the
HLS implementations, we fix the latency of the generated RTL
implementation to the same as that of the Inst implementation,
to give the tool sufficient slack to optimise the implementation.

Another factor that must be considered is wordlength.
The output of a DSP block is wider than the inputs, and
hence, paths from one DSP block to another should either be
truncated, or the latter operations should be wider (likely using
more than one DSP block). We choose to truncate, ensuring
that the integer part is preserved and the least significant
fractional bits are trimmed. This is equivalent to multi-stage
fixed-point implementation, though we can optimise for known
and fixed inputs. In the interests of fairness, we manage the
wordlengths manually, and the tool ensures that the same
wordlenghts are maintained across all implementations. This
is necessary because various automated synthesis approaches
may infer wider operators in intermediate stages, thus skewing
the results.

In all the techniques, we enable the register balancing
feature of Xilinx ISE for fair comparison.
IV. EXPERIMENTATION TOOL

We have developed a tool for generating synthesisable
RTL implementations for all the methods described above. It
functions as shown in Fig. 1.

The first two stages are common to all techniques, and the
third stage is where the distinct aspects of each implementation

Input File

Input File Parsing

Dataflow Graph
Generation

Pre-processing

Scheduling

Register Pipeline HLS Project Pipeline
Insertion Balancing Generation Balancing

' RTL Generation RTL Generation ' RTL Generation RTL Generation

I I I I [

Comb Pipe HLS Inst DSPRTL

”””””””” e L I
|

\ [s
R

Vendor
Tool Flow Xilinx ISE Project Generation

]

Vendor tool flow H ReP(m.S I
Generation

v

Fig. 1: Tool flow for exploring DSP block mapping.

are completed. RTL in Verilog HDL is generated for all the de-
signs which then go through the same vendor implementation
flow for final result generation.

Input File Parsing: The front-end of the tool accepts a text
file listing the inputs of the expression and their wordlengths.
For the purposes of functional verification, the input file can
also contain a list of test cases. The input expression is written
as a series of two-input operations. Power of 2 multiplications
can be combined with other operations and implemented using
shift.

Example: 162° — 202 + 52 = (z(42%(42% — 5) +5))

Dataflow Graph Generation: A dataflow graph structure is
generated from the parsed instructions, mapping each instruc-
tion as a node.

Pre-processing:

For Comb, we add extra registers at the output node that
will be absorbed by the synthesis tool during retiming. For
Pipe, As Soon As Possible (ASAP) and As Late As Possible
(ALAP) schedules are determined for the graph, and the
pipelines are correctly balanced to ensure alignment.

For HLS, the flow graph is implemented in C++ and
all required files for Vivado HLS execution and testing are
automatically generated.

For DSPRTL and Inst, the flow graph is partitioned into
sub-graphs with each sub-graph mapping to one of the tem-
plates in the template database. Before segmentation, a level
is assigned to each node according to the topological order
of nodes. Segmentation is done in a greedy manner. As
a DSP48El primitive can accommodate at most 3 nodes
(corresponding to the three stages of the block), the algorithm
selects a maximum of three connected nodes, does the template
matching, and selects the template covering maximum number
of nodes. The DSP48E1 hardware primitive is designed in
such a way that intermediate outputs are not available, without
bypassing subsequent sub-blocks. Hence, nodes with more

TABLE I: Graph nodes and pipeline length

Expr Inputs Adders/Subs Muls Stages
Pipe/Others
Chebyshev 1 2 3 6/16
Mibench2 3 8 6 7/19
Quad Spline 7 4 13 7/25
SG Filter 2 6 6 8/19

than one output are always terminal when searching the
database.

When the pre-adder is used, all four pipeline stages should
be enabled to achieve maximum performance. For other
combinations, the same performance can be achieved with
3 pipeline stages. By default, the tool automatically selects
the template with a suitable number of pipeline stages. The
tool allows pre-selection of specific templates and pipeline
depths to enable systematic analysis of the impact of these
choices. After covering the complete dataflow graph with
DSP48E1 primitives, input and output edges of the sub-graphs
are mapped to appropriate ports of the DSPA8E]1 primitives and
a tree of templates is generated. Paths through the graph are
then balanced with sufficient registers.

RTL Generation: After Pre-processing, Verilog files imple-
menting the datapaths for all the methods are generated. For
Comb, pipeline registers equal to the number of stages in
the Inst method are added at the end. For HLS, we execute
the script.tcl file of the generated Vivado HLS project. For
the Inst method, the tool generates instantiations of all the
templates determined in the previous stage and also generates
their respective Verilog files. DSPRTL is a variation of Inst,
where instead of instantiating the DSP48E1 primitives directly,
a pipelined representation of the individual template structures
is used. Hence, this is general RTL but reflecting DSP block
structure.

The wordlengths of the inputs of each node are explicitly
set equal to those in Inst. We truncate the outputs of the DSP
blocks at intermediate stages, according to the input ports of
next DSP block they connect to.

Vendor Tool Flow: After generating RTL files for all the above
methods, they are synthesised through the vendor tools. Since
this can take time, we have automated the process through a
series of scripts, which compile the results for further analysis.

V. RESULTS

We implemented the Chebyshev polynomial, Mibench2
filter, Quadratic Spline, and Savitzky-Golay filter from [6]. We
prepared the input files for all these expressions, and passed
them through the tool flow.

Table I shows the number of operations (adder/subtractor
and multipliers) for all expressions. It also shows the number of
pipeline stages in each resulting implementation. Comb, HLS,
Inst, and DSPRTL methods have same number of pipeline
stages, derived from Inst method. The number of pipeline
stages for Pipe depends on the schedule and is significantly
less. This represents the approach taken by a skilled designer
who does not consider DSP block structure.

All implementations target the Virtex 6 XC6VLX240T-1
FPGA as found on the ML605 development board, and use
Xilinx ISE 14.6 and Xilinx Vivado HLS 2013.4.

To compare the resource usage between different methods,
we also present the area usage in equivalent LUTs, where,
LUT.qy = nLUT + nDSP x (196), where 196 is the ratio
of LUTs to DSP blocks on the target device, a proxy for area
consumption.

Overall, we have observed that Comb exhibits the lowest
throughput of all methods. For Pipe, we implement both ASAP
and ALAP scheduling, and choose the one which gives higher
frequency. Pipe shows much better performance compared to
Comb, though the HLS approach is often better. Inst has
the highest frequency in all the cases. Direct instantiation
of DSP48E1 primitives is not ideal, as it leads to complex
code, and prevents the circuit from being mapped to any other
architecture.

Although, we expected DSPRTL to offer performance
comparable to Inst, it initially fell short, performing close to
HLS. One variation we explored is to add an extra pipeline
stage at the output of each template in the RTL. This breaks
the possibly long routing path between subsequent DSP blocks
in the graph. We found that this significantly improved the
throughput of DSPRTL, matching Inst (to within a few per-
cent), but with the added flexibility of having general RTL
code. Of course, this comes at a cost of increased register
usage.

We explored mapping to templates with 4 pipeline stages,
and templates with a mix of 3 and 4 stages, and the resulting
performance difference was minimal (£5%). Hence we use a
mix of 3 and 4 stage templates, as it may result in reduced
latency without affecting throughput. One possible DSP block
template is a 3-input adder, using the pre-adder and ALU
blocks and bypassing the multiplier. We found frequency to
be unaffected by whether 3-input adders are mapped to DSP
blocks or in logic, so we use logic to preserve DSP blocks.

A comparison of resource usage and maximum frequency
for all four expressions is shown in Table II. Combining
frequency results, the geometric mean performance of Inst
and DSPRTL implementations is 6.6x over Comb, 2.2x over
Pipe, and 2x over the HLS implementation. This shows that
considering the structure of the DSP block when pipelining
a complex expression has a considerable impact on overall
performance.

From the results shown, perhaps the key useful finding is
that the DSP-based RTL implementation is in fact very close
in performance to the implementation that instantiates DSP
blocks explicitly. This suggests that the synthesis tools are
good at inferring individual blocks, but can only do this when
the structure has been considered in the way an expression
has been scheduled. This is also beneficial, since it means
techniques for scheduling can be applied within an HLS
context, without the need for explicit instantiation.

VI. CONCLUSION

We have developed a tool that implements mathematical
expressions using DSP blocks. It allows us to compare the
performance of multiple approaches to mapping graphs to
DSP blocks. By considering the DSP48E1 primitive’s structure
and pipelining, we are able to map expressions in a manner
that maximises frequency at a minimal cost of additional

TABLE II: Resource usage and max frequency for all designs

Expr Method DSPs LUTs Equv LUTs Regs Max Freq
(DSPs+LUTs) (MHz)

Chebyshev Comb 3 68 656 96 82
Pipe 3 39 627 72 211

HLS 3 218 806 326 223

DSPRTL 3 80 668 131 473

Inst 3 41 629 154 464

Mibench2 Comb 6 96 1272 104 75
Pipe 6 177 1353 185 199

HLS 4 771 1555 975 234

DSPRTL 6 241 1417 571 473

Inst 6 251 1427 596 469

Quad Spline Comb 13 100 2648 115 58
Pipe 13 171 2719 132 167

HLS 12 1246 3598 1708 223

DSPRTL 13 502 3050 818 470

Inst 13 389 2937 845 455

SG Filter Comb 6 72 1248 109 70
Pipe 6 79 1255 79 274

HLS 5 639 1619 599 226

DSPRTL 6 158 1334 361 471

Inst 6 136 1312 327 473

LUTSs. The result is a doubling of performance over a well-
pipelined RTL implementation that does not consider DSP
block structure, or over HLS mapping.

The greedy approach to segmenting the graph, while
sufficient to demonstrate this finding, can be improved. We
aim to implement an improved segmenting algorithm that
also considers accuracy in deciding which inputs to use for
which paths, and can optionally leave some nodes in LUTSs
when this makes sense. We are also keen on extending this
work to floating-point operations with the iterative approach
demonstrated in [7]. We will then investigate mapping to a
smaller number of DSP blocks with resource sharing using
the dynamic control signals.

REFERENCES

[1] H.Y. Cheah, S. A. Fahmy, and D. L. Maskell, “iDEA: A DSP block based
FPGA soft processor,” in Proceedings of the International Conference on
Field Programmable Technology (FPT), 2012, pp. 151-158.

[2] B. Ronak and S. Fahmy, “Evaluating the efficiency of DSP Block
synthesis inference from flow graphs,” in Proceedings of the International
Conference on Field Programmable Logic and Applications (FPL), Aug
2012, pp. 727-730.

[3] F. De Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18-27, 2011.

[4] J.Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR project: architecture and
CAD for FPGAs from verilog to routing,” in Proceedings of ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 2012, pp.
77-86.

[5] P Jamieson, K. Kent, F. Gharibian, and L. Shannon, “Odin II - An Open-
Source Verilog HDL Synthesis Tool for CAD Research,” in Proceedings
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2010, pp. 149-156.

[6] S. Gopalakrishnan, P. Kalla, M. Meredith, and F. Enescu, “Finding
linear building-blocks for RTL synthesis of polynomial datapaths with
fixed-size bit-vectors,” in Proceedings of International Conference on
Computer-Aided Design, 2007, pp. 143-148.

[7]1 FE Brosser, H. Y. Cheah, and S. Fahmy, “Iterative floating point compu-
tation using FPGA DSP blocks,” in International Conference on Field
Programmable Logic and Applications (FPL), 2013.

