
Experiments in Mapping Expressions to DSP Blocks

Bajaj Ronak, Suhaib A. Fahmy
School of Computer Engineering

Nanyang Technological University, Singapore
email: {ronak1,sfahmy}@ntu.edu.sg

Abstract—Mapping complex mathematical expressions to
DSP blocks by relying on synthesis from pipelined code is
inefficient and results in significantly reduced throughput. We
have developed a tool to demonstrate the benefit of considering
the structure and pipeline arrangement of the DSP block in
mapping of functions. Implementations where the structure
of the DSP block is considered during pipelining achieve
double the throughput of other methods, demonstrating that
the structure of the DSP block must be considered when
scheduling complex expressions.

FPGAs have always provided programmable logic and
routing interconnect to support implementation of arbitrary
circuits. Recently, vendors have sought to improve the
efficiency of mapping often used functions, through het-
eregenous resources such as DSP blocks. Mapping to these
blocks is automated during synthesis, but this can be sub-
optimal, reducing the theoretical throughput advantage [1].
Application specific tools can overcome this by building
basic blocks with efficient use of the DSP block, as in
FloPoCo [2]. However, for general mapping, users might
still be required to instantiate the primitives directly. The
performance advantages of using DSP blocks have previ-
ously been demonstrated in the design of soft processors [3]
and polynomial evaluators [4].

We have developed a tool, illustrated in Figure 1, which
takes an input expression, generates a flow graph of the
expression, and then generates synthesisable Verilog RTL

Input File Parsing

Dataflow Graph
Generation

Input File

Scheduling Segmentation

Pipeline
Balancing

HLS Project
Generation

Pipeline
Balancing

RTL Generation RTL Generation RTL GenerationRTL Generation

Template
Database

Comb Pipelined RTL HLS Direct

Pipeline
Balancing

Stage1

Stage2

Stage3

Stage4

Stage5

Vendor Toolflow

Figure 1: Experimentation tool flow.

using four different techniques. Comb elaborates the function
in a combinational manner, adds a number of pipeline stages,
and lets the synthesis tool retime the circuit. Pipelined RTL
applies ASAP scheduling and generates a pipelined RTL
version. HLS uses the Vivado HLS tool to implement the
expression, and Direct partitions the flow graph, considering
the internal architecture of DSP blocks, and generates RTL
code that instantiates them. Vendor tools are then used to
implement the various methods and report the resulting
resource requirements and frequency.

A comparison of resource requirements and frequency for
two expressions is shown in Table I, targeting the Virtex
6 XC6VLX240T-1 on the ML605 dev board. The Direct
method doubles the frequency over HLS or Pipelined RTL.

Table I: Resource usage and frequency.

Expr Method DSPs LUTs Regs Max Freq
(Num Inputs) (MHz)

Chebyshev Comb 3 66 97 82
(1) Pipelined RTL 3 39 72 211

HLS 3 212 306 224
Direct 3 49 155 473

Quad Spline Comb 13 98 117 58
(7) Pipelined RTL 13 164 132 171

HLS 12 1217 1748 218
Direct 13 435 845 460

REFERENCES

[1] B. Ronak and S. A. Fahmy, “Evaluating the efficiency of DSP
block synthesis inference from flow graphs,” in Proceedings
of the International Conference on Field Programmable Logic
and Applications (FPL), Aug 2012, pp. 727–730.

[2] F. De Dinechin and B. Pasca, “Designing custom arithmetic
data paths with FloPoCo,” IEEE Design & Test of Computers,
vol. 28, no. 4, pp. 18–27, 2011.

[3] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “iDEA: A
DSP block based FPGA soft processor,” in Proceedings of the
International Conference on Field Programmable Technology
(FPT), 2012, pp. 151–158.

[4] S. Xu, S. A. Fahmy, and I. V. McLoughlin, “Square-rich fixed
point polynomial evaluation on FPGAs,” in Proceedings of the
International Symposium on Field-programmable Gate Arrays,
2014, pp. 99–108.

2014 IEEE 22nd International Symposium on Field-Programmable Custom Computing Machines

978-1-4799-5111-6/14 $31.00 © 2014 IEEE

DOI 10.1109/.32

101

