
IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 3, SEPTEMBER 2014 41

ZyCAP: Efficient Partial Reconfiguration
Management on the Xilinx Zynq

Kizheppatt Vipin, Student Member, IEEE, and Suhaib A. Fahmy, Senior Member, IEEE

Abstract—New hybrid FPGA platforms that couple processors
with a reconfigurable fabric, such as the Xilinx Zynq, offer an
alternative view of reconfigurable computing where software
applications leverage hardware resources through the use of often
reconfigured accelerators. For this to be feasible, reconfiguration
overheads must be reduced so that the processor is not burdened
with managing the process. We discuss partial reconfiguration
(PR) on these architectures, and present an open source controller,
ZyCAP, that overcomes the limitations of existing methods,
offering more effective use of hardware resources in such archi-
tectures. ZyCAP combines high-throughput configuration with a
high-level software interface that frees the processor from detailed
PR management, making PR on the Zynq easy and efficient.

Index Terms—Accelerator architectures, field-programmable
gate arrays (FPGAs), reconfigurable computing.

I. INTRODUCTION

H YBRID field-programmable gate arrays (FPGAs)
integrate capable embedded processor cores with a

reprogrammable fabric, bringing together software and custom
hardware in a manner that makes reconfigurable computing at-
tractive beyond its traditional support base. A software-centric
view, but one in which complex computation can be offloaded
to custom hardware accelerators, has long interested the re-
configurable computing community, and hence such coupling
has been explored in the past. The advent of devices such as
the Zynq from Xilinx [1], integrating ARM processors with
a reconfigurable fabric, suggests that this view will begin to
dominate.
In this letter, we explore how partial reconfiguration (PR)

can be exploited efficiently on such architectures. Traditional
approaches have often assumed a dedicated processor for man-
aging the PR process, yet it is expected that managing PR in such
systems will now be just one of the embedded processor’s many
tasks, and hence this must be done in a way that does not impact
overall system performance. Fig. 1 shows a simplified block di-
agram of the Xilinx Zynq architecture. The programmable logic
(PL) is attached to the processing system (PS) through multiple
ARM AMBA AXI ports, offering high bandwidth coupling be-
tween them: two 32-bit AXI master (GP master) interfaces; two
32-bit AXI slave (GP slave) interfaces, and four 64-bit high-per-

Manuscript received February 04, 2014; accepted March 26, 2014. Date of
publication March 28, 2014; date of current version August 26, 2014. This man-
uscript was recommended for publication by Z. Shao.
The authors are with the School of Computer Engineering, Nanyang

Technological University, Singapore 639798 (e-mail: vipin2@ntu.edu.sg;
sfahmy@ntu.edu.sg).
Color versions of one or more of the figures in this letter are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LES.2014.2314390

Fig. 1. Zynq Architecture showing PS, PL and the interconnects.

formance AXI slave (HP) interfaces. The processor configura-
tion access port (PCAP) interface enables full and partial recon-
figuration of the PL from the PS.
Unlike previous FPGAs with hard processors requiring

significant infrastructure in the programmable logic, the Zynq
PS is fully capable, and the PL is viewed as an auxiliary
resource that can be used to improve application performance.
We now consider software applications making use of the
programmable fabric to implement accelerators, rather than the
PL implementing a self-contained system with some processors
for support.
When we factor in that the available PL area is somewhat re-

stricted, we envisage the use of the PL to implement a variety of
small accelerators, with the processor loading them dynamically
as needed. PR becomes essential as it enables such a time-mul-
tiplexed use of the PL, increasing effective logic capacity, while
also contributing to improved power consumption and reduced
configuration overhead, when compared to static approaches.
Within this new paradigm, it is essential that the overhead

of managing PR does not compromise the other tasks being
undertaken by the processor; inefficient PR management can
significantly diminish any acceleration benefits. Currently sup-
ported methods of PR management on the Zynq fail to address
this issue. Our previous work demonstrated that custom recon-
figuration controllers can considerably reduce reconfiguration
overhead in processor-less systems [2]. In this letter, we present
a new open-source reconfiguration controller and associated
driver that significantly improve reconfiguration throughput on
the Zynq while freeing the processor to work on other tasks.
Aside from improving performance, it also simplifies the man-
agement of PR processes through a high-level driver interface.

II. PARTIAL RECONFIGURATION

Partial reconfiguration (PR) design involves defining regions
on the FPGA, called partially reconfigurable regions (PRRs),

1943-0663 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

42 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 3, SEPTEMBER 2014

Fig. 2. Task profile for implementing hardware acceleration [4].

Fig. 3. Effect of overlapping hardware and software execution. (a) Processing
and reconfiguration happening sequentially. (b) Reconfiguration in parallel with
processing for dependent tasks. C1 and C2 represent accelerator reconfigura-
tions and B represents blanking the PRR. (c) Software and accelerators running
independent tasks with minimal software management overhead.

which can house different modules and be dynamically changed
at runtime by loading a partial bitstream [3]. Though Zynq sup-
ports full reconfiguration of the PL from the PS, PR still offers
several advantages. Firstly, during a full reconfiguration, the en-
tire PL is out of use. Secondly, in a system with multiple inde-
pendent accelerators, a full reconfiguration forces reconfigura-
tion of all of them even if not required. This is especially trou-
blesome if the software drivers must reinitialize them each time
a configuration is completed. Finally, in cases where the PL is
being used to connect external peripherals, such as sensors or
actuators, a reconfiguration breaks this link. PR overcomes all
these limitations, and is hence a key enabler for this paradigm
of reconfigurable computing.
To understand the impact of PR on system performance, con-

sider the typical profile for an accelerator task as depicted in
Fig. 2. The system configures the accelerator on the fabric, sends
input data, triggers execution, then reads back the output after
execution. is the time taken to decide whether a reconfig-
uration is required, is the reconfiguration time,
is the time taken to trigger the accelerator, is the time
to send data to the accelerator, is the accelerator ex-
ecution time and is the time for the results to be read
back. This profile shows that efficient management functions are
paramount in maximising the benefits offered by acceleration.

and depend upon the system architecture and
how data movement is managed. is usually negligible,
involving register configurations. A PR system should mini-
mize , while also maximizing reconfiguration throughput
to minimize . If the processor is used to manage all the re-
configuration steps, then it is not available for other tasks. This
is especially true when the number of accelerator tasks and fre-
quency of reconfiguration increases [5].
Now let us consider the impact of PR on system power con-

sumption. Since the size of partial bitstreams can be signifi-
cantly smaller compared to a full bitstream, the power consumed

for reconfiguration can be lower for PR, due to shorter recon-
figuration time.
PR has also been used to save power by blanking unused

PRRs with blank bitstreams. For PR blanking of a region to
provide an energy saving, it is required that [6]:

where is the power consumption for PR, is the bitstream
size, is the power consumed to transfer the partial bitstream
from external memory to the FPGA and is the time for
which a PRR remains inactive. Hence, maximizing reconfigu-
ration throughput () increases potential power savings.
The desire is that the processor handles only high-level re-

configuration management while the lower level mechanics are
managed separately. The advantage of this approach is that ex-
ecution of tasks on the processor and reconfiguration of the PL
can be overlapped. Fig. 3 shows the profile for an application
comprising two software and two hardware tasks executed al-
ternately. In Fig. 3(a), the processor manages configuration, and
so must wait for this to complete before executing its software
tasks. Fig. 3(b), shows how the overall execution time is reduced
when the processor is only tasked with initiating the reconfig-
uration. The reconfigurable region can be blanked when no ac-
celerator is used to reduce power consumption without compro-
mising system performance. In Fig. 3(c) we show the potential
gains for independent tasks; now that the processor is freed from
low-level configuration management, it can continue with other
tasks (subject to dependencies).

III. PARTIAL RECONFIGURATION MANAGEMENT ON THE ZYNQ

In this section we discuss existing Zynq PR schemes, and in-
troduce a custom PR controller that overcomes the limitations of
these methods. The PL can be reconfigured from the PS or from
within the PL itself. The PS uses the device configuration inter-
face (DevC), which has a dedicated DMA controller to transfer
bitstreams from external memory to the processor configuration
access port (PCAP) for reconfiguration. The Zynq also has an
internal configuration access port (ICAP) primitive in the PL, as
found in other Xilinx FPGAs. The ICAP has a 32-bit, 100 MHz
streaming interface, providing up to 400 MB/s reconfiguration
throughput.

A. State of the Art

Officially Xilinx supports two schemes for PR on the Zynq,
one through the PCAP and the other through the ICAP. By
specifying the starting location and size, the library function

can be used to transfer PR bit-
streams from external memory (DRAM) to the PCAP. The
main advantage of this scheme is that it does not require any
PL resources and gives a moderate reconfiguration throughput
of 128 MB/s. The main drawback is that it blocks the processor
during reconfiguration, precluding overlapped reconfiguration
as discussed in Section II.
Xilinx also provides an IP core (AXI_HWICAP) and library

function () to enable PR using the
ICAP. The AXI-Lite interface of the core is used to connect
it to the PS through a GP port. Since this method is not DMA

VIPIN AND FAHMY: ZYCAP: EFFICIENT PARTIAL RECONFIGURATION MANAGEMENT ON THE XILINX ZYNQ 43

Fig. 4. ZyCAP showing interface connections.

based, throughput is only 19 MB/s. This approach also blocks
the processor, and is hence inferior to the PCAP approach.
We have modified the ICAP approach by interfacing the

hard DMA controller in the PS with the AXI_HWICAP IP
and writing a custom driver function. An interrupt from the
DMA controller is used to indicate completion of reconfigu-
ration. The achievable throughput in such a case is 67 MB/s,
which is significantly slower than through the PCAP. Since
the AXI_HWICAP IP has a single AXI-Lite interface, it is not
possible to connect it to the HP port for better performance.
However, this scheme has an advantage that reconfiguration
can be overlapped with processing.

B. ZyCAP PR Management

To achieve maximum performance, we have developed a
custom controller, called ZyCAP, and an associated driver, to
verify whether such a solution can improve on PCAP perfor-
mance, while reducing processor PR management overhead.
Previous experiments with traditional FPGAs showed that a
custom solution can provide near theoretical peak reconfigura-
tion throughput [2]. But such custom controllers were designed
for processor-less systems, and hence did not provide a soft-
ware-centric view or run-time reconfiguration management,
making them difficult to port to the Zynq.
ZyCAP has two interfaces, an AXI-Lite interface connected

to the PS through a GP port and an AXI4 interface connected
to an HP port as shown in Fig. 4. Since it adheres to Xilinx’s
pcore specification, ZyCAP can be used like other IP cores in
Xilinx XPS. Internally, ZyCAP instantiates a soft DMA con-
troller, an ICAP manager and the ICAP primitive. The DMA
controller is configured with the starting address and size of the
PR bitstream through the AXI-Lite interface and bitstreams are
transferred from external memory (DRAM) to the controller at
high speed through the HP port using the burst-capable AXI4
interface. The ICAP manager converts the streaming data re-
ceived from the DMA controller to the required format for the
ICAP primitive. ZyCAP raises an interrupt once the bitstream
has been fully transferred to the ICAP.
ZyCAP achieves a reconfiguration throughput of 382 MB/s

(95.5% of the theoretical maximum), improving over AXI_HW
ICAP, DMA based AXI_HW ICAP, and PCAP by , ,
and , respectively. The deviation from theoretical max-
imum is due to the software overhead for DMA controller con-
figuration, DRAM access latency and interrupt synchronization.
A comparison of different PR methods in terms of resource uti-
lization and reconfiguration throughput is shown in Table I.

TABLE I
COMPARISON OF RESOURCE UTILIZATION FOR DIFFERENT PR METHODS ON

THE ZYNQ.

C. Run-Time PR Management

Along with high reconfiguration throughput, lean run-time
reconfiguration management is also required for better system
performance. The ZyCAP software driver implements manage-
ment functions such as transfer of bitstreams from nonvolatile
memory to the DRAM, memory management for partial bit-
streams, bitstream caching, ZyCAP hardware management and
interrupt synchronization. The driver provides an API through
which high-level software applications can manage PR.
The driver is initialized with the call, which

allocates buffers in DRAM for storing bitstreams, configures
the DevC interface, and configures the interrupt controller.
The number of bitstreams buffered in DRAM is configurable
and defaults to five. A reconfiguration is initialized using the

call, by specifying only the bitstream
name. Unlike existing vendor APIs, the software designer does
not need to know where the bitstream is stored or what the
bitstream size is.
The driver internally manages partial bitstream information

such as the bitstream name, size and DRAM location. When
a configuration command is received, it first checks if the bit-
stream is cached in DRAM, and if so configures the ZyCAP soft
DMA controller with the bitstream location and size to trigger
reconfiguration. If it is not cached, it is transferred from non-
volatile memory (SD card) to a buffer in the DRAM and the
corresponding data structure is created. If all DRAM bitstream
slots are full, the least recently used (LRU) bitstream is replaced.
The driver also enables precaching of bitstreams in the DRAM
using the API.
The driver supports deferred interrupt synchronization,

which enables nonblocking processor operation during
reconfiguration. By setting the argument in

, the function returns immediately
after configuring the DMA controller. The interrupt corre-
sponding to the reconfiguration can be synchronized later
using the call before accessing the reconfig-
ured peripheral. In this way the processor is free to execute
other software tasks while reconfiguration is in progress. If

is set to zero, the driver operates in blocking mode
and returns only after reconfiguration.

IV. CASE STUDY

To analyze the effect of different PR schemes on overall
system performance, we consider a case study from [4]. The
experiment involves image edge detection after a low-pass filter
is applied. Each image is processed twice. First, through a me-
dian filter followed by Sobel edge detection, then a smoothing
filter followed by Sobel. The modules used for the experiments
are reconfigured sequentially in a single PRR. An image is first

44 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 6, NO. 3, SEPTEMBER 2014

TABLE II
COMPUTATION TIMING PARAMETERS

transferred from external memory to a processing core and the
processed image is streamed back to the memory via DMA.
After each algorithm, the output is analyzed by the processor
for quality checks.
For our experiments, we use the ZedBoard [7]. The PRR size

is 2300 CLBs, 60 DSP blocks and 50 BRAMs, large enough to
accommodate the largest module (smoothing filter). The partial
bitstream size is 1,018,080 Bytes while a full Zynq bitstream
would be 4,045,564 Bytes. A soft DMA controller is used to
transfer data between the external memory and the processing
core through an HP port and a hardware timer is interfaced for
accurate performance measurement. All PL components run at
100 MHz. The hardware and software for this evaluation are
developed using Xilinx EDK and PlanAhead 14.6.
DMA transfers between the external memory and the PRR are

measured at 382 MB/s. Throughput between the processor and
the external memory is 128 MB/s. The latency for accessing a
peripheral from the processor is 140 ns. To configure the DMA
controller and manage data movement, 8 registers are config-
ured by the processor, consuming 1.12us. These map to exe-
cution time parameters as shown in Table II, for processing B
Bytes of data at a reconfiguration speed of T MB/s.
Since this application uses a single PRR and follows a pre-

defined reconfiguration sequence, no decision time is required
(). Reconfiguration time depends upon the reconfig-
uration scheme used, while corresponds to DMA con-
troller configuration. since the cores operate in
streaming mode. Each iteration requires two configurations and
two sets of DMA operations. For schemes that do not support
overlapped reconfiguration, the processor can only execute its
quality checks after configuring the hardware for next iteration.
For overlapped schemes, the processor can do this while the
hardware is being reconfigured.
Fig. 5 shows the effect of the different reconfiguration

schemes on system throughput. As image size increases, par-
allel hardware and software execution (solid lines) has a clear
benefit. In these cases, when the software execution time is
smaller than the reconfiguration time, the PCAP method has
a significant advantage over the DMA based AXI_HW_ICAP
due to its higher throughput. However, as the data size increases
(above pixels), overlapped reconfiguration becomes
more important, and DMA based AXI_HW_ICAP outperforms
PCAP since software execution time is now comparable to
reconfiguration time. For large frame sizes, the performance of
the DMA based methods converges since the reconfiguration
time begins to diminish with regard to software execution time.
The same is true for blocking nonDMA based methods, but

Fig. 5. Comparison of total number of pixels processed for different PR
schemes. Solid lines represent hardware-software coexecution and dotted lines
represent sequential hardware and software execution.

they saturate at a lower overall throughput. At an image size
of , ZyCAP increases application throughput by

, , and , over AXI_HW_ICAP, DMA based
AXI_HW_ICAP, and PCAP, respectively.

V. CONCLUSION AND FUTURE WORK

We have discussed the role of partial reconfiguration in
hybrid FPGA platforms such as the Xilinx Zynq. We presented
ZyCAP, a controller that significantly improves reconfiguration
throughput in Zynq system over standard methods, while
allowing overlapped execution, resulting in improved overall
system performance. ZyCap also plays a significant role in
automating PR development on hybrid FPGAs [8].
ZyCAP is has been implemented for the Standalone operating

system, and we aim to add support for Linux. ZyCAP hardware
can be similarly used with soft processors like MicroBlaze, but
driver software modifications are required for interrupt manage-
ment. This would make ZyCAP portable across all Xilinx PR
capable FPGAs. We are releasing this design in the public do-
main to help encourage adoption of PR on hybrid FPGA plat-
forms [9].

REFERENCES

[1] UG585: Zynq-7000 All Programmable SoC Technical Reference
Manual Xilinx Inc., Mar. 2013.

[2] K. Vipin and S. Fahmy, “A high speed open source controller for
FPGA partial reconfiguration,” in Proc. Int. Conf. Field Programmable
Technol. (FPT), 2012, pp. 61–66.

[3] UG702: Partial Reconfiguration User Guide Xilinx Inc., Oct. 2010.
[4] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting partial

run-time reconfiguration for high-performancee reconfigurable com-
puting,” ACM Trans. Reconfigurable Technol. Syst. (TRETS), vol. 1,
no. 4, pp. 21:1–21:23, Jan. 2009.

[5] M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirthlin, “Dy-
namic reconfiguration for management of radiation-induced faults in
FPGAs,” in Proc. Int. Parallel Distrib. Process. Symp., 2004, p. 145.

[6] S. Liu, R. N. Pittman, A. Forin, and J. Gaudiot, “On energy efficiency of
reconfigurable systems with run-time partial reconfiguration,” in Proc.
IEEE Int. Conf. Appl.-specific Syst. Arch. Process. (ASAP), 2010, pp.
265–272.

[7] ZedBoard: Hardware User’s Guide Jan. 2013.
[8] K. Vipin and S. A. Fahmy, “Automated partial reconfiguration design

for adaptive systems with CoPR for Zynq,” in Proc. Int. Symp. Field-
Programmable Custom Comput. Mach. (FCCM), 2014.

[9] Zycap [Online]. Available: https://github.com/archntu/zycap

