A Scalable and Compact Systolic
Architecture for Linear Solvers

Kevin S. H. Ong*, Suhaib A. Fahmy*, Keck-Voon Ling'
*School of Computer Engineering
School of Electrical and Electronic Engineering
Nanyang Technological University, Singapore
Email: shong6@ntu.edu.sg

Abstract—We present a scalable design for accelerating the
problem of solving a dense linear system of equations using LU
Decomposition. A novel systolic array architecture that can be
used as a building block in scientific applications is described
and prototyped on a Xilinx Virtex 6 FPGA. This solver has a
throughput of around 3.2 million linear systems per second for
matrices of size N=4 and around 80 thousand linear systems per
second for matrices of size N=16. In comparison with similar
work, our design offers up to a 12-fold improvement in speed
whilst requiring up to 50% less hardware resources. As a result,
a linear system of size N=64 can be implemented on a single
FPGA, whereas previous work was limited to a size of N=12 and
resorted to complex multi-FPGA architectures to scale. Finally,
the scalable design can be adapted to different sized problems
with minimum effort.

I. INTRODUCTION

Previous work in the area has focused on solving large
problem sizes using iterative algorithms, such as the Conjugate
Gradient Method, with a focus on sparse matrices. To achieve
high linear solver performance, a digital hardware designer
must be involved at all stages of the design. Hence, scientific
application designers without background knowledge cannot
modify such architectures for their needs. By not exploiting
some of the high level design environments available, these
designs represent point solutions rather than a toolkit for
scientists. One of the key areas where linear solvers for large
problems are being explored is in model predictive control
(MPC) [1].

In this paper, we present an a scalable design for accelerat-
ing the problem of solving a dense linear system of equations
using LU Decomposition. A systolic array approach facilitates
easy scaling through structural regularity,allowing the linear
solver to be rapidly prototyped using high-level software tools
and non-experts to make use of it at a higher architecture
level. While prior work avoids divide operations for the matrix
inversion step, our proposed design performs floating-point
division and our linear solver has a throughput of ~3.2 million
linear systems per second for matrices of size N = 4 and
~80 thousand linear systems per second for matrices of size
N = 16. This represents up to a 12x improvement in speed
over previous work, while requiring up to 50% less hardware
resources. Readers are reminded that the proposed scalable
systolic array architecture, while suited to MPC, can be applied
to general scientific computing problems where a system of
linear equations is to be solved. More importantly, there is no
need for a hardware designer to be on hand.

978-1-4799-3609-0/14/$31.00 © 2014 IEEE

186

As

Ax

A
0
0

ﬂ
L —>
|

Asn
Axn
An

|
D1‘n

D2

An
An
0

Ip com Id

(a) Existing

(b) Proposed

Fig. 1: Comparison of Triangular Systolic Array Architecture

II. SYSTOLIC ARRAY DESIGN

Due to space constraints, the reader is assumed to have
prior knowledge on the subject of systolic arrays.

Existing TSA designs, as shown in Fig. 1a, require N (N +
1)/2 PEs and the values of the L and U matrices are produced
after 2N time-steps. A detailed examination and re-mapping
of computational operations for LU Decomposition leads us to
propose a triangular systolic array (TSA) design which requires
a total of (N (NN +1)/2) —1 PEs, which we call LU-TSA, and
is shown in Fig. 1b. The saving of one divider PE is significant
due to the area cost of those nodes. In addition to performing
matrix decomposition using the LU method, both forward and
back substitution steps are required to solve a system of linear
equations. The total time required for the substitution steps is
2N? operations.

Both [2] and [3] implemented linear solver SA designs
of dimensions up to 12 x 12 on a single FPGA. In addition,
existing work suggests that backward substitution is performed
sequentially after forward substitution and no further paral-
lelism is possible. But close examination of both substitution
steps enables us to introduce parallelism in the substitution
step. We propose that the diagonal division operations of the
U matrix be performed independently of the back substitution
step by means of the reciprocal operation. Hence, the time-
consuming reciprocal latency can be hidden well within the
latency of the forward substitution step, saving N time-steps,
for a problem size as small as NV = 4, and enabling hardware
re-use.

ASAP 2014



III. IMPLEMENTATION SETUP AND RESULTS

A. System Setup

The proposed TSA-based linear solver was implemented
using Xilinx System Generator (SysGen) [4] targeting a mid-
range Xilinx Virtex 6 FPGA (XC6VLX240T). Our proposed
design implements signed fixed-point number format with 9
integer bits and 8 binary bits, similar to [5], however our design
differs in being wordlength and matrix size parameterizable
at the PE level within the SA architecture. We make use
of the DSP Blocks’ dynamic configurability [6] to support
multiple operations on the same hardware in different steps.
The individual blocks are designed to be easily composable
in SysGen. A mixed number representation is used, and we
adopt the precision used in [5].

B. Implementation Results

From Table I, our design is 2.5x faster and ~6% smaller
than the custom linear solver reported in [7]. It also provides
resource savings of up to 50% for large sizes of N. In [8]
and [7], N = 10 was the largest problem size that could
be implemented on a single FPGA. By contrast, our linear
solver can be implemented for a size of N = 16 (pipelined
design) on the smallest Virtex 6 (XC6VLX75T) FPGA. Based
on the results in Table I and the structural regularity of our
proposed design, we are confident that our linear solver can
be implemented for up to N = 32 on a Virtex 6 XC6VSX475T
and N = 64 on a Virtex 7 XC7V2000T.

Compared with [5], our TSA-based linear solver is ~ 12X
faster though no resource consumption results are available for
comparison of area. From the power consumption perspective,
actual processing utilization for our TSA-based SA design
is low when compared to a 1D SA design. Our proposed
TSA-based Linear Solver can also exhibit 1D SA like power
consumption through the use of clock-gating on FPGAs, which
can turn on and off PEs according to their usage.

TABLE I: Linear Solver Performance & Hardware Re-
source Benchmarking
Proposed Proposed | Custom HW MINRES
(4x4) (16x16) (4x4) (16x16)
[71 [9]
8| Word length Hybrid(18,9) | Hybrid(18,9) FXP(20,0) | Floating-Point
S| Latency(cycles) 304 2,650 473 374
£ | Clock Freq.(MHz) ~247 ~198 166 ~250
‘g Throughput ~0.82 ~0.08 ~0.35| ~0.04 to 0.68
A | (Msystems/s)
2| Slices 1,933 15,622 2,025 ~12,500
§ BRAM/RAMIS8EI 17 167 1 ~37
5'2 DSP48E1/DSP48 6 120 12 ~40
<
E Device Type XC6VLX240T | XC6VLX240T | XC4VSX35T | XC5LX330T
=

The design in [9] uses an iterative floating-point linear
solver with maximum iteration count to reach a solution being
N, and supporting dense matrices. On the other hand, our
proposed linear solver utilizes both floating-point and fixed-
point representations. For N = 16, our novel TSA architecture
is up to 2x faster than their worst case scenario (see Table I).

187

To achieve such high performance, the design in [9] employs
manual deep pipelining and symmetry of the A matrix is
exploited. Their dense linear solver is able to handle matrices
of order up to N = 145 while our design has been explored for
up to N = 64. Their design achieves this by extensive re-use
of floating-point square root and division operators. However,
we avoid deep pipelining and datapath customisation in order
not to disrupt the structural regularity, and hence scalability,
of our design.

IV. CONCLUSION

A triangular systolic array based linear solver has been pre-
sented and implemented on an FPGA platform. Our proposed
architecture does not side-step the computationally expensive
floating-point division operations as is typical in other work.
Our design offers up to a 12x improvement in speed whilst
requiring up to 50% fewer hardware resources. As a result, a
direct linear solver of size N = 64 can be implemented on a
single FPGA. More importantly, the systolic array approach,
with the optimized computational nodes we have designed,
allows the design to be tailored by non-experts for their
particular application.

So far, we have not exploited any special properties of
the A matrix, such as symmetry, bandedness or sparsity, and
this will be explored in future work. Secondly, we intend to
increase the number of design parameterization options. We
will also explore the use of iterative floating point computation
[10] for the divisions. Lastly, a comparison study of the
proposed architecture against other GPU and floating point
DSP implementations will be explored.

REFERENCES

J. Jerez, K.-V. Ling, G. Constantinides, and E. Kerrigan, “Model
predictive control for deeply pipelined field-programmable gate array
implementation: algorithms and circuitry,” IET Control Theory and
Applications, vol. 6, no. 8, pp. 1029-1041, 2012.

M. Karkooti, J. R. Cavallaro, and C. Dick, “FPGA implementation
of matrix inversion using QRD-RLS algorithm,” in Proceedings of
Asilomar Conference on Signals, Systems and Computers, 2005, pp.
1625-1629.

Y. H. Hu and S.-Y. Kung, “Systolic arrays,” in Handbook of Signal
Processing Systems. Springer, 2013, pp. 1111-1143.

Xilinx, System Generator for DSP User Guide UG640 (v 14.3). Xilinx,
2012.

A. Mills, A. Wills, S. Weller, and B. Ninness, “Implementation of linear
model predictive control using a field-programmable gate array,” IET
Control Theory and Applications, vol. 6, no. 8, pp. 1042-1054, 2012.

H. Y. Cheah, S. A. Fahmy, D. L. Maskell, and C. Kulkarni, “A lean
FPGA soft processor built using a DSP block,” in Proceedings of
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), 2012, pp. 237-240.

A. U. Irturk, “GUSTO: General architecture design utility and synthesis
tool for optimization,” PhD Thesis, University Of California, San Diego,
20009.

C. Wan, “Systolic algorithms and applications,” PhD Thesis, Loughbor-
ough University, United Kingdom, 1996.

(1]

(2]

[3]
(4]

(51

(6]

(7]

(8]
[9] D. Boland and G. A. Constantinides, “Optimizing memory bandwidth
use and performance for matrix-vector multiplication in iterative meth-
ods,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 4, no. 3, p. 22, 2011.

F. Brosser, H. Y. Cheah, and S. A. Fahmy, “Iterative floating point
computation using FPGA DSP blocks,” in Proceedings of the Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2013.

[10]



	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	No Other Manuscripts by the Authors
	----------

