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Abstract— Adaptive systems are increasing in importance
across a range of application domains. They rely on the ability
to respond to environmental conditions, and hence real-time
monitoring of statistics is a key enabler for such systems.
Probability density function (PDF) estimation has been applied
in numerous domains; computational limitations, however, have
meant that proxies are often used. Parametric estimators attempt
to approximate PDFs based on fitting data to an expected
underlying distribution, but this is not always ideal. The density
function can be estimated by rescaling a histogram of sampled
data, but this requires many samples for a smooth curve.
Kernel-based density estimation can provide a smoother curve
from fewer data samples. We present a general architecture
for nonparametric PDF estimation, using both histogram-based
and kernel-based methods, which is designed for integration
into streaming applications on field-programmable gate array
(FPGAs). The architecture employs heterogeneous resources
available on modern FPGAs within a highly parallelized and
pipelined design, and is able to perform real-time computation
on sampled data at speeds of over 250 million samples per second,
while extracting a variety of statistical properties.

Index Terms— Accelerator architectures, adaptive systems,
field-programmable gate arrays (FPGAs), histograms,
probability density function (PDF).

I. INTRODUCTION

NFORMATION on the probability density function (PDF)

of sampled data has a wide range of uses across many appli-
cation domains. A variety of techniques have been proposed
over the years [1]; computational complexity, however, often
means these cannot be implemented in real time within a sys-
tem that processes continually streaming data. The preference,
so far, has thus been to rely on techniques that fit a reduced
data set to a predefined parametric model—what is termed
parametric estimation. This can be inaccurate, especially if
the PDF of the data is unknown or changing.

In most references to applications of PDF estimation in the
literature, one-time statistics are computed on a block of data.
In image-processing applications, for example, statistics are
typically required for a single image frame. In this paper,
we are more interested in facilitating real-time monitoring
of signals that may change over time. Specifically, adaptive
systems may need to monitor changes in certain environmental
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factors, before adapting their behavior based on these statistics.
The measurements are typically extracted from data that is
processed within a streaming signal processing chain.

Real-time estimation of PDFs is required in applications like
cognitive radios that react to channel occupancy statistics, or
adaptive networking nodes that modify their routing behavior
based on network queue length statistics. For such applications
to be feasible, it must be possible to compute PDFs in real-
time on streaming data, at rates that do not impact the high-
performance requirements of the data processing.

In this paper, we present a PDF estimation architecture
that can be integrated within field-programmable gate array
(FPGA)-based applications, which is flexible and moderate in
terms of area usage. The aim is to allow designers of appli-
cations that benefit from the PDF estimation, to leverage this
capability within their hardware designs, without impacting
the core processing stream. We target FPGAs because they
are uniquely placed as an ideal platform on which to build
adaptive applications, due to their reconfigurable nature.

In Section II, the fundamentals of the PDF estimation
are presented along with a review of existing hardware
approaches. Sections IIT and IV introduce the proposed archi-
tecture for histogram-based and kernel-based PDF estima-
tion, respectively, and their FPGA-oriented design. Section V
presents an empirical comparison of the two methods. In
Section VI, we present hardware implementation results.
Finally, Section VII concludes this paper.

II. RELATED WORK

PDF estimation techniques fall into two categories: paramet-
ric and nonparametric [1]. The parametric techniques try to fit
the data to a known model and deduce values for model para-
meters. These parameters can then be used to deduce statistics
from the model’s equations. The nonparametric techniques use
the samples themselves to construct PDF. The most common
nonparametric technique is constructing a histogram, which,
when normalized, gives the instantaneous PDF. Given a good
model, parametric techniques can give more accurate results
with less data than a nonparametric model. The requirement
for a good model, however, means that when the PDF’s nature
is unknown or changing, parametric approaches can result in
poor accuracy. Furthermore, finding parameter values may not
necessarily mean a wide variety of statistical properties can
be easily calculated. It is also worth noting that when subtle
changes in data distribution over time are required, parametric
approaches can fail to provide sufficient discriminatory power.

1063-8210/$31.00 © 2012 IEEE



FAHMY AND MOHAN: ARCHITECTURE FOR REAL-TIME NONPARAMETRIC PDF ESTIMATION 911

PDF estimation is of value in a number of different appli-
cations areas, including image processing [2], [3], machine
learning [4], computer security [5], medical imaging [6], and
communications, among others. One example is multiuser
direct-sequence code division multiple access which needs
an estimation of the PDF for global noise [7]. This impor-
tance is certain to increase rapidly as we enter the age of
adaptive computing. Adaptive systems rely on information
about their environment and operating conditions to make
intelligent decisions on adapting their operation. Previously
a simple hard decision could be taken based on minimal
data, whereas modern systems need an approach that takes
into account more complex characteristics of the environ-
ment. For autonomous systems, having a “real” view of the
situational statistics is essential in making informed deci-
sions, and in aiding the designer to implement and adapt
decision algorithms.

We first begin with a basic overview of the foundational
theory behind the PDF estimation. As related analysis can be
explored in much greater depth, the reader is invited to refer
to the references for further discussion [1], [8], with just the
basics presented here.

The cumulative distribution function (CDF) of a random
variable X is defined by

Fx)=Pr(X <x). (1)

We can estimate this, from elementary probability theory,
using the empirical CDF

1 n
Fy(x) = — D I—oon (%) 2
i=1

where x1, x2, ..., x, is a random sample from F and
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Elementary probability tells us that PDF of a random
variable is the derivative of the CDF, f(x) = F’(x). Hence
the empirical PDF can be stated as
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where d(¢) is the Dirac delta function.

Architecturally, if we consider a bank of registers as being
the contents of the histogram, then (2) represents a sample
incrementing the value for all bins up to its own value. For
(4), we can consider the sample to only increment its own bin.
This forms the basis of our proposed architecture.

The fundamental idea of Kernel density estimation is to
spread uncertainty in estimation through “spreading” the effect
of each input sample by applying a kernel centered at its value,
rather than a Dirac delta function, as in (4). Hence, a kernel
estimator can be defined as

~ 1 & X — X;
fo)zE;K( - ) 5)

where K is the kernel and # is the bin width.

Existing work on hardware architectures for the PDF
estimation is minimal. In [9] a histogram of an image is
constructed for histogram equalization. Since this is done,
for one image at a time, they process accumulation at the
end of histogram construction, during the blanking period
between frames in a video, using a sequential approach. This
would not be suitable for a constantly updating (sliding)
window, for which the PDF values should be updated after
each new sample is introduced. In [10], a novel technique for
constructing histograms is shown, but with an application to
median computation. In this paper, we use a similar approach
to construct the histogram, but tailor it to PDF calculation, with
the addition of kernel-based estimation, and the extraction of
statistics. In [3] a histogram is constructed within a hardware
architecture but using a sequential approach, again on a per-
image basis. Once more, this cannot be tailored for a streaming
implementation.

Elsewhere, in [11] a Parzen window PDF estimator is used
as an example application for a performance migration tool.
However, it processes a single block of data loaded from a
host PC, and the performance comparison is made between
single- and dual-core acceleration of a mostly sequential
implementation.

The architecture presented in this paper is the first to allow
for real-time, high-throughput, nonparametric PDF estimation
based on the histogram and kernel methods, extending the
work in [12]. The architecture maintains the full state of the
histogram in every clock cycle, allowing a variety of statistical
properties to be computed. It is targeted at applications with
changing PDFs or where an accurate model is not known in
advance. We believe this architecture will be of great benefit
in adaptive applications implemented on FPGAs, where this
module can be included to provide real-time statistics for
decision-making and adaptation, without requiring any data
path modification—by virtue of its pipelined nature, it would
not impact the host system’s performance.

III. PARALLEL PDF ARCHITECTURE
A. Outline

The architecture presented here accepts sampled data at
its input and computes the cumulative histogram of that
data, which is stored internally. By normalizing, based on
the window size, which can be changed to any power of 2,
the resultant information contained in the circuit represents the
cumulative density function. This enables us to extract various
PDF statistics in a highly efficient manner. Two architecture
variations are presented in this paper. The first computes the
bare histogram, while the second uses a kernel-based approach
that results in smoother histograms from less data. Maintaining
the full histogram within the architecture has the benefit of
allowing the designer to extract multiple statistics of interest,
as required for a specific application.

The first half of the circuit computes the histogram. This is
done by instantiating a bank of counters that keep a tally of the
number of occurrences for each input value. This histogram
unit is built such that it is updated as each new sample
enters the system. The design is heavily pipelined to allow for
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Fig. 1. Comparison of probability calculation from histogram and cumulative
histogram.

maximum performance. The second half of the circuit consists
of the statistical units that extract information of interest from
the cumulative histogram, for use in the target application.
We decouple these two parts so that the application designer
can extract as many statistics as needed without impacting the
functionality of the histogram component.

B. Computing the CDF

A circuit to hold the PDF of sampled data is relatively
straightforward. A bank of counters, one for each bin, can
be arranged such that when a sample enters the system, the
counter for the bin in which that sample falls is incremented,
as in (4). Extracting meaningful statistics from such a PDF,
however, involves further calculation. A p(x = a) calculation
would be straightforward, by looking up the count value
at index a. Anything more complex would require separate
computation, which may take many cycles.

More useful statistics can be gained by using the CDF. The
CDF of a set of data is simply an accumulation of the PDF
values at each bin. Hence at index a, the count value would
be equal to the sum of PDF bin values for all indexes from 0
to a. The CDF is, by definition, a monotonic function.

Fig. 1 shows how using a PDF, anything other than the
exact probability for a single index is represented by an area.
Computing this in real time would require summation of all the
necessary bins, which would be an expensive operation. With a
cumulative histogram, a single lookup gives the probability for
a range of values. To constrain the range on both sides would
only require one more lookup and the probability would be
the difference between the two.

Hence, the CDF allows for more interesting statistics to be
extracted in real time. For example, p(x < a) is now simply
the bin value at index a. Similarly p(a < x < b) would be the
bin value at index b minus the bin value at index a. We can
also extract centiles—that is the value of ¢ such that p(x < ¢)
equals some given value, as will be discussed shortly.

Hence, the first requirement of the histogram unit, is a bank
of counters that can be individually enabled based on whether

i countfi-1]
bin_en[i-1] :I
Count countfi]
bin_enl[i] N
countfi+1]
bin_en[i+1]
bin_en[i+2] : count[i+2]

count[i+3]

Fig. 2. Basic histogram bin structure.

TABLE I
ACCESS PATTERN MEMORY CONTENTS FOR 64 BINS

Addr Pattern[0:63]

0 111i11t--- 11111111
1 O1111111---11111111
2 00111111---11111111
2 00011111---11111111
4 00001111---11111111
5 00000111--- 11111111

61 00000000-. - -

00000111
62 00000000- - - 00000011
63 00000000- - - 00000001

they should be incremented by the current input sample. This
is shown in Fig. 2, where each counter’s bin_en input indicates
whether or not that bin should be incremented in a given clock
cycle. The architecture requires a counter for each histogram
bin, and hence the area of this part of the circuit varies linearly
with the number of bins.

To compute the cumulative histogram in real time, the
architecture must be able to update all necessary bins for each
input sample in a single cycle. An input sample of value x
should increment the bin corresponding to sample x and all
subsequent bins. For an architecture with hundreds of bins
using a comparator coupled with each bin to determine this is
costly. In [10], we presented a method that uses a memory
to enable the corresponding bins, in a method similar to
microprogrammed control. As each input sample arrives, it
is used to address a memory with pre-stored access patterns.
The access patterns contain a series of bits that determine
which bin should be enabled for each input value. For this
case, the contents of the memory are simple, as shown in
Table I (for a 64-bin design). The embedded memory blocks
on modern devices mean this technique is highly amenable
to implementation on FPGAs. Furthermore, the sparse layout
of these memories on the FPGA fabric, and the fact that
large memories are stitched together from smaller ones, means
routing is not hampered by this centralized control module,
and so high timing performance can still be achieved.
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It is worth noting that the number of bins and the word
length of the samples are two separate considerations. Various
rules have been proposed to find the number of bins that
would provide sufficient accuracy with some assumptions
about the input data [1], [13]. This is typically less than the
number of possible values that can be taken by input samples.
Indeed having too many bins can result in a noisy density
function, as we later illustrate in Section V. If we calculate
that 2/ histogram bins are sufficient, we simply use the / most
significant bits of the input samples to address the access
pattern memory. The size of this memory varies with the
square of the number of bins, as it is always [ x [-bits.

Part of the motivation for this design is for the histogram
to be calculated over a fixed-length sliding window. This
would allow for continuous monitoring of the required data
in real time, while allowing older values to fall out of the
window, and hence, maintain “fresh” statistics. To allow this, a
first-in first-out (FIFO) buffer of length equal to the window
is instantiated. This buffer keeps track of the samples in
the window. As samples stream through, the oldest sample
emerges at the other end of the FIFO and can be removed
from the histogram.

We only need to store the [/ most significant bits of each
input sample, since that is the only portion used to address
the memory. The resources required for the FIFO vary linearly
with the length of the window, and logarithmically with the
number of bins.

To remove an old sample from the histogram, its
corresponding bins must be decremented. By using the pat-
tern memory described above, this becomes straightforward.
Embedded Block RAMs on Xilinx FPGAs have dual-port
capability, this allows two addresses to be read in the same
clock cycle. The access patterns for the new and oldest sample
are extracted in each cycle making it possible to update the
histogram in a single step by considering which bins need to
be updated. Fig. 3 shows an illustrative example on how this is
determined. The control signals for each bin indicate whether
to increment, decrement, or maintain the count value.

To normalize the cumulative histogram, to compute the
CDF, we need to divide the count values by the window length.
Since division by arbitrary integers is expensive in hardware,
we have restricted the window length to be a power of 2, which
means division is replaced by a shift. This makes sense, since
when setting window size, it is the order of magnitude that will
have an impact, rather than a small change in value. Hence, we
can accommodate window lengths such as 8, 16, 32, 64K, and
so on. Normalization is simply a case of shifting the binary
count value to the right by the corresponding number of bits,
n, for a window size of 2". So for a window size of 8K
the count value of a particular bin is shifted right by 13 bits.
Rather than lose any precision in the counter itself, all scaling
is only done at the output of the architecture.

Fig. 4 shows the overall architecture of the system. Samples
enter the system and are fed into the FIFO, the output position
of which can be set by the fifo_length signal, allowing the
window size to be varied at run time. The FIFO is con-
structed, such that it can be set to any useful power of 2.
We use embedded Block RAMs to implement the FIFO, thus

o ] 0
1| ] 1
2] - 2

3 K] |

+ 47 40

5] 5l

6 [ |
-7 ] 7
8| | + 8
o | 9
10| | 10
11 1"

New sample: 4
Oldest sample: 7

New sample: 8
Oldest sample: 2

D No change D Increment [l Decrement

Fig. 3. Determining which bins are to be incremented, decremented, and
unchanged, based on the current new and old samples. + indicates the new
sample, while — indicates the old sample.

reducing logic usage and increasing performance. The output
of the FIFO represents the oldest sample emerging from the
sampling window. Together with the new sample, they are
used to address the two ports of the dual port access pattern
memory. The output of this memory tells each bin whether
to increment, decrement or maintain the existing value, to
update the histogram values. The count outputs of all the bins
(bincount[0:N—1]) are then passed to the next stage, where
statistics can be extracted, as discussed in the next section.

C. Extracting Statistics

Now the CDF data is present within the circuit, and we
can add units to extract statistics. We previously showed that
probability ranges are straightforward. For fixed p(x < a)
calculations, we simply extract the value in the ath counter. If
we desire the value of a to be adjustable, a multiplexer allows
this to be done. Similarly, for an intermediate probability
range, we use two multiplexers to extract the cumulative count
for two bins, and subtract them. The prindex signal is set to
the required value of a and the output represents p(x < a).
For p(x > a), the value is simply subtracted from the window
size. For p(a < x < b), two pr_out values, one corresponding
to each of @ and b are subtracted from each other.

Centiles are a useful tool in statistical analysis. One of
the unique features of this architecture is that it allows
these statistics to be extracted with minimal overhead. For a
dynamic system, centiles allow for quality-of-service-oriented
decisions. For example, in a networking context, a router might
decide that 80% of packets should wait in a queue for less than
a given threshold of time. In an opportunistic cognitive radio
node, we might decide that a frequency channel is vacant if
95% of the activity in that channel falls below a certain noise
margin. Given a cumulative histogram, we can compute these
centiles in real time using a novel technique.

A value at the output of a particular bin counter in a
cumulative histogram tells us that the corresponding number
of occurrences have values that are less than or equal to that
bin’s index. Hence, if we have a value of 100 at bin index
b, that means there have been 100 occurrences of samples
with values up to b. Given a fixed window size of 1000, that
would tell us that value b is the 10th centile, since 100 of
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Fig. 4. Complete PDF estimator architecture, showing the window FIFO, access control memory, and bank of bin counters, along with statistics units.
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Fig. 5. 16-bit priority encoder constructed from five 4-bit priority encoders.
The first stage computes the least significant bits of the output while the second
computes the most significant bits and selects the required output from the
first stage. The output is a concatenation of the two.

the 1000 samples (i.e., 10%) fall at that value or below. More
generally, if we want the nth centile, we need to find the index
whose count value is equal to, or exceeds, N/n, where N is
the PDF window size.

To do this in a hardware architecture, we can use a priority
encoder combined with comparators. A priority encoder finds
the highest index occurrence of a “1” in a binary word. If we
know the value we are looking for, a bank of comparators, one
for each bin counter, can be used to compare the bin counts to
the required value. This results in a series of zeros for the ini-
tial bins, followed by ones for the bin corresponding to the first
count to exceed this value, and all subsequent bins. The prior-
ity encoder determines the index of the first bin to output a one.

Constructing a priority encoder for hundreds of bits is not
straightforward if speed is important. However, a technique
in [14] shows how it is possible to pipeline many small

priority encoders together into a larger one. Fig. 5 shows
how five 4-bit priority encoders can be combined into a
16-bit priority encoder. Similarly, nine 8-bit priority encoders
can be combined into a 64-bit priority encoder, and so on.
By pipelining between each stage, only a few clock cycles
of latency are added, while we are able to clock the circuit
significantly faster.

The centile value, centval, is given as a proportion of the
window size, rather than a raw percentage value. The Comp
block compares the count values of all the bins, in parallel,
with the required centile value, returning a binary one for each
bin where the count exceeds the required value. The priority
encoder then determines the position of the first bin with a
high output, giving the index for the required centile. The
outputs can be used for monitoring the centiles themselves
or to calculate inter-centile range, simply by tracking the
difference between two centiles.

As many of these statistical calculation components can be
added, as needed. Further compositions are possible since the
histogram data is all stored within the bin counters.

IV. KERNEL-BASED ARCHITECTURE

The architecture presented in the previous section computes
the PDF-based statistics from a raw histogram representation
of the input data. The primary drawback of that approach is
that it requires a large number of samples to give an accurate
estimate. Due to the discontinuous nature of the bins, a small
number of samples leads to errors in the estimated PDF.
Section V discusses this in more detail.

Kernel density estimation allows us to model the uncertainty
in input accuracy by spreading the effect of an input sample
into adjacent bins. The result is increased accuracy in the
resulting PDF compared with the histogram-based approach,
for the same number of samples. Alternatively, we can match
the accuracy of the histogram-based approach with fewer
samples. The result at the system level is that extracted
statistics are more accurate, and as they rely on fewer samples,
changes in the PDF are apparent sooner.
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Fig. 6. Bin architecture for kernel density estimation.

TABLE 11
KERNEL-BASED CUMULATIVE HISTOGRAM

Access Pattern Bits

Sample | Kernel Values Added

b | I m | r r

1))

Ih+0h

— m+0+0b
rn+m+l+1h
rnt+r+m+l+b
n4+r+m+h+h
n4+r+m+h+h

0 0 0
1 0 0
1 1 0
1 1 1
1 1 1
1 1 1
1 1 1

—_—_ = 0 O O O

r2+r1+m+ll+12 1 1 1 1 1
rn4+r+m+1 0 1 1 1 1
r4ri+m 0 0 1 1 1

A. Computing the Kernel Density Estimate

To enable this, each sample must be able to address the
set of bins required for its kernel. Each sample affects its
corresponding bin as well as neighboring bins. The number
of neighboring bins affected depends upon the width of the
kernel. Each bin counter should be incremented by the sum
total of all the kernel values affecting it. The different kernel
values that overlap when an input sample arrives are illustrated
in Table II. The kernel values in the table are represented as
{lr,11,m,r1, 2}, with m being the middle value. A kernel
width of 5 is used for illustration. The kernel is a symmetric
function that integrates to 1.

In this example, a sample arrives centered at the third bin.
Since the kernel width is 5, this sample affects the two bins
prior (0 and 1), and the two following (3 and 4). All subsequent
bins are also incremented to produce the cumulative histogram.

Hence, for the kernel-based design, adders are required to
update the bins, as opposed to the basic histogram design
where bins were either incremented or decremented. The width
of these adders depends on the width of the kernel coefficients.

The other challenge is how to implement the control for the
bins now that a single sample addresses multiple bins. It would
be possible to use a separate access memory for each kernel
coefficient. That way, when a sample arrives, each coefficient

enables the corresponding bins, and the coefficient values are
added within the bin. But this approach would consume a
large number of memory blocks and would make the circuit
more complex. Furthermore, the width of the kernel would
then impact area significantly.

Looking at Table II once more, we can see that when an
input sample arrives, its corresponding bin is incremented by
m, the bins immediately above are incremented by /; and
I1 + I>. Similarly the bins immediately below are incremented
by ri+m-+I1+1l; and ro +r1 +m+11+1> (= 1), respectively.
It is clear from the table that the access pattern for the middle
value m of the kernel for a given incoming sample is the same
as in Table I for the standard histogram. The access patterns
for other kernel values are simply obtained by shifting the
access pattern memory left or right and appropriately zero-
padding them. Therefore, the access patterns for all the kernel
values can be obtained from a single access pattern memory
by appropriately connecting them to address the bins. We can
wire up the single access pattern memory in such a way that
the control signals for all the kernel coefficients are extracted
at the same time. To maintain the PDF contents with each
input sample, these additions must be completed in a single
clock cycle.

To remove an old sample from the histogram, the
kernel values for its corresponding bins must be subtracted.
We further extend the technique described in Section III-B,
using the same access pattern memory, to decide how to
modify the count value of each bin. Each bin now has an
input signal for each kernel coefficient that indicates whether
the coefficient value should be added or subtracted, or left
unchanged.

Kernel values are represented using fixed point numbers of
k bits with the binary point to the left, as the values are all
less than 1. More accuracy and precision can be obtained by
using more bits. Since the kernel values always integrate to
1, the maximum number of bits required to store the sum of
all the kernel values will be k 4+ 1 with the binary point to
the right of the most significant bit. The counters in each bin
should be wide enough to accommodate the maximum value,
which depends upon the window size. For a window size of
N = 2", the width of the count register will be n + k + 1.
Normalization can be applied by shifting the binary point to
the left by n bits and truncating the fractional part.
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B. Architecture Design

The overall PDF estimation architecture shown in Fig. 4
is modified to allow the kernel values to be input and stored
inside a register array. Using a kernel_sel signal, the width
of the kernel can be chosen at run-time.

The only significant modification is to the architecture of
the bin nodes, as shown in Fig. 6 for a maximum kernel
width of nine coefficients. Each bin receives 9-bit signals
new_en and old_en, which indicate whether the bin is accessed
by the new and oldest samples, respectively, for each kernel
coefficient. XOR-ing old_en and new_en gives a signal that
indicates whether the bin value should change for each kernel
coefficient. In the first stage of the pipeline, the left most
value of the kernel is added/subtracted depending upon the
corresponding bit of the addsub signal. Its output is gated
by addsub_en, that is, the output of the adder/subtractor is
not propagated through the pipeline if addsub_en is low for
that particular kernel value. The pipeline register is used to
latch the intermediate counter value, addsub, and addsub_en
signals for subsequent stages. As the pipeline is filled, the
kernel values are added/subtracted and the accumulated value
reaches the last stage at which it is added to the bin counter
register. After a latency equivalent to the width of the kernel
in bits, the count register is updated for every cycle as new
samples arrive and old samples emerge from the FIFO. The
number of adder/subtractors required is equal to the maximum
width of the kernel, that is, 9 in this case. By pipelining the
adders, drastic performance improvement is achieved for an
increase of only a few cycles in latency.

The resulting CDF data can now be processed to extract
statistics in the same way as the histogram design. The
architecture processes a new input sample in every cycle, and
maintains the correct CDF with each new sample that enters.

V. ESTIMATION ACCURACY

As a designer using the above architecture within a larger
system, it is worth investigating the impact of design parameter
choices on the resulting resource usage. To recap, the first
choice is whether to use the histogram-based approach or
kernel-based estimation. Then the number of bins must be
chosen. This impacts area linearly for both schemes. The
length of the window of interest must also be chosen; this
impacts the length of the FIFO, as well as the width of
the counters in the bins. For the kernel-based approach, the
designer can also choose the width of the kernel, that is, the
number of bins across which an input sample’s effect is spread.
This impacts the number of adders needed in the bins, and the
width of the bin registers. The architecture has been designed
such that a maximum range for each of these parameters can
be set at synthesis, but each can be changed at run-time using
configuration inputs.

A series of simulations were performed to study the accu-
racy of histogram-based PDF estimation and kernel density
estimation. A large sample of 1024K random numbers was
generated from predefined distributions (normal, Rayleigh,
etc.). Smaller subsets of this large sample set were used
to estimate the PDF using both histogram-based and kernel

density estimation methods, averaging over a few hundred
windows. The lengths of the subsets were chosen to match
the settable FIFO lengths. PDFs were estimated by varying
the FIFO length and number of bins for each combination.
Mean-squared error (MSE) was estimated by comparing the
PDF estimated with the original distribution. It is worth noting
that this analysis is empirical and data-dependent. Although
there is significant analytical work that investigates the impact
of such choices, it is well beyond the scope of this paper, and
the reader is referred to [1] and [8] for such discussion.

A. Impact of Window Size

Fig. 7 shows the MSE with varying FIFO lengths for a
different numbers of bins. Each plot shows the MSE for the
histogram-based approach (hist), and for three to nine kernel
coefficients (k3-k9). It is clear that as the number of samples
considered (i.e., the FIFO length) increases, the resulting PDF
becomes more accurate in all cases. In fact, we can see that for
64 bins, a nine-coefficient kernel converges to a higher error
rate than the raw histogram, likely because the spreading effect
of the kernel is too pronounced. A smaller window results in
linearly increased error (the x-axis is exponential, as per the
possible window sizes).

It is also clear that irrespective of the bin size, kernel
density estimation consistently outperforms the histogram-
based method, reducing error by a half from a raw his-
togram to a kernel with three elements. This improvement is
especially apparent with small window sizes. As the FIFO
length increases and approaches several thousand samples,
the MSE for all cases converge. Adding further coefficients
to the kernel-based approach gives increased accuracy, but
this diminishes as the kernel is widened. The conclusion is
that a kernel-based design with three coefficients matches the
performance of a histogram-based design with a window that
is twice as large. Increasing to seven kernel coefficients can
halve the window size again for comparable performance.

For real-time systems, being able to estimate a PDF more
accurately with fewer samples would be beneficial, as it would
result in a circuit that uses less area. Furthermore, a smaller
window means a system is able to monitor rapid changes in
statistics. As this effect is more pronounced in the smaller size
range, this is of greater significance, as we are keen to enable
compact implementations, and hence, a reduced number of
bins is likely.

B. Impact of Number of Bins

Fig. 8 shows the MSE for varying bin sizes for different
window sizes. The general trend across the graphs shows
that as we increase window size, MSE decreases, as in the
previous figure. However, now we can see that the number of
bins also has an impact on accuracy. With a smaller window
size, and hence fewer samples to consider, a large number of
bins leads to a sparsely populated histogram, and hence the
resulting shape is spiky. This means that the instantaneous PDF
obtained for any window is likely significantly different from
the original PDF we are trying to estimate. As the window
size (FIFO length) increases, this trend becomes less apparent,
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k5, k7, and k9, respectively).

and we find that a higher number of bins can bring some
increased fidelity. It is also worth noting that as we add more
kernel coefficients, we suffer less with a larger number of
bins. The reason here is that the kernels spread samples across
multiple bins, hence smoothing out the spikiness. This effect is
illustrated for an example distribution in Fig. 9, where we see
that an increased number of bins results in an instantaneous
estimate that is very noisy, though the kernel-based approach
does mitigate this somewhat.

The results for 32 bins in Fig. 8 seem to defy the general
trend. On closer examination, we discover that the error is in
fact constant regardless of the window size. This suggests that
in this case, the limiting factor in the resulting estimation’s
accuracy, is the number of bins rather than the window size.
Generally for these tests, we found that the best performance
was obtained with bin sizes of 64 and 128 for the chosen
distributions.

Determining the optimal number of bins clearly has a
significant impact, and as discussed in Section III-B, there
has been a significant amount of analytical work in this area.
In [15], kernel-based PDF estimation is shown to perform far
better than the histogram-based method and a mathematical
model to estimate the optimal kernel width and bin size is
presented. From the experiments presented here, it can be
concluded that kernel density estimation provides smoother
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MSE for varying window (FIFO) lengths for histogram (hist) and kernel-based calculation, with three, five, seven, and nine kernel coefficients (k3,

results using fewer samples and with a smaller number
of bins.

VI. IMPLEMENTATION RESULTS

The above architectures were implemented and simulated
in Verilog then synthesized and targeted to a Xilinx Virtex-5
XC5VEXT70T, as found on the Xilinx ML507 development
board. We selected a maximum configurable window size of
128K samples and set the maximum number of bins to 128.
We used the standard bin access pattern and allow for two
direct probability and two percentile calculations in parallel.

For the FIFO, we used Xilinx embedded memory cores.
Since we only need access to specific points within the
FIFO queue, FIFOs of length 8, 8, 16, 32, and 64K were
chained together, allowing for window sizes of 8, 16, 32,
64, and 128K, while maintaining maximum speed. For the
priority encoder, the technique detailed in Section III-C
was used to build a 128-bit module using two 64-bit priority
encoders. The 64-bit priority encoders were created using
nine 8-bit priority encoders. For the access pattern memory, a
standard Block RAM module in CoreGen was used. It stitches
together four-Block RAMs to create the 128 x 128-bit memory.
Unfortunately, due to the structure of the primitives, only a
quarter of the addressable locations are used. This is because
each 18 kB memory can only be configured from 16 K x 1
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respectively).

TABLE III
FPGA RESOURCE UTILIZATION

Module PDF KDE
Slices BRAMs  Slices BRAMs

Access Memory 0 4 0 4
Window FIFO 462 32 462 32
PDF Unit 324 0 568 0
Centile Unit (ea.) 430 0 870 0
Full System 7640 36 22360 36
Available 44800 148 44800 148

to 512 x32. Four 512 x 32 memories are arranged side-by-side
for this memory.

Using the Xilinx cores for the FIFO was also found to speed
up synthesis and reduce logic usage significantly, as the tools
are unable to automatically infer large primitives efficiently.

For the parameters given above, we obtained the area results
shown in Table III. The architectures were both able to achieve
over 250 MHz clock frequency.

The area usage in both cases is dominated by the his-
togram circuitry. For histogram-based estimation it consists of

128 16-bit counters and associated control circuitry. For kernel
density estimation, it consists of 128 25-bit registers with
adder-subtractors and associated control circuitry. The centile
unit in the kernel-based architecture occupies a larger area due
to the wider registers required by the comparators. This could
be mitigated by considering a subset of the bits starting at the
most significant, if area optimization is essential. BlockRAM
usage is primarily due to the FIFO and hence unchanged.
Reducing window size would result in a reduction in Block
RAM requirements, while reducing the number of bins for the
histogram, would reduce the logic requirements significantly.

It is clear that for an identically parameterized design, the
kernel-based approach consumes almost three times the logic
of the histogram-based approach. Since kernel-based PDF
estimation can obtain a better result from fewer samples, it
is possible to decrease the FIFO length without impacting
estimation accuracy. In the next section, we explore some
variations.

Rather than compare identical design parameters, we
would like to take advantage of the accuracy opportunity
afforded by the kernel-based approach to reduce its area over-
head. A number of parameter variations were considered to
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Effect of increasing number of bins on an approximated PDF for a fixed FIFO length of 8192 samples, showing the increased noise with a high

number of bins. Approximations shown for histogram (hist) and kernel-based calculation, with three, five, seven, and nine kernel coefficients (k3, k5, k7, and

k9, respectively), overlaid on original distribution (orig).
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thoroughly investigate the proposed architecture. The results
were obtained by synthesizing the architecture for a Xilinx
Virtex-5 XC5VLX330 to accommodate a large number of bins.

Area usage for varying window sizes was studied for both
the architectures keeping the number of bins to 256 and a fixed
kernel width of five 12-bit coefficients. The results for both
architectures are shown in Fig. 10. The bin counter width was
accordingly increased in each case. The general trend for area
requirements can be described as being of the form A+log, B,
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Fig. 11. Resource usage for varying number of kernel coefficients.

where B is the window size and A is the fixed area required
by the rest of the design regardless of window size. Window
size impacts Block RAM usage more significantly.

The area usage for varying numbers of kernel coefficients
was studied for the kernel density estimation architecture keep-
ing the number of bins to 256 and a maximum configurable
window size of 128 K. The results are shown in Fig. 11. An
increase in the number of kernel coefficients increases the
number of adder-subtractors, associated control circuitry, and
pipeline registers.
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The next variation involves varying the number of bins.
The kernel architecture was fixed to five coefficients and a
maximum configurable window size of 128 K was used. The
results for this set of implementations are shown in Fig. 12.
Clearly, the number of bins impacts logic usage significantly,
as each bin includes the increment/addition circuitry. We can
also see that by using kernel density estimation, we are able
to reduce the window size, and hence Block RAM usage, but
we pay a price in increased logic usage.

The resultant usage in a real system thus depends signif-
icantly on how the unit is configured, but it is clear that by
design, the proposed architecture is scalable without adversely
impacting throughput. By thoroughly pipelining the design, it
is able to process a new sample in every clock cycle, at a
throughput of over 250 million samples per second.

VII. CONCLUSION

We showed a novel architecture for real-time computation
of PDF estimates based on the histogram and kernel density
estimation methods. It makes extensive use of FPGA resources
to parallelize and accelerate the algorithm. We showed how a
cumulative histogram can be constructed in parallel, how sta-
tistical properties can be extracted in real-time, and how
priority encoders can be used to extract further statistics.
We showed an extended architecture for kernel-based PDF
estimation capable of changing kernel widths at run-time,
without loss in performance. The architecture can process
data streams at 250 million samples per second. We also
presented simulation results that help illustrate the trade-off
in selecting between raw histogram-based PDF estimation and
kernel-based estimation.

In future work, we plan to explore the use of this archi-
tecture within adaptive systems, to better understand the
impact of design decisions, and to compare the two estimation

approaches. We feel that this architecture can enable a range
of new applications incorporating intelligent adaptation.
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