
Optimization of the HEFT algorithm for a
CPU-GPU environment

Karan R. Shetti, Suhaib A. Fahmy
School of Computer Engineering

Nanyang Technological University
Singapore

Email: karan2@e.ntu.edu.sg,sfahmy@ntu.edu.sg

Timo Bretschneider
European Aeronautic Defense and Space Company,

Innovation Works
Singapore

Email:timo.bretschneider@eads.net

Abstract—Scheduling applications efficiently on a network of
computing systems is crucial for high performance. This problem
is known to be NP-Hard and is further complicated when applied
to a CPU-GPU heterogeneous environment. Heuristic algorithms
like Heterogeneous Earliest Finish Time (HEFT) have shown to
produce good results for other heterogeneous environments like
Grids and Clusters. In this paper, we propose a novel optimization
of this algorithm that takes advantage of dissimilar execution
times of the processors in the chosen environment. We optimize
both the task ranking as well as the processor selection steps
of the HEFT algorithm. By balancing the locally optimal result
with the globally optimal result, we show that performance can
be improved significantly without any change in the complexity of
the algorithm (as compared to HEFT). Using randomly generated
Directed Acyclic Graphs (DAGs), the new algorithm HEFT-NC
(No-Cross) is compared with HEFT both in terms of speedup
and schedule length. We show that the HEFT-NC outperforms
HEFT algorithm and is consistent across different graph shapes
and task sizes.

Keywords—heterogeneous computing; GPGPU; HEFT ;task
ranking

I. I NTRODUCTION

The last few years have witnessed a proliferation of power-
ful heterogeneous computing systems. The CPU-GPU coupled
processor is an excellent example of such a system. The use of
such systems to solve generic scientific problems has gained
widespread popularity [1], [2] . AMD has recently introduced
new fusion processors called APUs (Accelerated Processing
Units) which combine both CPU and GPU in one chip. Intel
has introduced the Sandy Bridge and Ivy Bridge processors
which show continued industrial interest in such a trend.
However, using such an architecture to solve generic problems
is very challenging as the efficiency of executing applications
heavily depends on the methods used to schedule the tasks of
an application. Conventional scheduling algorithms may not be
optimal due to dissimilar execution times and possibly different
communication rates.

The main goal of any scheduling algorithm is to assign a
task to the best suited processor such that the overall execution
time (makespan) is minimized. A well accepted representation
of an application (set of tasks) is the Directed Acyclic Graph
(DAG), which characterizes the application both in terms of
execution time and inter-task dependencies. This problem of
assigning tasks to the most efficient processor is known to
be NP-hard [3] and hence most scheduling algorithms are

based on heuristics. Heuristic approaches can be grouped under
three categories: List, Clustering and Duplication schedul-
ing. Clustering heuristics are mainly used for homogeneous
systems to form clusters of tasks that are then assigned to
processors. Duplication heuristics have shown to produce the
shortest make-spans [4], but they have two disadvantages: a
higher time complexity and the duplication of the execution
of tasks, which results in more processor power used. List
scheduling heuristics, on the other hand, produce the most
efficient schedules, without compromising makespan and with
a complexity that is generally quadratic in relation to the
number of tasks. Therefore, the focus has shifted more toward
list-based scheduling algorithms.

II. PROBLEM STATEMENT

One of the best and well accepted list-based heuristics
is the Heterogeneous Earliest-Finish-Time (HEFT) [5].
Canon et al. [6] compared 20 scheduling heuristics and
concluded that for random graphs, on average, HEFT derives
the best schedule. They compared these algorithms in terms
of robustness and schedule length. Computationally, the
HEFT algorithm has a complexity of O(v2p), wherev is the
number of tasks andp is the number of processors. The
HEFT algorithm first assigns a priority (rank) to each task
and then uses an insertion based framework to assign tasks to
a particular processor such that the overall execution timeis
minimized.

However, the HEFT algorithm may not be optimal in a
CPU-GPU environment. Several improvements such as chang-
ing the ranking method, looking ahead and clustering have
been proposed [7], [8], [9], [10], [4], [11] over the past few
years to further improve the performance of the algorithm.
In this paper, we propose a modified version of the HEFT
algorithm called HEFT-NC (No Cross). The main idea behind
the algorithm is balancing the globally optimal performance
(Earliest Finish Time) with the locally optimal one (computa-
tion time on different processors) by restricting the crossing
of tasks between processors.
This paper is organized as follows: in Section III, we present
related work on scheduling on heterogeneous systems. In
Section IV, we present an overview of the proposed algorithm.
Section V discusses the results of different experiments and
finally, in Section VI we present the conclusions.



III. R ELATED WORK

Scheduling algorithms for homogeneous architectures have
been well explored. Scheduling in heterogeneous architectures
has also been investigated, but it has been mainly restricted to
distributed and grid systems. The development of scheduling
algorithms for GPUs within a single machine has only picked
up over the last five years [12], [13], [14] due to improvements
in architecture technology. The task scheduling problem is
broadly classified into two major categories, namely static
scheduling and dynamic scheduling. In static scheduling, all
information about tasks such as execution and communication
costs for each task and the relationship with other tasks is
known beforehand. This is used to formulate the schedule in
advance. In case of dynamic scheduling this information is not
available and scheduling decisions are made at runtime. The
focus of this paper is on static scheduling.

A. Dynamic Scheduling Frameworks

The Harmony framework [15] represents programs as a
sequence of kernels. This framework considers scheduling
of these kernels based on their suitability for a particular
architecture. Using a multivariate regression model, different
tasks are dynamically assigned to the processing elements.
This model shows promising results; for a matrix multipli-
cation application it can transparently transfer it to the GPU
as the size of the matrix increases. However, it does not really
propose any new heuristic for task scheduling. It relies on
the control decisions specified by the user to make a choice
between different architectures. But on the other hand, it
provides a simple model for a CPU-GPU environment.
StarPU [16], developed by INRIA, is a runtime system capable
of scheduling tasks over heterogeneous, accelerator based
machines. It is a portable system that automatically schedules
a graph of tasks onto a heterogeneous set of processors. It
is a software tool that aims to allow programmers to exploit
the computing power of the available CPUs and GPUs, while
relieving them from the need to specially adapt their programs
to the target machine and processing units. Many applications
like the linear algebra libraries MAGMA [17] and PaStiX [18]
use StarPU as a backend scheduler for deployment in a
heterogeneous environment.

B. Static List Based Scheduling

HEFT is widely accepted algorithm that schedules a DAG
onto a range of heterogeneous processors. There are two phases
within the algorithm. The first phase ranks and prioritizes
the tasks and the second phase is processor selection. This
algorithm has relatively low complexity and is very efficient
when compared to other algorithms [6]. However, it was
developed before the advent of specialized processors like
GPUs [5].
Since then, many improvements and variations of the HEFT
algorithm have been suggested. Zhao and Sakellariou [7]
investigated different methods to improve the ranking function.
They showed that using the average value as the task rank is
not optimal. However, the results from the proposed modi-
fications are not consistent over different graphs. Nasri and
Nafti [11] put forward another algorithm that closely mimics
HEFT. Communication costs are included as part of the task
rank to compensate for the heterogeneity in communication,

but the results are only marginally better than HEFT.
The PETS [9] algorithm also focuses on changing the ranking
method: task ranks are calculated not only on the Average
Computation Cost (ACC) but also the Data Transmit Cost
(DTC) and Data Receive Cost (DRC). It claims to derive better
schedules 71% of the time and has lower complexity than
HEFT. However, for randomly generated graphs, the algorithm
shows marginal improvement in schedule length. Better results
are obtained for FFT graphs. Observing that small changes
to the ranking method can affect the performance of the
scheduling algorithm, Sakellariou and Zhao [8] suggest a
hybrid method which is less sensitize toward the ranking sys-
tem. The authors propose a 3-step algorithm namely ranking,
grouping and scheduling. In the grouping step, all independent
tasks are grouped together allowing greater freedom in the
scheduling step to schedule tasks in parallel. The Balanced
Minimum Completion Time(BMCT) heuristic proposed for
the scheduling step outperforms HEFT for random, as well
as real world work-flows but is computationally expensive. In
comparison with HEFT it is approx. seven times slower [8].
Bittencourt et al. [19] proposed a different optimization to
HEFT. The main idea here is to minimize the Earliest Finish
Time (EFT) of all the children of a node on the processor
where the selected node is to be executed. Four different
variations to this look-ahead model are presented. The algo-
rithm performs well when the number of processors is high
but otherwise the improvement in terms of schedule length is
marginal. By looking-ahead, the complexity is also increased.
Arabnejad and Barbosa [4] further optimize this approach.
They put forward an algorithm that is able to look-ahead while
maintaining the same complexity as HEFT. They calculated
the Optimistic Cost Table (OCT) for all tasks and use the
same for ranking and processor selection (minimize Optimistic
Finish Time instead of EFT). The algorithm outperforms HEFT
significantly, showing a 4-10% improvement in makespan.
However, the algorithm does not perform well if all path of a
graph are critical paths as in the case of FFT graphs.

IV. A LGORITHM OVERVIEW

A. Motivation

The different modifications of the HEFT algorithm show
it can be further optimized. Currently, it is not fully suited
to take advantage of dissimilar performance of the CPUs and
GPUs. The main idea behind the HEFT task ranking is to
schedule the largest task first, however using the average time
as a metric to prioritize tasks is not optimal for a CPU-GPU
environment. The processor selection step in HEFT is based
on scheduling the highest priority task producing the lowest
global Earliest Finish Time (EFT). In some cases, we can
observe that the makespan can be reduced by choosing the
more optimal processor (based on computation times) for a
task rather the global EFT as later shown in Fig. 3. Therefore,
both the task ranking and the processor selection steps have
scope for improvement.

B. Modification of Task Weight

1) Approach 1: Zhao and Sakellariou [7] have experi-
mented with various simple metrics (Median, Best value,
Worst value) to better rank tasks, but none of the metrics
showed consistent performance. In our first approach, we used



speedup as a metric. This is more intuitive when comparing
the performance of the CPU and GPU. The speedup is defined
as the ratio of the execution time on the slower processor to
the faster processor. This value is used to calculate the rank
(blevel) of the tasks. Comparing this modification with the
original HEFT (same processor selection heuristic) shows a
2.3% improvement in the makespan averaged over 500 random
DAGs. It was also observed that it produces a better schedule
45% of the time.

2) Approach 2:While using the speedup as a metric shows
some improvement, it does not capture all the information
about the tasks. A large speedup value does not necessarily
mean that the task is large and hence should be scheduled
first. The actual time saved or the absolute time difference
of the computation times is a better metric for this. A sim-
ilar comparison (as Approach 1) with HEFT shows that on
average, there is a 2.6% improvement in the makespan. In
this method, there is a strong bias towards tasks with large
computation time, tasks with better speedup can be assigned
lower priority. Therefore while the make span improves, this
approach produces better schedules only 38% of the time.

3) Approach 3:Keeping in mind the advantages and disad-
vantages of both the approaches, we propose a composite task
ranking system which takes into consideration both speedup
and the time saved. By using the ratio of absolute time saved
over the speedup as defined in Eq. 1, we are normalizing the
information across different tasks and processors.

Weightni
=

abs(w(ni, pj)− w(ni, pk))

w(ni, pj)/w(ni, pk)
(1)

Here w(ni, pj) is defined as the computation time of task
ni on processorpj . This method captures more information
about the tasks and shows a 3.1% improvement in makespan
while being better than HEFT 42% of the time.
Consider the DAG shown in Fig. 1, the task set consists
of 16 nodes with 0 being the root node added to
complete the graph. Table I shows the computation
time and the rank assigned to each task using HEFT
and Approach 3. The priority of tasks as assigned by
HEFT will be {2,6,1,9,5,4,7,10,8,3,12,11,13,15,14,16}
and that assigned using the proposed approach is
{2,1,6,5,9,4,8,7,3,10,11,3,12,15,14,16}. We can see that
Task 1 is given higher preference compared to Task 6
even though the absolute time difference is similar because
of the higher speedup achieved. Conversely, Task 5 is
given preference over Task 9 even though their speedup is
comparable as it saves a significant amount of time. Therefore,
both factors are used efficiently to determine the priority of
the task.

C. No-Crossover Scheduling

In this paper, we propose a novel variation to the processor
selection step of the HEFT algorithm. As per the HEFT
algorithm, the highest priority tasks are first scheduled on
the processor that produces the lowest finish time (globally
optimal). This approach may not be the most optimal for large
and complex task sets. Sometimes, better makespan can be
achieved by scheduling tasks based on just the computation
time of tasks on different processors (locally optimal). This
is more relevant for CPU-GPU environment, where the level

Fig. 1. Example of random DAG

TABLE I. DAG RANK TABLE

Task P1 (time) P2 (time) HEFT-Rank Proposed-Rank
1 40 260 1550 355
2 286 352 1937 403
3 132 247 813 238
4 256 298 1333 262
5 97 299 1375 320
6 131 304 1617 348
7 136 104 1176 250
8 165 308 860 253
9 315 370 1399 273
10 292 213 1055 225
11 172 136 623 176
12 323 343 802 166
13 316 153 547 172
14 14 45 312 92
15 266 105 468 146
16 215 347 281 82

of heterogeneity is quite high. The formal definition of the
algorithm is shown 1.

The algorithm can be better understood by studying
the schedules produced as shown in Fig 2 and 3. In both
cases, Task 2 is scheduled first on P1. HEFT schedules



Algorithm 1: HEFT-NC Algorithm

1 for all ni in N do
2 Compute modified task weight(ni)
3 Compute blevel(ni)
4 end
5 StartNode←ReadyTaskList
6 while ReadyTaskList is NOT NULLdo
7 Selectni node in the ReadyTaskList with the

maximum blevel
8 for all pj in P do
9 Compute EST (ni,pj)

10 EFT (ni,pj) ⇐ wi,j + EST(ni,pj)
11 end
12 Selectpj with Min EFT (ni,pj)
13 if wi,j <= Mink∈P (wi,k) then
14 Map nodeni on processorpj which provides its

least EFT
15 Update T Available[pj ] and ReadyTaskList
16 else
17 Weightabstract = abs(EFT (ni,pj)−EFT (ni,pk))

EFT (ni,pj)/EFT (ni,pk)

18 if Weight(ni)
Weightabstract

<= CROSSTHRESHOLD
then

19 Map nodeni on processorpj (Cross-over)
20 Update T Available[pj ] and ReadyTaskList
21 else
22 Map nodeni on processorpk (No

Cross-over)
23 Update T Available[pk] and ReadyTaskList
24 end
25 end
26 end

TABLE II. D EFINITIONS

N {n1, n2, n3, n4, n5, n6.}.Set of nodes in the
DAG

P {p1,p2, p3, p4, p5, p6.}//Set of processors
wi,j Time required to execute taskni on proces-

sor pj
ci,j Time required to transfer data from taskni

to nj

T Available[pj ] Time at which processorpj completes the
execution of all the nodes previously as-
signed to it

EST (ni,pj ) Max(T Available[pj ],Max(nm∈pred(ni)
)

EFT(nm,pj )+ci,j )
EFT (ni,pj ) wi,j + EST (ni,pj )
CROSSTHRESHOLD Empirically defined coefficient that deter-

mines if a task should crossover to a locally
sub-optimal processor

Task 6 next followed by Task 1. In this case, Task 1 is
scheduled on P2 as it produces the lowest EFT. In comparison
HEFT-NC schedules Task 1 second, ideally it should have
been scheduled on P2, however if we look at the computation
time of Task 1 on P1 and P2, there is a significant difference
(≈ 220 time units). So we can observe that while globally the
finish time is optimized if this task is scheduled on P2 but it
is more efficient if we use the locally optimal processor (P1).
Therefore applying the HEFT-NC definition, the cross over

to P2 is not allowed. While this can lower device utilization,
it can be observed that for large task sets the makespan is
significantly improved.
The decision to cross over is critical and depends on the
empirically derived value of CROSSTHRESHOLD. This
value is defined as a number from 0-1. A value close to unity
will reduce the HEFT-NC schedule to the HEFT schedule.On
the other hand, a low value will not allow any cross
over thereby lowering the efficiency of the heterogeneous
architecture. In this paper, the value has been set to 0.3 and
has shown consistent results over 2000 DAGs as described
in Section V. The makespan has improved by about 4.8%.
HEFT-NC also has a better schedule length ratio (SLR) of
0.98 as compared to 1.05 of HEFT. Therefore we can observe
that making short term sacrifices can significantly improve
overall performance.

Lines 13-24 in the formal description of the algorithm
better illustrate the cross/no-cross decision making process.
The first step is to check if processorj that produces the lowest
EFT is also the most efficient processor for the task (lowest
computation time). If this case is true, (Lines 13-16) the
globally optimal result matches the locally optimal one andthe
task is scheduled on that processor. If these results don’t match,
i.e there exists a processork which has a lower computation
time than j, then we create an abstract task which is an
aggregate of all the previous tasks executed. This also includes
the task that needs to be scheduled. The EFT on processorp
andk are used as the computation times respectively. We create
this abstract task to reduce the complexity of the scheduling
problem to a two task problem.
The composite weight as described in Eq. 1 is calculated for
this abstract task (Line 17). Now we can compare the two
tasks (abstract task and the original task to be scheduled) and
choose the larger task. However, a simple binary comparison
can overload one processor by restricting cross-overs. Hence, a
margin of error is allowed through the CROSSTHRESHOLD
parameter (Lines 18-24). In the chosen example as shown in
Fig. 3, Tasks 1 and 2 are aggregated as a single task and their
abstract weight is calculated and compared with the weight of
Task 1.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

2
6
9
7
8
3

11
14
16
1
5
4

10
12
13
15

Timeline (time units)

Ta
sk

N
o

P2

P1

Fig. 2. Application trace of HEFT



0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

2
1
6
5
9
8
3

12
14
16
4
7

10
11
13
15

Timeline (time units)

Ta
sk

N
o

P1

P2

Fig. 3. Application trace of HEFT-NC

V. RESULTS AND DISCUSSION

A. Experimental Setup

The performance of the HEFT-NC algorithm was tested
exhaustively across 2000 randomly generated DAGs. The
following parameters were considered for generation of these
DAGs. Each of these parameters were combined in all possible
combinations and 25 iterations of each combination were
generated.

1) Number of tasks (N) ={10, 50, 100, 200, 500}
2) Graph shape (α) = {0.1, 1, 5, 10}
3) Computation to Communication ratio (CCR) ={0.1,

5, 10}
4) Outdegree range [0..5]

B. Simulation Results

1) Speedup Comparison:Figure 4 - 6 shows the speedup
achieved across different parameters (α = 0.1,5,10). We can
observe that in all cases, for narrow as well wide graphs the
speedup achieved is quite significant. The results are much
better for large task sets, for smaller task sets HEFT produces
better results. This can be attributed to the fact that no-
crossover method can sometimes lengthen the schedule by
overloading a processor and if no other tasks are available,
the makespan can be longer. But as we can observe, overall,
there is a consistent improvement of about 4-6% in makespan.
The best case performance of the algorithm shows a 20%
improvement.

2) Schedule Length Comparison:The metric most com-
monly used to evaluate a schedule for a single DAG is the
makespan. In order to compare DAGs with very different
topologies, the metric most commonly used is the Scheduling
Length Ratio (SLR) as defined in Eq. 2

SLR =
makespan(solution)

CPIC
(2)

Critical Path Including Communication (CPIC) is the longest
path in the DAG including communication costs. The average
SLR over different computation to communication ratio (CCR)
is shown in Table. III. The improvement in performance is

0 50 100 200 300 400 500

−6

−4

−2

0

2

4

6

8

No of Nodes

S
pe

ed
up

(%
)

CCR-0.1 CCR-5 CCR-10

Fig. 4. Speedup comparisonα = 0.1

50 100 200 300 400 500

2

3

4

5

6

No of Nodes

S
pe

ed
up

(%
)

CCR-0.1 CCR-5 CCR-10

Fig. 5. Speedup comparisonα = 5

consistently better than HEFT across the different CCRs. This
shows that the algorithm is quite stable.
Another important observation is the best case percentage,i.e.
the amount of time HEFT-NC produces shorter makespans than
HEFT. HEFT-NC is quite consistent and on average produces
better results than HEFT 68% of the time. As the task sets get
bigger and more complex, HEFT-NC produces better results.
Fig. 7 shows the performance of both algorithm with varying
shape of the graph. For narrower graphs, there is very little
improvement in performance as compared to square or wider
graphs. This is due to the fact that dependencies curb the
different permutations in which the tasks can be scheduled.

The performance of the algorithm over different CCR is
shown in Fig. 8. The improvement in performance here is
significant across all ratios. The highest improvement can be
seen in graphs with high CCR ratio because by restricting the
number of crossovers, we limit the amount of data that needs
to be transferred between processors. Therefore, even though
communication costs are not taken into account, the algorithm



100 200 300 400 500

2

3

4

5

No of Nodes

S
pe

ed
up

(%
)

CCR-0.1 CCR-5 CCR-10

Fig. 6. Speedup comparisonα = 10

Narrow(0.1) Square(0.5) Wide(10)
2

4

6

8

10

Graph Shape

S
LR

HEFT HEFT-NC

Fig. 7. SLR comparison over different graph shapes

is indirectly benefited by using the no-crossover heuristic.

TABLE III. SLR COMPARISON OVER VARYINGCCR

Name CCR = 0.1 CCR = 5 CCR = 10
HEFT HEFT-

NC
HEFT HEFT-

NC
HEFT HEFT-

NC
Mean 12.76 12.23 11.53 10.91 12.42 11.83
Median 10.62 10.17 9.09 8.70 10.85 10.37
Std. Dev. 8.64 8.37 8.34 7.83 9.03 8.54
Best Case
%

18.03 65.86 14.37 68.58 12.37 84.9

VI. CONCLUSION

In this paper, we have presented a novel optimization to the
HEFT algorithm. The modifications proposed do not change
the complexity of the algorithm but significantly improve its
performance. We have proposed modifications to both the task
ranking method and the processor selection method.

Low Comm Med Comm High Comm
8

8.5

9

9.5

10

CCR

S
LR

HEFT HEFT-NC

Fig. 8. SLR comparison over different CCR

• Task ranking: We proposed a new method to rank
the tasks such that both speedup and absolute time
saved are considered while giving priorities to the
tasks. This modification alone showed about 3-4%
improvement in the makespan. While the results were
not always significant, it provided a more optimal
barometer while making decisions in the processor
selection step.

• Local vs global optimization: Through exhaustive ex-
periments we have shown that the performance of
HEFT-NC has improved significantly over the HEFT
algorithm. We have shown that in many cases, a
locally optimized approach produces better schedules.
Experiments were conducted using randomly gener-
ated DAGs to test the algorithm thoroughly.

A. Future Work

From the above results we can observe that the while
HEFT-NC algorithm is very efficient, there is still scope
to improve its performance. Communication costs have not
been considered in this work. Although, indirectly it does
benefit from lower memory transfers, a better ranking system
which also takes communication costs into consideration could
significantly improve performance. Another optimization that
could be investigated is look-ahead aspect while making the
cross/no-cross decision. With information about the future, the
cross-over decision can be made more intelligently. However,
this might change the complexity of the algorithm.

REFERENCES

[1] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating mapreduce for multi-core and multiprocessor systems,” in
High Performance Computer Architecture, 2007, pp. 13–24.

[2] Chris J. Thompson, Sahngyun Hahn, and Mark Oskin, “Using modern
graphics architectures for general-purpose computing: a framework and
analysis,” inProceedings of the 35th annual ACM/IEEE international
symposium on Microarchitecture. 2002, MICRO 35, pp. 306–317, IEEE
Computer Society Press.



[3] Cristina Boeres, Vinod EF Rebello, et al., “A cluster-based strategy for
scheduling task on heterogeneous processors,” in16th Symposium on
Computer Architecture and High Performance Computing, SBAC-PAD.
IEEE, 2004, pp. 214–221.

[4] H Arabnejad and J Barbosa, “List scheduling algorithm for hetero-
geneous systems by an optimistic cost table,”IEEE Transactions on
Parallel and Distributed Systems, , no. 99, pp. 1–1, 2013.

[5] Haluk Topcuoglu, Salim Hariri, and Min-You Wu, “Task scheduling
algorithms for heterogeneous processors,” inHeterogeneous Computing
Workshop, 1999.(HCW’99) Proceedings. Eighth. IEEE, 1999, pp. 3–14.

[6] Louis-Claude Canon, Emmanuel Jeannot, Rizos Sakellariou, and Wei
Zheng, “Comparative evaluation of the robustness of dag scheduling
heuristics,” inGrid Computing. Springer, 2008, pp. 73–84.

[7] Henan Zhao and Rizos Sakellariou, “An experimental investigation into
the rank function of the heterogeneous earliest finish time scheduling
algorithm,” in Euro-Par 2003 Parallel Processing, pp. 189–194.
Springer, 2003.

[8] Rizos Sakellariou and Henan Zhao, “A hybrid heuristic for dag
scheduling on heterogeneous systems,” in18th International Symposium
on Parallel and Distributed Processing. IEEE, 2004, p. 111.

[9] E Ilavarasan, P Thambidurai, and R Mahilmannan, “Performance
effective task scheduling algorithm for heterogeneous computing sys-
tem,” in The 4th International Symposium on Parallel and Distributed
Computing. IEEE, 2005, pp. 28–38.

[10] Saima Gulzar Ahmad, Ehsan Ullah Munir, and Wasif Nisar, “Aseg-
mented approach for dag scheduling in heterogeneous environment,” in
12th International Conference on Parallel and DistributedComputing,
Applications and Technologies (PDCAT). IEEE, 2011, pp. 362–367.

[11] Wahid Nasri and Wafa Nafti, “A new dag scheduling algorithm for
heterogeneous platforms,” in2nd IEEE International Conference on
Parallel Distributed and Grid Computing (PDGC). IEEE, 2012, pp.
114–119.

[12] Dominik Grewe and Michael F. P. O’Boyle, “A static task partitioning
approach for heterogeneous systems using opencl,” inProceedings of
the 20th International Conference on Compiler Construction. 2011, pp.
286–305, Springer-Verlag.

[13] K. Shirahata, H. Sato, and S. Matsuoka, “Hybrid map task scheduling
for gpu-based heterogeneous clusters,” inCloud Computing Technology
and Science (CloudCom), 2010, pp. 733–740.

[14] Vignesh T. Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal,
“Compiler and runtime support for enabling generalized reduction
computations on heterogeneous parallel configurations,” inProceedings
of the 24th ACM International Conference on Supercomputing. 2010,
ICS ’10, pp. 137–146, ACM.

[15] Gregory F. Diamos and Sudhakar Yalamanchili, “Harmony: anexe-
cution model and runtime for heterogeneous many core systems,” in
Proceedings of the 17th international symposium on High performance
distributed computing. 2008, pp. 197–200, ACM.

[16] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier, “Starpu: a unified platform for task schedulingon
heterogeneous multicore architectures,”Concurrency and Computation:
Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011.

[17] Agullo et al., “Numerical linear algebra on emerging architectures: The
plasma and magma projects,” inJournal of Physics: Conference Series.
IOP Publishing, 2009, vol. 180, pp. 012–037.

[18] Pascal H́enon, Pierre Ramet, and Jean Roman, “Pastix: a high-
performance parallel direct solver for sparse symmetric positive definite
systems,”Parallel Computing, vol. 28, no. 2, pp. 301–321, 2002.

[19] Luiz F Bittencourt, Rizos Sakellariou, and Edmundo RM Madeira,
“Dag scheduling using a lookahead variant of the heterogeneous earliest
finish time algorithm,” in18th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
2010, pp. 27–34.


