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ABSTRACT

This paper presents a single precision floating point unit de-
sign for multiplication and addition/subtraction using FPGA
DSP blocks. The design is based around the DSP48E1 prim-
itive found in Virtex-6 and all 7-series FPGAs from Xil-
inx. Since the DSP48E1 can be dynamically configured and
used for many of the sub-operations involved in IEEE 754-
2008 binary32 floating point multiplication and addition, we
demonstrate an iterative combined operator that uses a sin-
gle DSP block and minimal logic. Logic-only and fixed-
configuration DSP block designs, and other state-of-the-art
implementations, including the Xilinx CoreGen operators
are compared to this approach. Since FPGA based systems
typically run at a fraction of the maximum possible FPGA
speed, and in some cases, floating point computations may
not be required in every cycle, the iterative approach repre-
sents an efficient way to leverage DSP resources for what
can otherwise be costly operations.

1. INTRODUCTION

DSP blocks in modern FPGAs have increased in capability
over time. Concurrently, FPGAs have found use in a range
of application domains that now demand floating point com-
putation. However, floating point arithmetic operators con-
sume a significant amount of resources. Some existing work
has sought to use DSP blocks within such operators. Indeed,
the Xilinx CoreGen operators do use DSP blocks for parts of
the floating point arithmetic. DSP blocks are not just flexible
at design time, rather, their operation can be reconfigured at
runtime.

In this paper, we investigate the use of DSP blocks in
an iterative manner for single precision floating point adders
and multipliers. We show how the flexibility can be lever-
aged to create a combined adder and multiplier unit which
is efficient, and offers reasonable performance. We com-
pare the design to other floating point operators, both open-
source and proprietary, such as the Xilinx LogiCore oper-
ators or those from the open source FloPoCo project [1],
which can be optimised for latency or speed. Existing opera-
tor implementations do sometimes make use of DSP blocks,

but use a fixed DSP configuration. The flexibility and low
logic usage of our approach comes at the cost of a higher
latency and lower throughput, but this may be feasible for
some applications.

For floating point numbers, addition is especially costly
due to mantissa alignment and normalisation – two oper-
ations that each require shifting, as well as shift amount
calculations. These operations can all be carried out in a
DSP48E1. Existing IEEE 754 floating point operators in
FPGAs are subject to some limitations. Alignment and nor-
malisation are used by all floating point operators [2], and
are costly operations to implement in logic. Furthermore,
the width of embedded multipliers commonly found in cur-
rent FPGAs are not well suited for the multiplications used
in IEEE 754 operations. The proposed design reduces the
logic consumption of floating point operations significantly,
by trading area for latency.

The remainder of this paper is organised as follows. Sec-
tion 2 gives a summary of related work, Section 3 introduces
the floating point format used and gives a brief overview of
alternatives. In Sections 4 and 5 we describe two conven-
tional floating point operator designs for addition and multi-
plication. Section 6 describes the iterative DSP48E1-based
floating point unit implementation. Section 7 presents im-
plementation results. Finally, we conclude and discuss fu-
ture work.

2. RELATED WORK

Floating point operator design is a well explored area in the
ASIC community, and to a lesser extent, in the FPGA com-
munity. A notable example for FPGAs is the (open-source)
FloPoCo project [1]. This toolset provides a versatile gen-
erator for floating point operators and datapaths, generat-
ing synthesisable VHDL code. However, the project is not
strictly focused on using DSP slices, instead focusing on
flexibility and specialised operators such as those described
in [3]. Previous papers have examined tradeoffs involved in
designing floating point operators for FPGA ([4], [5]). Xil-
inx CoreGen can generate floating point operators that make
effective use of the DSP48E1 slice, and these are widely



used. In [6], the authors describe a Block Processing El-
ement for block floating point numbers, adopting a similar
approach using DSP slices.

More advanced DSP blocks like the DSP48E1 are highly
flexible and can be reconfigured on a cycle-by-cycle basis at
runtime [7]. However, in the vast majority of cases in the
literature, this flexibility is not leveraged, and DSP blocks
are inferred through the synthesis tool, that generates a static
configuration. Relying on vendor tools to infer DSP blocks
from general RTL code can be inefficient. [8]

[9] presents a soft processor built around a single DSP48E1
that uses this flexibility to support a full instruction set. The
work presented in this paper builds on the same idea, of
changing the DSP block configuration at run time, as ap-
plied to floating point operators.

3. FLOATING POINT FORMAT

To first ensure we have a handle on floating point opera-
tor implementation, and to better understand how the DSP
block might be used, we implement fully-parallel versions
of floating point addition and multiplication with and with-
out DSP blocks. We show in Section 7 that these implemen-
tations are comparable to the state of the art.

The floating point format used for the operators presented
in this paper is based on IEEE 754-2008 binary32, with
some simplifications. First, only one type of NaN (quiet
NaN) is used and only the default rounding mode (round to
nearest, tie to even) is supported. Denormalised numbers are
also not handled. Full support for IEEE 754 requires these
to be supported [10], therefore these operators are compat-
ible with, but not completely following the IEEE 754-2008
binary32 standard.

IEEE 754 Floating point numbers are represented as

FE,F = (−1)−s ∗ 2(ωE−127) ∗ (1 + ωF ), (1)

where E and F are the number of bits in the exponent and
mantissa fields, respectively. A single precision floating point
number uses 32 bits and its bit fields can be written

FE,F = {S,E[7:0], F[22:0]}, (2)

where S is a single sign bit, E[7:0] is an 8-bit exponent field,
and F[22:0] is a 23-bit mantissa field. The 8-bit exponent uses
an Excess-127 format to represent signed numbers. An im-
plicit 1 is included as the MSB of the mantissa field, making
the effective fraction part 1.f[22:0].

All five exception flags defined in the IEEE 754 stan-
dard are tested for and set accordingly. These are Invalid
Operation, Division by Zero, Overflow, Underflow and In-
exact. In our proposed designs Division by Zero is unused,
but still provided for compatibility with IEEE 754. Previous
papers on the subject have described alternative approaches.
[6] uses the block floating point format to avoid the added

hardware complexity introduced by full IEEE 754-2008 bi-
nary32 compatibility. We have decided to use IEEE 754-
2008 binary32 because of the large range of representable
numbers and compatibility with other existing hardware. We
consider single-precision operators in this paper, with double-
precision left to future work.

4. LOGIC-ONLY FIXED CONFIGURATION
FLOATING POINT OPERATORS

In this section, we present LUT-only implementations of ad-
dition and multiplication. These operators are later used
for comparison with the iterative design. The purpose is to
explore the potential for mapping each suboperation to the
DSP48E1 by introducing the logic-only alternative first.

Fig. 1. Fixed Configuration Floating Point Adder Architec-
ture for Logic-Only implementation.

The logic-only adder design is based on a standard (naive)
implementation of addition for IEEE 754. This standard al-
gorithm consists of three main stages, namely alignment,
mantissa addition and normalisation. In the proposed de-
sign, presented in Figure 1, these steps are further pipelined
for performance. The individual pipeline stages are organ-
ised as follows.

1. Pre-alignment and Exponent Logic. In the first pipeline
stage, the input operands are checked for exception condi-
tions, and the operands are split into bit fields for computing



the preliminary sign and exponent difference. Exponent dif-
ference is computed using two 8-bit subtractions, which can
effectively be done in a single DSP48E1 addition.

2. Alignment Shift. A barrel shifter is used to perform
the shifting, using the Guard, Round and Sticky bits (G,
R, S). The 25x18 multiplier in the DSP48E1 slice is not
wide enough for a single DSP slice to perform the align-
ment shifting, requiring multiple iterations or two cascaded
DSP blocks instead[11].

3. Addition. The effective operation is computed from the
preliminary sign and the input operation. If the effective
operation is subtraction, the lesser operand is negated. This
addition can be performed in a single DSP48E1.

4. Normalisation. The normalisation step is usually the
most resource demanding step in a floating point addition,
as it involves both shifting and leading-zero counting. The
leading zero-counter in our design is simply implemented by
a series of multiplexers and the shifter is implemented using
a barrel shifter. This would require either two DSP blocks
or multiple iterations.

5. Rounding. The rounding mode used is the default IEEE
754 rounding mode, round to nearest, tie to even, computed
using G, R, S and norm(Fsum). The final sign is calculated,
taking into account special cases such as round(Fsum) = 0.

6. Exception Condition Checking. In the exception con-
dition checking stage round(F[22:0]) and round(E[7:0]) are
checked for overflow (which could arise from rounding), un-
derflow, invalid result, division by zero and inexact result.

The logic-only multiplier implementation is algorithmically
simpler than the adder and uses fewer pipeline stages. The
Alignment Shifting stage is not needed for multiplication,
but a LUT-only implementation of the required 25x25 bit
multiplication is expensive in terms of logic.

5. FIXED CONFIGURATION FLOATING POINT
OPERATORS WITH DSP BLOCKS

In this section, we present implementations of addition and
multiplication using DSP blocks in fixed configurations. The
adder design uses the DSP48E1 slice to perform the man-
tissa addition, with all other pipeline stages unchanged. The
multiplier design involves more modifications that we ex-
plain to highlight the use of fixed-configuration vectors with
the DSP48E1. The floating point multiplier makes use of
two DSP48E1 blocks for the mantissa multiplication, mak-
ing the circuit considerably smaller than the logic only im-
plementation. The DSP48E1 blocks are configured as shown
in Figure 2, where two DSP48E1 blocks are cascaded to-
gether to accommodate the required 24x24-bit mantissa mul-
tiplication. This is needed because a single DSP block sup-
ports only a 25x18-bit multiplication [12]. Here, the run

Fig. 2. Fixed Configuration Floating Point Multiplier Archi-
tecture Using DSP Blocks.

time dynamic configurability of the DSP block is not lever-
aged, instead using fixed configuration vectors 0000101 and
1010101 as OPMode for DSP blocks 1 and 2, respectively.
This gives the following effective outputs from the DSP blocks.

P1 = A[23:0] ∗B[17:0] (3)

P2 = (A[23:0] ∗B[23:18]) + (P1 << 17) (4)

The common exponent is calculated by adding the expo-
nents of the operands and subtracting the bias (-127). Nor-
malisation of a floating point product is simpler than for a
floating point sum, involving only a potential 1-bit right nor-
malisation shift required when overflow occurs. The sign
calculation is the XOR of the operands’ signs. Using Guard,
Round and Sticky bits, the result is rounded using the de-
fault mode (round to nearest, tie to even). Similarly to the
adder, the correctly rounded result is checked for exception
conditions. The exception flags are output as a bit vector.

6. ITERATIVE DSP-BASED FLOATING POINT
UNIT

In this section we present an iterative design for a DSP48E1-
based floating point unit. The design takes as input two
IEEE 754 single-precision inputs. As opposed to the logic-
only and fixed DSP-configuration designs presented, the it-
erative design is capable of both addition/subtraction and



multiplication selected via a control input. The dynamic
programmability of the DSP48E1 block allows the datapath
to be configured at runtime to perform the required opera-
tion.

The DSP48E1 is used for as many of the sub-computations
as possible in order to conserve logic resources. Figure 3
gives a block diagram description of the design. Algorithmi-
cally the iterative operator is equivalent to the logic-only and
fixed-configuration DSP implementations. Since the design
is iterative and uses a single DSP block, the initiation inter-
val will be longer than fixed-datapath operators. Currently,
the initiation interval is 20 and 23 cycles for multiplication
and addition/subtraction, respectively. Pre-alignment and
Exception stages can be overlapped between instructions, as
they do not make use of the DSP block. The high initiation
interval results in an overall lower throughput for the itera-
tive design, compared to the fixed datapath implementations
such as the Xilinx CoreGEN operators.

The Control Unit is implemented as a state machine and
coordinates inputs from the RAM32M with the control vec-
tors to the DSP48E1. Other functions, such as pre-align
logic (checking for input exceptions and splitting operands
into bit fields) and exception checking for the final results,
are implemented in logic.

Because floating point adders and multipliers share some
common sub-operations, the iterative design gives greater
flexibility by providing both operations in the same mod-
ule. The DSP48E1 slice works as an execution unit, with
the input configuration parameters ALUMODE, OPMODE
and INMODE [12] set dynamically by the Control Unit. The
DSP48E1 is fully pipelined for increased frequency, giving
a latency of 3 clock cycles for each iteration round. An ex-
tra register for the C input is implemented in fabric logic
outside the DSP block (See Figure 3). For storing interme-
diate results between iterations through the DSP48E1, 16 in-
stances of (2-bit) RAM32M blocks are used, storing 32 bit
values. The synthesis tool (Xilinx ISE) implements this as
LUTs. The output from the DSP block is written back to the
RAM32M Block. Below follows a step-by-step description
of the operations.

1. Pre-alignment. In the first pipeline stage, the input operands
are schecked for exception conditions such as non-normalised
numbers, and the operands are split into bit fields for com-
puting the preliminary sign and exponent difference. Ex-
ponent difference is computed using two 8-bit subtractions,
which can effectively be done in a single DSP48E1 addition.
The exponent difference computation uses one iteration in
the DSP (3 clock cycles).

2. Align. The alignment stage requires two iterations through
the execution core. Shifting in the DSP48E1 is implemented
as a multiplication, with the 18 bit multiplier input set as 2k

(as described in [11]), where k is the shift amount calculated
in the pre-alignment stage. The smaller mantissa is shifted

to fit the new, shared, exponent. Intermediate results and
rounding information bits are stored in the memory block.
The maximum shift amount is 25 (as the smaller mantissa
would be shifted out to become all-zero).

3. Execution. Addition can be carried out in a single it-
eration, exactly as for the logic-only implementation of the
adder. Multiplication, again with the limitation of the 25x18
bit multiplier in the DSP48E1, must be carried out iteratively
over two iterations through the DSP slice. As an example
of the dynamic configuration of the DSP block mentioned
earlier, in the execution stage the OPMode input from the
control unit to the DSP block is set as 0000011 for addition
and as 0000101 for multiplication, giving the corresponding
computation in the multiplier.

4. Normalisation. Normalisation requires two iterations in
the DSP slice and is implemented in a similar manner to
alignment shifting. Leading zero-counting is implemented
in logic and provides the shift amount input to the normali-
sation shift stage.

5. Rounding. The default IEEE 754 rounding mode, round
to nearest, tie to even, is implemented using the DSP slice
to calculate the norm(Fsum)+1 rounding alternative. With
norm(Fsum) already stored as an intermediate value in mem-
ory, the rounding stage then uses additional logic to select
the correctly rounded value based on the G, R, S bits and the
normalised mantissa.

6. Exception Condition Checking. Checking for excep-
tion conditions (overflow, all-zero, etc.) is done in logic, in
the same way as in the logic-only implementations.

7. RESULTS

All designs are implemented in Verilog and synthesised us-
ing Xilinx ISE 14.4, targeting a Virtex-6 XC6VLX75T-1
FPGA. No manual Place-and-Route effort is done. Our own
designs have been tested using automatic test generation and
checking for a wide range of test vectors. The FloPoCo op-
erators are generated using FloPoCo 2.4.0 targeting the same
device. The CoreGen operators are generated using Xilinx
CoreGen 14.4 [13] and are configured for full DSP-usage.

The post-place-and-route results for the LUT-only and
fixed-DSP adder and multiplier designs are presented in Ta-
ble 1. The designs are compared against the FloPoCo and
Xilinx CoreGen operators. The Xilinx CoreGen and FloPoCo
operators are tool-generated. We also present the results
for our iterative DSP-based design. These tools are con-
venient for designers to use and can be configured to suit
the application by optimising for some set of user-defined
constraints. For comparison, we consider both speed- and
latency-optimised FloPoCo operators.

The CoreGen adder with DSP makes efficient use of the
DSP block and gives a lower logic usage. As the man-



Fig. 3. Block Diagram of Iterative DSP-Based Floating Point Operator.

Slice LUTs Slice Registers DSP48E1s Latency Frequency
Adder/Subtractor (Logic Only)
CoreGen 398 551 0 12 440 MHz
FloPoCo1 633 745 0 13 336 MHz
FloPoCo2 293 437 0 6 310 MHz
Ours 467 494 0 11 408 MHz
Adder/Subtractor (DSP-based)
CoreGen 221 330 2 11 408 MHz
Ours 469 524 1 10 408 MHz

Multiplier (Logic Only)
CoreGen 681 629 0 8 306 MHz
FloPoCo1 799 412 0 6 320 MHz
FloPoCo2 716 195 0 3 254 MHz
Ours 759 311 0 4 109 MHz
Multiplier (DSP-based)
CoreGen 125 170 2 8 376 MHz
FloPoCo1 160 165 2 4 337 MHz
FloPoCo2 127 50 2 2 221 MHz
Ours 116 223 2 8 405 MHz

Iterative Combined (DSP-based)
Ours 242 161 1 22, 253 340 MHz

1Optimised for speed, 2Optimised for low latency, 3For multiplication (22) and addition/subtraction (25)

Table 1. PAR results for logic-only and fixed-configuration DSP floating point adder/subtractor and multiplier implementa-
tions. ωE , ωF = 8, 23 (Single Precision)

tissa multiplier is expensive to implement in logic, the logic-
only multipliers all show a high LUT usage. In the case of
the multiplier implementations using DSP blocks, there is
a large resource usage improvement compared to the logic-
only designs, owing to the use of the hard multiplier in the
DSP block.

Finally, comparing the iterative design to the operators
described above, the iterative design is smaller than the logic-
only designs and the adder designs using DSP blocks. In

the adder, shifting is the most expensive sub-operation to
implement in logic, but in the iterative design this is done
at no extra logic cost using multiple iterations through the
DSP block. The iterative design uses 48% fewer LUTs and
67% fewer Registers than our logic-only adder, but runs at a
slower clock frequency and with a higher latency. From the
result tables we also see that for multiplication, using fixed-
configuration DSP-slices gives better area savings over logic-
only than for addition. This is mainly because the normali-



Logic Only Fixed-DSP Iterative
Add Mult Add Mult Both

1 Prealign 1 0 1 0 1
2 Align Shift 3 n/a 3 n/a 9
3 Execute 1 1 1 5 3-6
4 Normalise Shift 3 1 3 1 6
5 Rounding 1 1 1 1 2
6 Exceptions 1 1 1 1 1

Table 2. Comparison of latency in the individual subopera-
tion stages in operators with different DSP-utilisation

sation operation in a multiplier is considerably simpler than
for addition.

Table 2 shows a breakdown of the computational stages
of our logic-only, fixed DSP, and iterative designs, showing
how the iterative design uses multiple iterations, giving in-
creased latency to lower the resource usage for the stages
that are the most expensive to implement in logic, namely
shifting.

The speed-optimised FloPoCo multiplier runs at a simi-
lar frequency and uses an almost equal number of registers,
but uses 34% fewer LUTs. Again, the latency of the iterative
design is higher, in this case 4-5 times higher. As noted ear-
lier, the throughput of the iterative operator is lower than that
of the fixed-datapath operators, as these can initiate a new
floating point operation every clock cycle, whereas the iter-
ative operator has an initiation interval of 20-22 cycles. The
multipliers using DSP blocks are smaller than the iterative
design, but make use of 2 DSP blocks. However, the itera-
tive design provides increased flexibility as it is a combined
multiplier and adder, as well as being smaller than the adder
implementations. This makes the iterative design a good,
flexible choice for applications requiring floating point capa-
bility for both multiplication and addition, where logic and
DSP block usage is critical.

8. CONCLUSION AND FUTURE WORK

In this paper, we have described an iterative floating point
combined multiplier and adder, and compared it to com-
mercial, open source and custom designs for floating point
multipliers and adders in FPGA. We have shown that the
DSP48E1 slice allows for much flexibility as its input and
operation modes can be configured dynamically and that this
can be used to create a lean and flexible floating point oper-
ator, at the cost of higher latency. We have also noted some
of the limitations of the iterative design and of floating point
operators in FPGA in general.

Following on from this proof of concept, future work
will aim to further develop the idea presented in this pa-
per. This includes implementing a more mature and fully
IEEE 754-2008 binary32 compliant floating point unit using
a single DSP48E1 slice as an execution core, with support

for division and square root operations. We plan to release
the design as open source in the future, and to look at the
possibilities of integrating this work into the iDEA soft core
processor [9]. We will also explore how using two or more
DSP blocks in this iterative manner might help mitigate the
latency cost and increase throughput. Application to double-
precision floating point numbers will also be explored. A
simpler floating point format with smaller mantissa bit size,
better suited to the port width of the DSP48E1 block can
also be investigated in future work.
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