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Abstract—This paper presents a very lean DSP Extension
Architecture (iDEA) soft processor for Field Programmable Gate
Arrays (FPGAs). iDEA has been built to be as lightweight
as possible, utilising the run-time flexibility of the DSP48E1
primitive in Xilinx FPGAs to serve as many processor functions
as possible. We show how the primitive’s flexibility can be
leveraged within a general-purpose processor, what additional
circuitry is needed, and present a full instruction-set architecture.
The result is a very compact processor that can run at high speed,
while executing a full gamut of general machine instructions.
We provide results for a number of simple applications, and
show how the processor’s resource requirements and frequency
compare to a Xilinx MicroBlaze soft core. Based on the DSP48E1,
this processor can be deployed across next-generation Xilinx
Artix-7, Kintex-7, and Virtex-7 families.

I. INTRODUCTION

The flexibility of Field Programmable Gate Arrays (FPGAs)
has been a key feature of the platform, and arises primarily
from an architecture that provides a large amount of fine-
grained, general purpose resources. However, as FPGAs have
found use in particular application domains, and particular
core functions have become almost uniformly required, man-
ufacturers have sought to improve their architectures through
the provision of hard blocks. After the addition of memory
blocks, hard multipliers were added to speed up common
signal processing tasks. These later evolved into multiply-
accumulation blocks, as needed in filters. Since then, DSP
blocks, with a wide range of arithmetic capabilities, have
become standard on all architectures across manufacturers and
price-points.

The DSP48E1 primitive [1] is found on Xilinx Virtex-
6, Artix-7, Kintex-7, and Virtex-7 FPGAs, as well as the
Zync-7000 EPP. It boasts increased capability over previous
generations, and is also highly customisable. One key feature
of this primitive, that has motivated and enabled the work
presented in this paper, is its dynamic programmability. The
DSP48E1 can support a large range of configurations, many of
which can be modified at run-time on a cycle-by-cycle basis.
This enables the same instance to be used for many different
functions, if a controller is added to set the configuration
appropriately. A simplified diagram of the DSP48E1 is shown
in Fig. 1.

In this paper, we describe how the DSP48E1 primitive can
be manipulated to function as the execution unit of a 32-bit
instruction-set processor. While the primitive’s usefulness for
DSP applications is a given, using it within a processor means
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Fig. 1. A Simplified DSP48E1 with Multiplier and ALU.

that these resources can now be used in a much wider range
of application domains, meaning the silicon is not wasted
for non-DSP applications. The DSP48E1 is a highly capable
block, with the ability to execute a variety of arithmetic
operations, from simple addition to multiply-accumulate, and
logical operations. We built a lightweight Extension Architec-
ture around the DSP48E1 primitive, resulting in a powerful,
comprehensive, general-purpose processor called iDEA.

The design of the iDEA soft processor is very much
architecture-focused, in order to offer maximum performance,
while being as lean as possible. We have targeted the DSP48E1
as it is present in all Xilinx’s 7-series device families. This
paper details the architecture and instruction set, the design
process, and shows some preliminary execution results.

We feel this work has significant potential when one con-
siders the large number of such primitives available, even on
low-end FPGAs. A lean soft processor such as iDEA could
pave the way for exploration of massively parallel architectures
on reconfigurable fabric, along with investigations on how best
to arrange and program such systems.

The remainder of this paper is organised as follows: Section
II covers related work. Section III presents the architecture
and instruction set of the iDEA processor. Section VI presents
hardware implementation results and some software execu-
tion examples. Finally, Section VII concludes the paper and
presents our future work.

II. RELATED WORK

While pure algorithm acceleration is often done through
the design of custom parallel architectures, many supporting
tasks are more suited to software implementation. Hence,
general processing cores have long been used in FPGA-based
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systems, and now, more often than not, FPGA-based systems
incorporate some sort of processor.

FPGA vendors previously offered hard processors, such as
the PowerPC 405 in the Xilinx Virtex II Pro series, however
these consumed significant silicon area, and required extensive
supporting infrastructure to be added in logic. Meanwhile soft
processors were widely adopted in many applications due
to their relative simplicity, customisability, and better tool-
chain support. Commercial soft processors include the Xilinx
Microblaze [2], Altera Nios II [3], ARM Cortex-M1 [4], and
LatticeMico32 [5], in addition to the open-source Leon3 [6].

FPGA vendors’ processors are generally restricted to their
own platforms, hence this limits device choice when such
cores are used in a design. Some effort has been put into
porting these cores to alternative architectures [7], [8], [9].
However, the more generalised a core is, the less closely it fits
the low-level target architecture, and hence, the less efficient its
implementation and speed. This trade-off between portability
and efficiency is an important choice that must be made by
the system designer.

Research on soft processors has focused on a variety of
issues, including the influence of underlying FPGA architec-
ture on the performance of soft processors. The work in [10]
exploits the low-level features of FPGA architecture to design
a 10-stage processor that can run at the Block RAM maximum
of 550 MHz on a Stratix IV device. Other work like [11]
utilises the full 36-bit width of a Block RAM to design 36-bit
instructions for improved performance. In addition, a number
of application-specific soft processors have been proposed,
including networking-oriented [11], and floating-point-specific
[12], [13] architectures.

Vector soft processors have also been proposed, where a
single instruction operates on an array of data. The work in
[14] explores a vector processor as an alternative to a custom
hardware accelerator. This is further extended in [15] to a
system which includes a main processor and a vector co-
processor. CUSTARD [16] is a multi-threaded soft processor
that uses custom instructions for parallelising applications. A
new soft vector architecture is proposed in [17]; the architec-
ture uses a different storage medium – a scratchpad memory
in place of the typical register file. This work was further
optimised in [18] to improve performance and area.

Other work, such as fSE [19], has used the DSP48E1 prim-
itive as the foundation of the arithmetic unit in a processor.
However, the range of supported instructions is limited, to
signal processing operations. An evolution of that work in [20]
uses similar processors to implement a MIMO sphere decoder.

A key question is how the DSP blocks can be used for
general computation, rather than DSP-specific functions. In
[21], we showed how a DSP Block could be controlled in a
manner allowing it to implement general instructions, however
only a basic core, with no real program execution capability
was presented.

In this paper, we build on this idea to develop a full
processor and instruction-set. We incorporate standard, general
processing instructions to enable a wide spectrum of appli-

cations, instead of limiting the instructions to only cater to
specific domains. The key aim is to build a processor that uses
the low-level primitives found in modern devices as efficiently
as possible. While at first glance, this architecture specificity
may appear limiting, vendors now use the same primitives
across whole generations of device families. The DSP48E1
is available in all Xilinx 7-Series FPGAs, so we feel this
approach is justifiable for the efficiency gain.

III. PROCESSOR ARCHITECTURE

iDEA is a scalar processor, based on a load-store RISC
architecture. It executes 32-bit instructions on 32-bit data
with the DSP48E1 primitive serving most purposes in the
execution unit. The overall architecture is shown in Fig. 2.
Only a single DSP48E1 slice is used, with much of the
data processing for arithmetic, logical operations and program
control being done within it. We use a RAM32M LUT-based
memory primitive for the register file and a RAMB36E1 Block
RAM for instruction and data memory.

A. Instruction and Data Memory

The instruction and data memories are built using Block
RAM (BRAM) dedicated memory in the FPGA. Different
configurations of BRAM mode and latency yield different
timing characteristics. Table I shows the effect of design entry
and selection of number of pipeline stages on a 512 x 32
memory implemented in a BRAM. It can be observed that both
CORE Generator and inference result in similar frequencies
for a latency of 2 or 3 clock cycles. At a latency of 3 cycles,
an extra register is enabled at the output of the primitive in
addition to the output of the core.

TABLE I
MAXIMUM FREQUENCY OF INSTRUCTION AND DATA MEMORY IN

VIRTEX-6 SPEED -2.

Description
Maximum Frequency (MHz)
Latency 2 Latency 3

CORE Generator 372 539
Inference (Read First Mode) 386 475
Inference (Write First Mode) 378 539
Inference (No Change Mode) 378 539

BRAM Virtex-6 Data Sheet 540

We implement the instruction and data memory through
inference rather than using CORE Generator, as this eases
migration and portability. Memory is described behaviourally
in Verilog and the synthesis tool automatically infers the re-
quired primitive. In order to maximise frequency, the memory
must be described such that it infers No Change or Write
First mode instead of Read First. This particular mode of
the RAMB36E1 can be inferred or ”controlled” through a
behavioural description as detailed in documentation.

With more complex primitives like the DSP48E1, not all
features can be accessed through inference, and the result is
often inefficient [22], and hence direct primitive instantiation
is desirable as it provides total control over all features.
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Fig. 2. Processor Block Diagram.

TABLE II
PROCESSOR INSTRUCTIONS

Instruction Assembly Operation
Arithmetic/ Logical
nop nop none
add add rd, ra, rb rd[31:0] = ra[31:0] + rb[31:0]

add rd, ra, #imm11 rd[31:0] = ra[31:0] + #imm11[10:0]
sub sub rd, ra, rb rd[31:0] = ra[31:0] - rb[31:0]

sub rd, ra, #imm11 rd[31:0] = ra[31:0] - #imm11
mul mul rd, rb, rc rd[31:0] = rb[15:0] x rc[15:0]
mac mac rd, rb, rc, rp rd[31:0] = rb[15:0] x rc[15:0] + rp[31:0]
madd madd rd, ra, rb, rc rd[31:0] = ra[31:0] + (rb[15:0] x rc[15:0])
msub msub rd, ra, rb, rc rd[31:0] = ra[31:0] - (rb[15:0] x rc[15:0])
and and rd, ra, rb rd[31:0] = ra[31:0] and rb[31:0]
xor xor rd, ra, rb rd[31:0] = ra[31:0] xor rb[31:0]
xnr xnr rd, ra, rb rd[31:0] = ra[31:0] xnr rb[31:0]
or or rd, ra, rb rd[31:0] = ra[31:0] or rb[31:0]
nor nor rd, ra, rb rd[31:0] = ra[31:0] nor rb[31:0]
not not rd, ra, rb rd[31:0] = ra[31:0] not rb[31:0]
nand nand rd, ra, rb rd[31:0] = ra[31:0] nand rb[31:0]
Data Transfer
mov mov rd, ra rd[31:0] = ra[31:0]
movu movu rd, #imm16 rd[31:16] = #imm16[15:0]
movl movl rd, #imm16 rd[15:0] = #imm16[15:0]
ldr ldr rd, [ra, rb] rd[31:0] = mem[ra[31:0]+rb[31:0]]
str str rd, [ra, rb] mem[ra[31:0]+rb[31:0]] = rd[31:0]
Program Control
cmp cmp ra, rb ra[31:0] - rb[31:0]

cmp ra, #imm11 ra[31:0] - #imm11[10:0]
b b #target21 pc = #target21[20:0]
cb{cond} cb ra, rb, #target11 (ra condition rb) pc = #target11[10:0]

B. Execution Unit

In a load-store architecture, operands are fetched from the
register file and fed into the ALU for processing. The results
are then written-back into the register file after processing is
complete. If a memory write is desired, a separate instruction is
needed to store the data from a register into memory. Likewise,
a similar separate instruction is required to read from memory
into the register file. Other than arithmetic and logical instruc-

tions, the execution unit is responsible for processing control
instructions as well. However, memory access instructions do
not require processing in the execution unit and hence it is
bypassed for memory read/write operations.

The execution unit is built using the DSP48E1 primitive
as the processing core. Rather than using CORE Generator
or inference, the DSP48E1 is instantiated directly, allowing
access to all features of the primitive, and providing total



control of the configuration of the primitive.
All three pipeline stages of the DSP48E1 are enabled to

enable it to run at its maximum frequency. If only a single
stage is enabled, the highest frequency achievable is less than
half the specified maximum. To further improve performance,
a register is added to the output of the primitive. This helps
ensure that routing delays out of the primitive do not impact
performance. As a result, the total latency of the ALU is 4
clock cycles.

TABLE III
DATA SHEET COMPARISON OF FREQUENCY FOR DSP48E1 IN VIRTEX-6

SPEED -2.

Description Max Frequency (MHz)

3-stage without pattern detect 540
3-stage with pattern detect 483
1-stage without pattern detect 233
1-stage with pattern detect 219

The DSP48E1 primitive comes is able to support various
arithmetic functions, and we aim to utilise as many of these
as possible in the design of our execution unit. One partic-
ular feature – the pattern detector – adversely impacts the
achievable frequency by as much as 10%. Since this feature is
optional and is not of critical importance, it has been disabled
in iDEA.

Features that are both crucial and relevant to iDEA func-
tionality are:

• 25- × 18-bit multiplier,
• 48-bit Arithmetic and Logic Unit (ALU) with

add/subtract and bit-wise logic operations,
• Ports A and B as separate inputs to the multiplier and

concatenated input to the ALU,
• Port C as input to the ALU,
• INMODE dynamic control signal for balanced pipelin-

ing when switching between multiply and non-multiply
operations,

• OPMODE dynamic control signal for selecting operating
modes,

• ALUMODE dynamic control signal for selecting ALU
modes,

• optional input, pipeline, and output registers.

C. Other Functional Units

All other functional units aside from the ones mentioned in
previous subsections are implemented in LUTs. These include
the program counter, branch logic, control unit, status register,
input map and an adder for memory address generation. The
register file uses the vendor-supplied RAM32M primitive.
This is an efficient quad-port (3 read, 1 read/write) memory
primitive that is implemented in LUTs. The four ports are
required to support two reads and one write in each clock cycle
– Block RAMs only provide two ports. Furthermore, as dis-
cussed previously, Block RAMs only achieve high frequency
when heavily pipelined. To implement a 32×32-bit register
file, 16 of these primitives are aggregated, occupying 16 Slices.

All the modules are combinational circuits except for the
program counter and status register which are synchronous.
These modules occupy minimal logic area as the bulk of
processor functionality is inside the DSP48E1.

IV. INSTRUCTION SET FORMAT AND DESIGN

The iDEA instruction set is listed in Table II. Though
not as extensive as more advanced commercial processors,
it is sufficient enough to illustrate the functionality of iDEA
in executing arithmetic and data processing applications. We
explore this in further detail in Section VI.

A. Input Mapping

The location of input operands is specified in an instruction.
Register file locations are addressed using the Ra, Rb and Rc
fields while immediate operands – represented by #imm11 and
#imm16, are hard-coded. The width of operands is fixed at 32
bits and immediate operands of less than 32 bits are sign-
extended to the width of the desired word. The input ports of
the DSP48E1 have widths of 30 bits, 18 bits and 48 bits for
ports A, B and C respectively. Not only are the widths distinct,
they are not byte-multiples. To process 32-bit operands, data
must be correctly applied to these inputs.

The execution unit is designed to take two new 32-bit
operands, addressed by Ra and Rb, in each clock cycle. In
the case of 2-operation, 3-operand instructions, a third 32-
bit operand, addressed by Rc is also used. Mapping a 32-
bit operand to the DSP48E1 input ports requires it to be
split according to the size of the ports that it is mapped to,
particularly for ports A and B, which are narrower than 32
bits.

The data flow through the DSP48E1 can be represented as
follows:

P = C +A : B (1)

and
P = C +A×B (2)

where P is the output port of DSP48E1. The ”+” operation is
performed by the DSP48E1 ALU and can include add, subtract
and logical functions. Port D is not currently considered as
we have not included pre-adder functionality in iDEA. To
effectively map the input operands, we must consider the
different internal datapaths for different operations.

Equation 1 is the flow for a 2-operand, single operation
instruction. The first operand, Ra, is mapped to port C. Since
C is 48 bits wide, the input is sign-extended. The second 32-
bit operand, Rb, must be split between ports A and B; the
least significant 18 bits are assigned to port B and the most
significant 14 bits to port A, sign-extended. This is valid for
operations that do not require a multiplier.

Equation 2 represents a 3-operand, 2-operation instruction.
Ra is mapped to port C, while Rb is assigned to port A, and
Rc to port B. The width of Rb and Rc is limited to 16 bits
for multiplication. In the case of multiply only, port C is set
to zero. In multiply-add, multiply-sub or multiply-acc, port
C carries non-zero data. The DSP48E1 can be dynamically



TABLE IV
PROCESSOR INSTRUCTION FORMAT

Data Processing 31 28 27 26 25 21 20 16 15 11 10 6 5 0
add/sub/logic register Cond S 0 Opcode Rd Ra Rb 0 0 0 0 0 0
add/sub immediate Cond S 1 Opcode Rd Ra #imm11
mul register Cond S 0 Opcode Rd 0 0 0 0 0 Rb Rc 0
mac/madd/msub register Cond S 0 Opcode Rd Ra Rb Rc 0
Data Transfer
movu/movl immediate Cond 0 1 Opcode Rd #imm16

ldr Cond 0 0 Opcode Rd Base
Addr.

Offset
Addr.

0 0 0 0 0 0

str Cond 0 0 Opcode 0 0 0 0 0 Base
Addr.

Offset
Addr.

Rd 0

Program Control
cmp register Cond S 0 Opcode 0 0 0 0 0 Ra Rb 0 0 0 0 0 0
cmp immediate Cond S 1 Opcode 0 0 0 0 0 Ra #imm11
b Always 0 0 Opcode #target21
cb Cond S 0 Opcode Rd Ra #target11

switched between operations defined by 1 and 2 through the
INMODE, OPMODE and ALUMODE control signals. Table
V illustrates the port mappings for some common instructions.

V. DESIGNING FOR PERFORMANCE

A. Functional Advantage of DSP48E1

The multiplier in the DSP48E1 enables multiplication and
shift to be performed. With the ALU that follows it, two
consecutive arithmetic operations on the same set of data
can be performed, including multiply-add and multiply-sub.
This composite functionality is possible without any extra
hardware.

The DSP48E1 primitive provides adequate circuitry for
processing 32-bit data. In fact, the widest data supported is
48 bits. A single DSP48E1 primitive alone is sufficient to
construct a 32-bit processor with uniform input and output
of 32 bits. Although the size of ports A and B, at 30 and 18
bits respectively, are less than 32 bits, these two ports can be
concatenated, {A:B}, to produce a combined data width of 48
bits.

The DSP48E1 primitive produces an output of 48 bits
through port P, regardless of the type of arithmetic operation.
Since the effective data size is 32 bits, only the least significant
32 bits are used in iDEA. It is important to note, however,
that the width of the multiplier inside the DSP48E1 is only
25×18 bits. To fully implement a 32×32 multiplier, three
DSP48E1 primitives can be cascaded together, but this triples
the resource requirement for the benefit of only a single
instruction.

Hence, we restrict multiplication to 16×16 bits, producing
a 32-bit result, which still fits the iDEA specification. A wider
multiplication would not be beneficial, since the result would
have to be truncated to fit the 32-bit data format. For operations
that involve the multiplier, data inputs are limited to 16 bits,
while for other operations they are 32 bits.

TABLE VI
EFFECT OF PIPELINE STAGES ON FREQUENCY.

Pipeline
Stages

Inst. Ex-
ecute

Inst. Fetch Frequency
(MHz)

9-stage 4 3 407
8-stage 3 3 335
8-stage 4 2 278
7-stage 3 2 297
7-stage 4 1 209
6-stage 3 1 214

B. Frequency and Pipeline Length

Operating frequency is a commonly used measure of proces-
sor performance as it affects how fast instructions are executed.
Increasing the number of pipeline stages in a processor often
leads to improved frequency, but at the cost of longer latency
and higher branch penalty. Higher branch penalties result in
a higher number of wasted instruction cycles when a branch
occurs. Hence, a balanced trade-off between frequency and
the number of pipeline stages is required to achieve effective
throughput.

Table VI lists experimental results showing different
pipeline configurations of iDEA and the corresponding fre-
quency achieved. The instruction cycle stages are reduced
by removing pipeline stages from the memory and execution
unit, corresponding to instruction fetch and instruction execute
respectively. The instruction pipeline begins from instruction
fetch, instruction decode, instruction execute and lastly write-
back to the register file. The two additional stages on top of
the listed instruction fetch and execute stages in the table are
instruction decode and write-back. As expected, the longest
pipeline yields the highest frequency of 407.5 MHz for a
Virtex-6 XC6VLX240T-2 device.

Based on these experiments, and targeting speed, we have
designed iDEA with a 9-stage pipeline. These are divided as
follows: 3 stages for instruction fetch, 1 stage for instruction
decode, 4 stages for execute and 1 stage for write-back. Not all



TABLE V
PORT MAPPING FOR DIFFERENT ARITHMETIC FUNCTIONS

Inst. Assembly Operation Port A (30 bits) Port B (18 bits) Port C (48 bits)

add add Rd, Ra, Rb C + A:B 16{Rb[31]}, Rb[31:18] Rb[17:0] 16{Ra[31]}, Ra[31:0]
add Rd, Ra, #imm11 C + A:B 30{1’b0} 7{imm[10]}, imm[10:0] 16{Ra[31]}, Ra[31:0]

sub sub Rd, Ra, Rb C - A:B 16{Rb[31]}, Rb[31:18] Rb[17:0] 16{Ra[31]}, Ra[31:0]
mul mul Rd, Rb, Rc C + A x B 15{Rb[15]}, Rb[15:0] 2{Rc[15]}, Rc[15:0] 48{1’b0}
madd madd Rd, Ra, Rb, Rc C + A x B 15{Rb[15]}, Rb[15:0] 2{Rb[15]}, Rc[15:0] 16{Ra[31]}, Ra[31:0]
movl movl Rd, #imm16 C + A x B 30{1’b0} 18{1’b0} 32{1’b0}, imm[15:0]

instructions require the full 9 stages, instructions like branch
and data memory write execute in fewer cycles. For branch,
the execution unit is bypassed and thus the pipeline is just 4
stages long.

While data memory read takes 9 stages, data memory write
is shorter at 6 stages. The data write operation completes after
data is written to memory while data read has to retrieve data
from memory and perform an additional write-back to the
register file. For both read and write, the effective address of
a data location is calculated in the 5th stage and the resulting
address is fed to the memory input in the next stage. An
alternative to using a dedicated effective address adder is
to compute the address using the execution unit. However,
in such a design, memory access can only happen after the
execution unit computes the effective address, increasing the
pipeline length to 12 stages.

C. Limitations to Performance

An increased number of pipeline stages results in increased
frequency, but also contributes to an increase in the number of
clock cycles taken to complete the processing of an instruction.
A processor with a 9-stage pipeline with 1 clock cycle latency
for each stage requires a total of 9 clock cycles to complete
the execution of an instruction.

If instructions are fetched in successive clock cycles, with
no change in program flow, the effect of a long pipeline is
not prevalent. However, when the sequence of instruction is
altered, as in the case of branching, the penalty or loss of
useful instruction cycles is more severe. As the branch decision
is determined at the end of the pipeline stage, the penalty
incurred is 8 clock cycles.

While branching cannot be totally eliminated, we can intro-
duce methods to minimize the recurrence of branching through
conditional execution. Although branch prediction techniques
improve the flow of instructions by anticipating the possibility
of a branch, they increase the complexity of the processor
hardware. By reducing the recurrence of branching, we reduce
the penalties incurred. Addressing the penalties caused by
branching is important in improving the throughput of the
processor.

VI. IMPLEMENTATION RESULTS

In this section, we analyse the area and performance of
iDEA, and provide an at-a-glance comparison with MicroB-
laze, a commercial soft-core processsor from Xilinx. We

look at operating frequency, resource consumption, instruction
count, and latency. All experiments are performed on a Virtex-
6 XC6VLX240T-2 device as present on the Xilinx ML605
development board.

Three applications that showcase general purpose compu-
tation are selected to demonstrate the functionality of our
processor – Fibonacci, FIR filter and Median filter. These
applications are data processing applications involving data
read-write in memory and multiplication. For MicroBlaze, the
C applications are compiled using the C compiler from the
Xilinx Software Development Kit 13.2 (SDK), mb-gcc. For
iDEA, as we are still developing a compiler toolchain, we
manually translate the source into corresponding assembly
code.

A. Configuration of Processor and Impact in Area
To ensure a fair comparison of the two processors, we

configure the smallest possible MicroBlaze while keeping all
the basic functionality necessary to run the applications. Extra
peripherals and features of MicroBlaze that are not available in
iDEA, such as cache, memory management and debug module,
are removed.

The multiplier is enabled in MicroBlaze, set to the min-
imum configurable width of 32 bits. Other hardware like
barrel shifter, floating point unit, integer divider and pattern
comparator are disabled, significantly reducing the size of
MicroBlaze. The mb-gcc compiler automatically ensures it
does not generate instructions for disabled features.

TABLE VII
COMPARISON OF RESOURCE CONSUMPTION OF BOTH PROCESSOR

SYSTEMS OVER TOTAL AVAILABLE RESOURCE IN VIRTEX-6 -2.

Resource iDEA MicroBlaze Available

Slice Registers 404 514 301,440
Slice LUTs 335 878 150,720
RAMB36E1 2 1 416
DSP48E1 1 3 768
Frequency (PAR) 407 MHz 210 MHz –

Table VII shows the post-place-and-route implementation
results for both processors. For iDEA, the implementation is
performed using Xilinx ISE 13.2 while MicroBlaze is imple-
mented using Xilinx Platform Studio (XPS) 13.2, as illustrated
in 3. Both implementations includes memory subsystems and
the processor core. A total of 4KB is allocated for instruction
and data memory for each of the processors.
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The MicroBlaze design uses almost twice as many slice
registers and LUTs as iDEA. Unlike MicroBlaze, iDEA does
not have additional fixed features such as special purpose reg-
isters and an instruction buffer, which contribute to the higher
logic count. Although the memory size of both processors is
identical at 4KB, which can fit into a single RAMB36E1, the
iDEA memory subsystem is mapped into two RAM36BE1s.
This is because the instruction memory is read-only while the
data memory is read/write, and the difference in read/write
mode causes them to be mapped into two separate primitives.
We could double the memory sizes without using further
resources. MicroBlaze supports a wider multiplication width
of 32×32, resulting in the use of 3 DSP48E1 slices.

In order to confirm the portability of iDEA, we also im-
plemented the design on the next-generation Artix-7, Kintex-
7, and Virtex-7 families. The results, shown in Table VIII
are mostly in line with the Virtex-6 results, with the low-
cost Artix-7 exhibiting reduced frequency. These results may
improve slightly as tools mature, as is generally the case for
new devices.

TABLE VIII
IDEA IN ARTIX-7, KINTEX-7 AND VIRTEX-7.

Resource Virtex-6 Artix-7 Kintex-7 Virtex-7

Slice Registers 404 392 411 411
Slice LUTs 335 295 301 306
RAMB36E1 2 2 2 2
DSP48E1 1 1 1 1
PAR Freq (MHz) 407 289 408 392

B. Impact on Instruction Count

Total instruction count and latency are obtained by testbench
profiling using an HDL simulator, as this provides a standard,
consistent performance measure for both processors. An in-
struction set simulator is another option for profiling, however
the current Xilinx toolset does not provide such a simulator for
MicroBlaze. Additionally, HDL simulation is more accurate
than an instruction set simulator.

The testbench and simulation files for MicroBlaze are
automatically generated by XPS. In the testbench, we added a

module that tracks the instruction count in every clock cycle.
The tracker is started at the beginning of a computation and
terminates once it is complete. With every valid instruction
issued, the instruction counter is incremented. The total num-
ber of clock cycles is determined from when the tracker starts
until it terminates. The start and end signal is obtained from
the instruction opcode in the disassembly file.

The software application is written in C and compiled by
mb-gcc into an .elf executable. This can be viewed as a dis-
assembly file. From this, we locate when a computation starts
and ends and the corresponding program counter address.
Once the tracker module encounters these addresses, it starts
and stops the count tracking accordingly.

For iDEA, the start and stop cues for tracking are deter-
mined from program counter addresses. Only instructions that
are useful and valid are included in the instruction count
tracking. Pipeline pads, such as NOPs are not taken into
account. Although NOPs are not part of the total instruction
count, the effect of NOPs will be evident in the total clock
cycles taken. We also added constructs to print out the values
of the register file and data memory for verification.

We set the optimisation level of mb-gcc to -o0, which is the
default. In -o0, no optimisations are performed and the C code
is compiled in the most straightforward manner possible. Since
we do not yet have an iDEA compiler, we write assembly
manually for iDEA, without optimising. This mirrors the -o0
option in mb-gcc, ensuring the comparison is fairer.

TABLE IX
COMPARISON OF INSTRUCTION COUNT OF BOTH PROCESSOR SYSTEMS

IN VIRTEX-6 -2.

Application Inst. Count Clock Cycles Exe. Time

iDEA
Fibonacci 256 1,414 3.47 us
FIR 8,609 51,121 125.25 us
Median 46,704 240,516 589.26 us

Microblaze
Fibonacci 756 1,360 6.46 us
FIR 39,406 63,410 306.90 us
Median 125,259 202,509 980.67 us

Table IX shows the total instruction count and latency of
both processors for the three test applications, Fibonacci, FIR
and Median filter. iDEA has a generous number of registers
to support data operations and minimal complexity when
executing instructions. However, due to the long pipeline and
absence of branch prediction and data forwarding schemes, it
requires NOP fillers between affected instructions. The NOP
fillers significantly increase the number of clock cycles and
overall latency of a program. MicroBlaze requires a higher
number of instructions to execute the same program for -
o1 compiled code. An analysis of the disassembly file shows
that MicroBlaze only allocates a limited number of registers
for program computation. For Fibonacci and FIR, MicroBlaze
uses only three registers while it uses six for Median. As
a result, the processor has to re-use the same registers for



different operations, repeatedly loading data for processing,
thereby increasing the instruction count.

MicroBlaze has the added advantage of an optimising
compiler. If we increase the MicroBlaze optimisation level
to -o1, the total clock cycles taken are 401 (1.9us), 29,295
(141.9us) and 68,433 (331.4us) for Fibonacci, FIR and Median
respectively. Based on these figures and Table IX, the perfor-
mance of our processor falls somewhere between an -o0 and -
o1 MicroBlaze compilation. However, this comparison is more
to show functional equivalence than for a direct performance
comparison. To do so, we would require a custom compiler
for iDEA – something we are working on at present. It is
important to restate that for these results, the iDEA assembly
code is not hand-optimised.

Not all three MicroBlaze applications fit into the 4KB
memory size built in the original processor system in Table
VII. To accommodate larger applications, such as FIR and
Median, an increase of memory size to 8KB is required.
However, increasing the MicroBlaze memory results in a slight
reduction in the MicroBlaze clock frequency, from 210 MHz
to 206 MHz. As for iDEA, 4KB is sufficient for all three
applications. Execution times are given in Table IX and show
that iDEA is not only lightweight, but looks promising once
a compiler is available.

VII. CONCLUSION

This paper introduces iDEA, an instruction set-based, soft
processor built with a DSP48E1 primitive as the execution
core. We harness the strengths of the DSP48E1 primitive by
manipulating its functionality to suit the architecture of a load-
store processor. The DSP48E1 primitive is designed for signal
processing implementations, but we show that it is capable of
supporting all the required arithmetic functionality for a basic
processor. As iDEA is designed to occupy minimal area, the
logic is kept as simple as possible. By limiting the addition
of hardware modules such as branch prediction, we are able
to minimise control complexity.

The processor has a basic, yet comprehensive enough,
instruction set for general purpose applications. Using three
C applications – Fibonacci, FIR and Median filter, we show
that it is on-par with a minimised MicroBlaze soft processor.
It occupies about half as many slice LUTs and registers as
MicroBlaze while achieving about twice the frequency. We
aim to focus now on reducing the need for NOP fillers. These
cause significant latency overhead and decrease code density,
for what is otherwise an efficient, high speed processor. We
are working on developing a compiler that will allow some of
these limitations to be overcome at compilation.

We have presented a DSP48E1-based processor that is
minimal, yet comprehensive enough to be able to run general
purpose processing tasks, rather than being tailored to specific
application areas. The processor can be implemented across
the next generation of Xilinx FPGAs, achieving comparable
performance in all cases.
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