IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011 455

A Model-Based Approach to Cognitive
Radio Design

Jorg Lotze, Student Member, IEEE, Suhaib A. Fahmy, Member, IEEE, Juanjo Noguera, Member, IEEE,
and Linda E. Doyle, Member, IEEE

Abstract— Cognitive radio is a promising technology for ful-
filling the spectrum and service requirements of future wireless
communication systems. Real experimentation is a key factor
for driving research forward. However, the experimentation
testbeds available today are cumbersome to use, require detailed
platform knowledge, and often lack high level design methods
and tools. In this paper we propose a novel cognitive radio
design technique, based on a high-level model which is imple-
mentation independent, supports design-time correctness checks,
and clearly defines the underlying execution semantics. A radio
designed using this technique can be synthesised to various
real radio platforms automatically; detailed knowledge of the
target platform is not required. The proposed technique therefore
simplifies cognitive radio design and implementation significantly,
allowing researchers to validate ideas in experiments without
extensive engineering effort. One example target platform is
proposed, comprising software and reconfigurable hardware. The
design technique is demonstrated for this platform through the
development of two realistic cognitive radio applications.

Index Terms—cognitive radio, radio design, design methods,
radio platforms.

1. INTRODUCTION

OGNITIVE radio is “a type of radio in which com-
munication systems are aware of their environment and
internal state and can make decisions about their radio op-
erating behaviour based on that information and predefined
objectives” [1]. Experimentation using realistic platforms and
testbeds is key to bringing cognitive radios [2], [3] and cogni-
tive networks [4] closer to reality. As cognitive radio research
advances, and nodes become more numerous, autonomous,
and flexible, a number of design challenges relating to coex-
istence and interference arise, which cannot be analysed and
tackled at design time. Only through real experimentation on
testbeds can such systems be analysed, tested and verified.
This paper presents a detailed review and comparison of
existing cognitive radio test and experimentation platforms and
frameworks, including a discussion of their limitations (Sec-
tion IT). We find that design approaches vary greatly, require

Manuscript received 1 December 2009; revised 31 May 2010. This material
is based upon work supported by Enterprise Ireland under its Innovation
Partnership scheme, project IP20060367 and by Science Foundation Ireland
under Grant No. 03/CE3/1405.

J. Lotze and L. E. Doyle are with CTVR, The Telecommunications
Research Centre, at University of Dublin, Trinity College, Ireland (e-mail:
jlotze@tcd.ie, linda.doyle@tcd.ie).

S. A. Fahmy is with the School of Computer Engineering, Nanyang
Technological University, Singapore (e-mail: sfahmy@ntu.edu.sg).

J. Noguera is with Xilinx Research Labs, Dublin, Ireland. (e-mail:
juanjo.nogurea@xilinx.com).

Digital Object Identifier 10.1109/JSAC.2011.110217.

in-depth understanding of the low-level platform architecture,
and lack any systematic way of dealing with reconfiguration.
The model of computation (MoC), defining the execution se-
mantics of the radio, i.e., how a radio is executed, is often not
clearly defined. This results in a cumbersome, ad-hoc approach
to radio development, severely limited design portability, and
experimental results which are often impossible for other
researchers to fully understand and reproduce. This ad-hoc
approach also creates a situation where validating promising
research ideas in a real setting becomes a complex engineering
task, that distracts from developing the ideas further on a solid
experimental foundation.

Additionally, many existing platforms focus solely on soft-
ware and do not support embedded hardware-accelerated
systems, e.g. field programmable gate arrays (FPGAs). Those
which do integrate hardware often require the user to have
extensive hardware design experience and are thus considered
too complex for use by cognitive radio researchers. This
makes the use of computationally-intensive signal processing
techniques, which often require hardware acceleration for real-
time performance, unfeasible for experimental systems.

A platform-independent model for describing the system
composition of CRs, based on functional blocks, is proposed
(Section III). It allows designs to be understood and checked
for computational functionality without first being imple-
mented. The model is also the first to combine both the radio
processing and reconfiguration within the same description,
simplifying computational verification and precluding the need
for implementation platform knowledge. This enables radio
researchers to focus on applications of interest, designing,
iterating and evaluating real systems, without the need to
focus on low-level details. It reduces design effort, provides
higher reliability, and allows easy deployment on different
target platforms.

As an example target platform, we show how this model can
be used to implement FPGA-based CRs through a customised
tool flow we have developed (Section IV). Components are
mapped through an existing library of software and hardware
components, creating a real system that matches the model,
including reconfigurability. The tools take care of generating
all the necessary configurations, meaning a designer with no
FPGA experience can still target such a platform, greatly miti-
gating previous barriers to entry. Two example applications are
presented to show the portability of our approach (Section V).
They were mapped onto two different FPGA platforms and
demonstrated at the IEEE International Symposium on Field

0733-8716/11/$25.00 © 2011 IEEE

456 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

Programmable Custom Computing Machines (FCCM) and
ACM SIGCOMM in 2009.

The methods outlined in this paper are beneficial to two
main groups of researchers. Those working on physical layer
components, e.g., on new modulation, detection, or coding
techniques, can quickly compose full cognitive radio systems
which include their new components. They do not need to
concern themselves with the communication with other com-
ponents, the connection to the cognitive decision making pro-
cess, and reconfiguration management. Secondly, researchers
working on networks can use the proposed methods to quickly
compose physical layers by combining existing components
and re-using other designs, while reconfiguring aspects as
needed at run-time. They need not concern themselves with
platform-specific details. Both groups are able to test their
techniques on real platforms in realistic scenarios, without
being reliant solely on simulations results. Furthermore, they
can describe the behaviour of their radio and communicate
their designs to other researchers easily.

II. ExisTING RAD10 EXPERIMENTATION PLATFORMS

In this section we give an overview of existing frame-
works for designing and implementing software-defined radios
(SDRs) and cognitive radios. Their properties are analysed
in Section II-C, and the challenges facing cognitive radio
designers using these frameworks are identified.

A. High-Level Design

The frameworks presented here provide a rich set of tools
and re-usable components to aid radio design. Their key
feature is allowing radio development at a high level of
abstraction.

1) GNU Radio: GNU Radio is an open source software
development toolkit for software radio applications [5]. It runs
on general purpose processors (GPPs), allowing for easy, low-
cost software radio experimentation and development. Radio
applications are constructed by connecting and configuring
existing re-useable signal processing components through
Python scripts. The performance-critical components are com-
piled from C++. A large number of processing components
are available in GNU Radio.

To reconfigure radios, the Python application can pause the
execution, reconfigure the components and connections, and
resume execution. Information about the radio in execution can
be retrieved through message queues, although this feature is
rarely used in the current version of GNU Radio.

2) Open-Source SCA Implementation::Embedded: OSSIE
is a lightweight Software Communication Architecture (SCA)!
implementation [6]. The SCA is an interoperable, multi-
platform architecture framework for software radio sys-
tems [7]. OSSIE is implemented purely in C++ for execution
on general purpose processors (GPPs), allowing fast and
easy prototyping for experimentation and research. A library
of pre-built components and waveforms is available. Radio
applications (called waveforms in SCA terms) are composed
from signal processing components using graphical tools or
XML.

The SCA is at the core of the JTRS project, hosted by the U.S. DoD.

OSSIE processing components run as separate processes,
communicating via message queues provided by the CORBA
middleware. Since the SCA is for SDRs, rather than cognitive
radios [1], OSSIE does not support run-time reconfiguration.

In addition to GPPs, the OSSIE project has targeted em-
bedded systems using digital signal processors (DSPs) as the
main processor [8].

3) Iris: Iris [9] is a flexible and reconfigurable frame-
work for a variety of platforms, also supporting FPGA-
based platforms with some processing components running in
hardware [10], [11]. Radios for Iris, i.e., the configuration and
connection of signal processing components, are described in
XML. A Decision Engine can be implemented by the user to
subscribe and react to events triggered by radio components.
Reactions can comprise of anything from diagnostic output to
full reconfiguration of the radio application.

The Iris engine, the component library and the Decision En-
gine are compiled from C++. FPGA processing components
can be developed using any hardware design flow, though
typically, a hardware description language is used.

Iris radios are executed using a simple synchronous sched-
uler, executing all components once per scheduling cycle.
This ensures efficient execution, but limits the range of radio
systems that can be implemented. Currently a new release of
Iris is under development, which allows more powerful and
flexible radio configurations [12].

B. Low-Level Design

Another set of cognitive radio/software radio frameworks
provides tools and application programming interfaces (APIs)
at a lower level. These are used to develop radio applications
from the ground up, using programming languages and/or
hardware description languages. No library of generic re-
usable processing components is provided. This gives the
developers a higher degree of freedom in how they implement
the radio. They can decide how the signal processing is
implemented, how it is executed, and how reconfiguration is
realised. However, this results in more effort being needed to
realise a particular system.

1) Wireless Open-Access Research Platform: WARP is a
scalable, extensible and programmable hardware platform with
a Xilinx Virtex-1I Pro FPGA as its baseband processor and up
to four RF daughter boards [13]. The physical layer of a radio
is implemented in the FPGA logic fabric, while MAC layer
functionality can be implemented in C using the embedded
PowerPC processor cores (without an operating system). In
October 2009 a new version of the WARP board was released,
featuring, among other capabilities, the more powerful Virtex-
4 FPGA and Gigabit Ethernet connectivity [14].

Various reference designs and tutorials are available detail-
ing a variety of radio implementations on the WARP board.
Standard Xilinx tools are used to program the WARP board,
allowing efficient software radio implementations. Hence, sig-
nificant hardware expertise is required to take advantage of
the WARP platform.

2) Lyrtech: Lyrtech is a company that offers a variety
of SDR development platforms, together with software and
hardware development kits [15]. The radio architecture used

LOTZE et al.: A MODEL-BASED APPROACH TO COGNITIVE RADIO DESIGN

is based on the SCA, extended to support FPGA and DSP
components [16]. Lyrtech’s hardware platforms are modular,
consisting of antennas, an RF module, an interface module,
a baseband processor and optional expansion modules. The
baseband processor is a hybrid system with a DSP processor,
an ARM processor, and an FPGA. A software development
kit for DSP and ARM development is provided, along with
an extension of Xilinx System Generator for MATLAB-based
FPGA design.

The Lyrtech platforms are powerful, flexible and come in a
small form factor. Since they are SCA compliant, it is possible
to compose a radio from SCA components at a relatively high
level. However, the SCA component granularity is usually
coarse, for instance comprising full narrowband receive and
transmit waveforms. This limits the re-useability for the design
and experimentations with new radio configurations and often,
desired waveforms must be developed from the ground up.

The FPGA, DSP, and ARM are capable of run-time re-
configuration, but since Lyrtech is targeting SDRs, rather than
cognitive radios, no design or run-time tools for cognition and
run-time reconfiguration are provided.

3) Kansas University Agile Radio: KUAR is a compact,
powerful, and flexible software radio development and ex-
perimentation platform for cognitive radio research [17]. It
consists of a full embedded Pentium PC running the Linux
operating system, a Xilinx Virtex-II Pro FPGA, an RF front-
end, and active antennas. Its small form factor and the op-
tional battery pack make it easily portable. KUAR provides
software and hardware APIs for configuration and control
and for processor-FPGA communication. Radio applications
are developed using standard compilers and low-level FPGA
design tools. A small library of radio components is provided.

Radio designers have to implement the signal processing,
execution model, radio life-cycle management, and control
using the APIs provided. This ensures a high degree of
freedom and high performance, at the cost of an increased
development effort and tight coupling to the implementation
platform.

4) WINLAB Network Centric Cognitive Radio: The
WINC2R is a cognitive radio platform that uses flexible
hardware accelerators to achieve programmability and high
performance at each layer of the protocol stack [18]. The
prototype consists of one or more baseband modules (with
an FPGA at their core), each connected to an RF module,
a networking module, and a CPU. The performance intense
radio functions are executed on dedicated hardware acceler-
ators (implemented in FPGA logic), while control intensive
functions are performed by data processors (implemented as
soft CPU cores on the FPGAs). A system scheduler manages
the synchronisation of all the processing elements as well as
data transfers. System reconfiguration is managed by the ex-
ternal CPU which can reconfigure hardware accelerators, data
processors, and the system scheduler if required. The WiNC2R
is still at an early stage of development; the prototype is not
fully developed and no design tools are available thus far.

C. Analysis

The cognitive radio frameworks discussed in Section II-A
all provide a library of re-usable signal processing compo-

457
TABLE I

SUMMARY OF THE DISCUSSED PLATFORMS.

Design Reconf. Comp. Defines Real-time

Level Runtime Tools' MoC Hardware
GNURadio [5] high [[) X X
OSSIE [6] high x o? x o
Tris [9] high ° ° x3 °
WARP [13] low X X X ([
Lyrtech [15] low X (@] X ([]
KUAR [17] low @) @) X o
WiNC2R [18] low [X X]

o : fully supported; O :
! high-level radio composition tools, to assemble a full system
2 the design framework does not include cognition

3 will be supported in future release [12]

partly supported; X : not supported;

nents and compose radios by connecting these together. This
design method is often described as dataflow-based design. A
dataflow graph is a directed graph where the nodes represent
processing components and the edges represent the flow of
data through the system. This is an intuitive and established
approach for describing signal processing systems and is used
by many design and simulation tools outside of cognitive radio
(e.g., [19]-[21]). It decouples the signal processing imple-
mentation from the system composition and allows for the
composition of systems without detailed platform knowledge.

However, in order to efficiently use dataflow graphs for
design, the dataflow model of computation (MoC) must be
known to the designer. The execution semantics, i.e., how
components are executed and how data is passed between
components, must be clearly defined in the MoC, ideally in
terms independent of low-level implementation details. The
three described frameworks do not define the applied MoC
in an implementation-independent way, thus, radio designers
need detailed platform knowledge in order to design efficient
radios.

The platforms discussed in Section II-B require low-level
design expertise. This allows for a great level of freedom,
allowing almost any radio system to be implemented. How-
ever, the considerable implementation effort required is often
impractical for research and experimentation.

It is also clear that the frameworks discussed often lack a
well-defined way of expressing reconfigurability. Even more
importantly, no existent modelling approaches allow the de-
signer to do so in an implementation-independent way. Mech-
anisms for reconfiguration are provided for some, but vary
greatly between frameworks and require in-depth understand-
ing of the low-level architecture. This makes it difficult for
radio designers to experiment with and reason about cognitive
radios and networks. It is also important to note that the high-
level frameworks primarily target software on general purpose
processors, while the low-level frameworks focus more on
hardware implementations, mostly using FPGAs.

Table I shows a comparison of the frameworks discussed.
The comparison criteria are based on the discussions above.

To achieve the processing performance and power efficiency
required for realistic, cutting edge, real-time cognitive radio
implementations, it is important that high performance com-
putational resources like FPGAs and DSPs are available to the

458 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

radio designer. It is also important for the designer to be able
to think independently of the implementation platform. In this
paper, we attempt to offer the best of both worlds: a high-
level platform-independent model for cognitive radio design,
that includes both composition and reconfiguration; and an
example design flow and tools showing how the model can be
mapped to a real high performance implementation platform.

III. CognNiTIvE Rap1o MODEL

It is hugely beneficial for researchers and developers of cog-
nitive radios to be able to design such systems at a high level of
abstraction, avoiding detailed platform knowledge where pos-
sible. This reduces the design effort, increases reliability, and
allows easy deployment on different target platforms. It also
prevents the limitations of a single platform from working their
way into the radio description, resulting in constraints that are
of no relation to the application being described. Developers
instead focus on the radio’s function and cognitive decision-
making and need not concern themselves with platform details.

We believe that the dataflow-based design approach adopted
by the frameworks discussed in Section II-A is an important
foundation for describing such systems. However, such a
description can only be platform-independent if the MoC
is defined independently of implementation details. More
importantly, dataflow graphs do not capture the dynamic
nature of cognitive radios; they can only represent a single
configuration. Incorporating other configurations that might
arise as a result of the cognitive decision-making would need
the model to be extended.

This section proposes a model for describing cognitive
radio designs that harnesses the strengths of existing dataflow-
based methods while overcoming the current limitations of
existing design frameworks. It describes the radio’s function,
all reconfiguration options, and defines an interface to the
cognitive decision-making process without relying on any
platform implementation details. It can be used not only as
a basis for developing real cognitive radio implementations,
but also as a formal description of cognitive radios which can
then be understood and analysed by other researchers.

A. Data Plane

Dataflow graphs are an established approach for designing
signal processing systems and so, we base our model on
this approach. It is common in signal processing to use a
hierarchical flow graph, where a nodes can represent other
flow graphs. For example, an OFDM node in a graph might
be broken down into a graph with nodes for subcarrier modu-
lation, inverse FFT, and cyclic prefix insertion. To capture the
dynamic nature of cognitive radios, we must allow multiple
options to be selectable for a node in the flow graph. For
example, the subcarrier modulation node in such an OFDM
system might contain multiple modulators from BPSK to 64-
QAM, only one of which is active at a time. Here we present
the model we have developed.

Each level of hierarchy is a dataflow graph, i.e., a directed
connected graph, where the nodes represent either processing
components or subsystems and the edges (links) represent the
flow of data.

Components are the atomic entities for processing data
in the model. They take data from their input ports, per-
form processing, and produce data on their output ports.
An example is a QPSK modulator, which maps information
bits to complex signal samples. A component has a set of
parameters, which may be the empty set. For example, a
pulse-shaping filter might have parameters for the number of
taps and the roll-off factor. Components have a set of input
and output ports. Arbitrary numbers of inputs and outputs
are permitted. For instance, a ‘select’” component has two
input ports and one output port, routing one of the inputs
to the output port depending on a parameter. Components
without inputs are sources, components without outputs are
sinks. Components without ports are not permitted. Note that
this model does not include the internal representation of
components; it concerns itself with the composition of radios
from a library of components.

A subsystem represents a new level of hierarchy. It can
combine multiple mutually-exclusive dataflow graphs, only
one of which is active at any given time. Each of these graphs
is what we call a mode in the subsystem. An example is
a modulator subsystem which contains modes for different
QAM modulators ranging from QPSK to 64-QAM. The radio
can then be configured for any type of QAM modulation by
activating the corresponding mode. When viewed from the
next level up in the hierarchy, the subsystem is, at any point
in time, represented by the the dataflow graph for the active
mode. The graphs for each mode in a subsystem are allowed to
have external input and output ports, with the same restrictions
as for components. To ensure that each of the graphs in a
subsystem (i.e., each mode) is compatible with the connections
of the subsystem in the higher level graph, we restrict all
modes with one subsystem to have the same number of input
and output ports. Subsystems are used to build a hierarchy
of flow graphs for the cognitive radio system. The depth of
the hierarchy is not bounded in this model, becoming more
detailed when going down the hierarchy until the dataflow
graphs no longer contain any subsystems at the lowest level.
This extension to existing dataflow models allows us to capture
reconfiguration of arbitrary complexity.

Component parameters are used to tune the operation
of each component. They have data types, a specification
of allowed values (which might be an interval or a list),
and a value. Additionally, some components might be run-
time reconfigurable. For example, a scaling component might
expose the run-time reconfigurable parameter ‘gain’ of type
real, with allowed values in the interval [0, o), to allow tuning
of the scaler at run-time.

Component or subsystem ports can be either input or output
ports. A data type is associated with each port, and defines the
type of the data items consumed or produced. When active,
components consume data from their input ports and produce
data on their output ports, for example by mapping information
bits to signal samples in a modulator component.

A link is a connection of output ports to input ports of
components or subsystems. It resembles a first in first out
(FIFO) buffer, i.e., multiple data items can be stored on a
link. Data items produced on output ports are queued at the
end of the buffer and items consumed from input ports are

LOTZE et al.: A MODEL-BASED APPROACH TO COGNITIVE RADIO DESIGN

Data Plane
MoC: PN
Subsystem/ Subsystem/
[ComponentA Subsystem B Component C]
MoC: SDF

Mode 1

-...\.....-"

‘I_:(Com p/SubsHComp/Subs.@

ichange
\ iactive

_~teconf. parameter

Control Plane

connection to an
external cognitive
engine

callback function
void BER clb(float BER) {
if (BER > 0.001)
changeMode (ss1, 2);

state machine Petri Net

B &Y

Fig. 1. The proposed cognitive radio model. The data plane shows two levels
of hierarchy, using a subsystem with three modes. Two different MoCs are
applied: Dataflow Process Networks (PN) and Synchronous Dataflow (SDF).

taken from the beginning. For instance, information bits are
passed from a convolutional coder component to a modulator
component via a link.

The data plane of the proposed cognitive radio model is
illustrated in the top section of Fig. 1, showing two hierarchy
levels and using a subsystem with three modes.

As discussed in the beginning of this section, it is essential
to define the MoC of the model, i.e., its execution semantics,
in terms that are independent of implementation details. With
this information, radio designers can successfully construct a
model of the radio and understand its execution behaviour.

The MoC for the proposed model is defined as follows.
Each dataflow graph at any level in the model hierarchy can
be treated as a flat dataflow graph by viewing the subsys-
tems it contains as single components. Well-known and well-
investigated dataflow MoCs can then be applied to these flat
graphs. We therefore require that the top level of the model,
as well as every subsystem within it, define the dataflow
MoC applied. Every mode within a subsystem must apply
the same MoC, though it is possible to combine different
MoCs at different hierarchy levels. However, this can only
be done if the MoCs are compatible (this is discussed later).
A large number of dataflow MoCs have been proposed in the
literature, (see [22] for a summary of many of these). We have
constructed the proposed model based on the two most widely
used for signal processing: the extremely flexible Process
Networks (PN) MoC and the highly efficient Synchronous
Dataflow (SDF) MoC, combining the two major requirements
for cognitive radio systems: flexibility and efficiency.

1) Dataflow Process Networks: The PN MoC was orig-
inally published by Kahn [23], and was later refined by
Lee and Parks [24]. It is the most flexible dataflow MoC.
In the PN MoC all components are processes that execute
asynchronously. They read their inputs by blocking reads on
the input ports and write to the output ports using non-blocking
write operations. The only permitted way for processes to
communicate is through input and output links. This ensures

459

deterministic behaviour. There are no restrictions on when
processes output data and how much data they output. PNs
have been shown to be Turing complete, i.e., all algorithms
that can be realised on a theoretical Turing machine can also
be realised using a PN graph.

A PN graph might execute in unbounded memory and it is
generally undecidable whether bounded memory is sufficient
for its execution. This makes it impossible to execute general
PN graphs on a real machine. Lee and Parks [24] proposed an
execution method using blocking writes, starting with small
buffer sizes on each link and dynamically increasing them as
needed at run-time up to a limit. This method allows the exe-
cution of a large subset of PN graphs on real machines. Note
that due to the blocking reads and associated context switches,
the PN MoC can pose a significant run-time overhead.

The PN MoC is suitable for graphs containing components
producing or consuming variable numbers of data items. For
instance, a flexible receiver radio containing a bandwidth-
adaptive OFDM demodulator [25] requires the application of
the PN MoC due to unpredictable input and output data rates
of that component.

2) Synchronous Dataflow: A dataflow graph is called syn-
chronous if fixed sampling rates can be given on each port
of all components in the graph [26]. That is, the number of
items consumed on each input port and the corresponding
number of output items produced per component execution
is fixed and known at design-time. This knowledge allows a
thorough analysis of the graph at design-time: required buffer
sizes on each link can be determined, guarantees for deadlock-
free operation can be given, and static and efficient execution
schedules can be computed. These properties make SDF
graphs extremely valuable for signal processing applications
and allow for execution with minimum overhead. Methods to
check for SDF graph correctness and to construct schedules
are given in [27].

SDF graphs are a subclass of PN graphs, i.e., all SDF
graphs can also be executed using the PN MoC. This implies
for the proposed cognitive radio model that PN graphs may
contain SDF subsystems, but not vice versa. SDF graphs are
not Turing complete, i.e., some algorithms cannot be modelled
using SDF graphs. For example, a ‘select’ component, which
routes one of its input ports to the output, depending on the
value of a boolean input, cannot be modelled using SDF.

Many physical layer components typically used in radios
are synchronous. For example, a pulse-shaping filter always
produces a single output item for each input item. A QPSK
modulator maps two input bits to one complex sample at the
output. Graphs containing these components can be efficiently
executed using the SDF MoC.

B. Reconfiguration

Cognitive radios need to support frequent reconfiguration to
adapt their behaviour to the current environmental conditions.
These reconfigurations can be classified into three types:
parametric, structural, or functional. A parametric reconfig-
uration is a change of a component parameter in one or
more of the components in the data plane. For instance, the
gain of a scaling component can be adjusted. A structural

460 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

reconfiguration is a change of the radio’s structure, i.e., of
the currently executing dataflow graph. For instance, replacing
a QPSK modulator component with a 16-QAM modulator.
This structural reconfiguration is represented by a switch of
the active mode in a subsystem. A functional reconfiguration
involves a complete overhaul of the radio’s function, e.g.,
from WiFi to UMTS. This can be treated as a special case
of structural reconfigurations, where a single subsystem at the
top level contains modes for each function. Thus, the proposed
hierarchical structure of the radio data plane along with
component parameters enables all types of reconfiguration.

It has proven valuable for checking the model’s correctness
(see Section III-D) and to aid automatic synthesis tools, to
make all reconfiguration options explicit in the radio model’s
data plane. That is, parameters that might be changed at run-
time, along with their possible values, are added to the set
of reconfigurable parameters; no other parameters may be
reconfigured. This set of reconfigurable parameters forms what
we call the Control Specification.

C. Control Plane

The control plane of the radio model is responsible for
monitoring the execution of the data plane, performing radio
reconfigurations, and setting the active modes in all subsys-
tems of the data plane. It executes the cognition cycle of a
cognitive radio, which involves three stages: observe, decide,
and act (a simplified version of the cycle introduced in [28]).
During the observe stage, the control plane monitors the state
of the radio and can retrieve information from the data plane.
The decide stage involves decision-making using the observed
information, and might include machine learning techniques.
During the act stage, the chosen reconfiguration actions are
applied to the data plane. In the literature, the part of a
cognitive radio which executes the cognition cycle is often
called cognitive engine.

The control plane is connected to the data plane using
the well-known Publish and Subscribe MoC (see for exam-
ple [22]). That is, components in the data plane publish events
which they may trigger and the control plane can subscribe
to them. Subscribing to an event means the control plane is
notified when it occurs. Events can carry information, e.g., the
current bit error rate (BER), or a map of available spectrum.
This can be used to obtain information from the environment
and the radio itself; it therefore represents the observe stage
of the cognition cycle. Information about the radio may also
be retrieved without an event being triggered, for example by
querying the current state of the data plane.

Due to the wide variety of approaches and methods for
decision-making in a cognitive radio [29], i.e., the decide
stage, the definition of a strict MoC for this step would
severely limit the range of algorithms implementable. In-
stead, the model for this part is unspecified, increasing the
radio model’s flexibility. For example, simple radio controllers
might be implemented using the finite state machine (FSM)
or Petri net [30] MoCs, where switches of the active mode in
subsystems are dependent on simple conditions. An example
would be switching the applied coding scheme based on
predefined thresholds of the BER. More complex controllers

can use callback functions in software code, invoked when
certain events are triggered. Those could implement a genetic
algorithm maximising an objective function given on a number
of possible actions, to find the optimum radio configuration in
a given situation.

The controller applies the chosen actions to the data plane
in the act stage. Those can be changes in parameter values of
components or switches of the active mode in a subsystem.
For example, one set of actions might change the modulation
scheme from QPSK to 16-QAM by switching the active mode
in a modulator subsystem and choose a higher roll-off factor
for the pulse-shaping filter by adjusting the corresponding
parameter of that component.

D. Model Correctness

Defining the cognitive radio model and its MoC in platform-
independent terms has the additional advantage that a model
can be checked for correct construction. It is possible to
detect errors that violate the model’s constraints and its MoC,
ensuring that the radio is executable on a real platform. This
is a powerful feature of the proposed model since it allows
early detection of errors, saving development time and effort.

1) General Criteria: The following criteria are straightfor-
ward to check given a specific radio model, therefore we do
not give details here:

« All component parameters exist and the assigned values
are within range,

« parameter reconfigurations are allowed and within range,

« all link data types can be uniquely determined,

o the link data types are consistent and supported by
components, and

« SDF graphs do not contain PN subsystems.

To enable the verification of these criteria, information about
the ports and parameters of existing components (from the
component library) must be available. If no such component
implementation exists, a set of requirements for component
implementation can be derived from the model (parameters,
data types, reconfigurability). These can be used later in the
design process to implement the missing components.

As discussed in Section III-Al, it is generally undecidable
whether a PN graph is executable on a real system. Therefore,
if the MoC used in all hierarchy levels of the given model is
PN, there is nothing more that can be done at design-time. The
radio designer must synthesise the model onto a real platform
and execute the radio in order to find out whether it can be
executed in bounded memory and without deadlocks.

2) Criteria for Models Using the SDF MoC: The SDF MoC
allows a model to be checked for correct construction without
executing it (see Section III-A2). That is, guarantees for the
existence of a cyclic execution schedule and the absence of
deadlocks, and the boundedness of the buffer memory on
the links can be given. This feature can be used to develop
correctness checks for the proposed model if some portion of
it employs the SDF MoC. In order to do this, we introduce
the following notation.

Let S, denote the set of all modes in subsystem »n of a given
model. Further we denote the set of desired reconfiguration
values for parameter m as P,. Then, at any given time instant,

LOTZE et al.: A MODEL-BASED APPROACH TO COGNITIVE RADIO DESIGN

the global state of the data plane is given as the Cartesian
product of all S, and P, in the model, i.e.,

N-1 M-1
G=[]sax[]Pn)
n=0 m=0

where N denotes the total number of subsystems in the model,
M is the total number of reconfigured parameters, and [] is
the Cartesian product of the arguments. The resulting set G is
a set of tuples, each representing a state of the data plane.

For each of the states in G, the hierarchy can be flattened
to a single dataflow graph with fixed parameters. Therefore
it is possible to apply the well-known SDF graph correctness
checks [26], [27] for the SDF portions of the data plane. By
checking each of the states it can be guaranteed that the model
is correctly constructed.

However, the number of states |G| can get very large due to
the Cartesian product in (1), which results in a potentially very
complex model checking procedure. To reduce the number of
states for model checking, the following rules can be applied:

1) Only SDF subsystems need to be considered, subsys-
tems using the PN MoC can be eliminated.

2) All reconfigured parameters that do not affect the in-
put/output sampling rates of a component can be elim-
inated.

3) On multiple hierarchy levels, some subsystems can
never be active simultaneously; these combinations can
be eliminated.

4) In each SDF subsystem, modes with the same external
input/output sampling rates can be reduced to one mode.

5) In each SDF subsystem, modes where the external
input/output ratios are multiples of each other can be
eliminated by computing the lowest common multiple of
the rates and repeating the mode schedules accordingly,
so that they have the same external input/output rate.

6) If some modes or parameter settings are mutually ex-
clusive, as may be given in constraints by the radio
designer, the number of combinations can be reduced.

Thus, the reduced state space can then be expressed as

G= nreduce(S,-) X]_[P,-

iel jeJ

)

where the index set / is the set of SDF subsystem indices, the
index set J is the set of indices of reconfigured parameters
that affect the component’s input/output sampling rates, and
the function ‘reduce’ applies the mode reduction techniques
as explained above in rules 3 to 6.

The model can be flattened to a single dataflow graph for
each state in G, correctness checks can be applied, and SDF
schedules can be computed. If all checks succeed, the model
is correctly constructed. Note that these checks are performed
at design-time and are therefore not performance-critical.

E. Model Transformation

Due to the hierarchical nature of the proposed model, it is
often possible to express the same functionality in different
ways. In fact, it is possible to transform one representation
into another by applying simple rules, without affecting the
functionality of the radio. This is important since the model

461

©
]

a

2 —

:

H E
w -
E E

(A Pleebn>]

© 8 | .;-\
s

E

Fig. 2. Model transformation relationships.

can be transformed into representations that are easier to syn-
thesise, align more naturally with the resources, and execute
more efficiently on any given platform.

The following behaviour-preserving transformation rules
can be given for the proposed radio model (see Fig. 2):

1) A component at the input or output of a subsystem may
be moved into the subsystem by replicating it in all of
the subsystem’s modes.

2) A component with a parameter with discrete reconfig-
uration values may be transformed into a subsystem
with separate modes for each of the possible parameter
values, making them fixed parameters in each of the
modes.

3) Subgraphs of a dataflow graph might be placed into a
subsystem containing only one mode.

Note that the application of transformation rules 1) and 2)
might result in different behaviour to the original graph if the
affected component has an internal state. To be truly equiva-
lent, the duplicated components must share their internal state.
However, depending on the application, this strict equivalence
may not be required. For instance, if a pulse-shaping filter with
reconfigurable roll-off factor is transformed using rule 2), the
delay line does not need sharing since after a reconfiguration,
the output is considered invalid until after the filter delay has
passed anyway.

F. Summary

The model presented here completely and accurately de-
scribes the behaviour of a cognitive radio, including its re-
configuration options. The execution semantics are clearly
defined. Correctness checks are given to allow for detec-
tion of composition errors at design-time. The model is
implementation-independent, yet, the transformations pre-
sented allow it to be modified to a given target platform. It
allows radio designers to compose cognitive radios, understand
their behaviour and check them for composition errors without
considering a target platform. This greatly reduces the effort
needed for testing cognitive radio algorithms in the real world

462 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

Sketch Radio O platform-independent

Model (O platform-dependent

Map Components
to Library

Write
Control Spec.

Implement
Control Plane
¥

]
Run Model
Checking

_[

fix errors

Run
Synthesis Tool
¥
Radio ready
for execution

Fig. 3. Proposed Design Flow.

and allows researchers to communicate their designs to each
other.

IV. From MODEL TO ARCHITECTURE

Having defined the modelling approach, we now discuss
how a model can by implemented on physical platforms,
creating real cognitive radios for experimentation. First, we
look at the general design flow for generating real radio
configurations. Then we discuss synthesis of the model for
an FPGA-based cognitive radio platform running Iris (see
Section II-A3). This platform is just one example. Since
FPGA-based systems are more complicated to handle than
pure software implementations, this example is sufficient to
prove that the design approach presented can also be applied
to pure software platforms.

A. Design Flow

Radio design using the proposed model-based cognitive
radio design technique facilitates system-level design and
composition of radios using components existent in a compo-
nent library. Radio designers follow the flow given in Fig. 3.

The two aspects of a cognitive radio design are the data
plane and the control plane. First, a radio designer describes
the data plane using a hierarchical flow graph of radio compo-
nents (see Section III-A). Then the designer maps the desired
components to those available in the component library, and
describes the radio model as presented in Section III.

The Control Specification, as introduced in Section III-B,
specifies which component parameters are required to be run-
time reconfigurable and the range or set of values they can
take. This is required for the model correctness checks as
discussed in Section III-D.

The radio model and the Control Specification are passed to
the model checking tool which checks if the radio is composed
correctly using the methods presented in Section III-D. Errors
in the model are indicated to the developer who may then fix
them and re-run the checks until they succeed.

Up to this point in the design flow, the radio design is
platform-independent. Now the radio developer may choose
a target platform, provided that model synthesis tools are
available for the given platform. If this is not the case,
developers have to implement the radio manually. In such a
case, the model-based design technique is still beneficial since

the model can be used as a design specification for manual
implementation.

For the platform-specific synthesis step we first outline
the architecture of our FPGA-based platform running the Iris
software radio.

B. Platform Architecture

Our example radio platform is built around an FPGA.
FPGAs are customisable silicon devices which can be used
to implement arbitrary hardware datapaths and can be re-
configured when needed. Hence, they represent a platform
that can provide the high performance of custom processing
datapaths that exploit algorithmic parallelism, with the flexi-
bility of reconfiguration at run-time. Moreover, Xilinx FPGAs
can be partially reconfigured; one part of the device can be
reconfigured while the other continues to function — a clear
enabler for cognitive radios.

We base our system architecture on the Iris software radio
platform introduced in Section II-A3. Iris has been extensively
re-engineered to adhere to the model presented in Section III,
and allows for the incorporation of hardware as well as
software processing components [10], [11].

The data plane is implemented as a combination of software
and hardware components, and described in an XML format.
In the case of hardware, it is implemented in the FPGA fabric,
in what we term customisable processing regions. These can
be reconfigured at run-time using FPGA partial reconfigura-
tion. Software components, as well as the Iris Runtime System,
run on the processor subsystem. This contains all the basic
hardware required to run the Linux operating system on an
embedded processor. It remains active throughout the lifetime
of the system and can be programmed in software.

The architecture is flexible in terms of the capabilities of
the FPGA used and the number of customisable processing
regions present; the transformations discussed in Section III-E
enable the same radio model to be mapped to alternatively con-
figured FPGAs. An FPGA architecture with one customisable
processing region is shown in Fig. 4.

The control plane of the radio model runs the Decision
Engine in the Iris software radio. This is implemented in
C++, and uses an API to subscribe to component events and
perform reconfigurations of the data plane. The Iris Runtime
System manages the radio execution and provides the API for
the Decision Engine. Fig. 5 shows an outline of the system
architecture.

The library of available processing components details their
input/output characteristics including data types and can be
used by the designer to implement whichever waveforms are
needed. During radio design, it does not matter whether these
components are implemented in hardware or software.

C. Data Plane Implementation

In this framework, we distinguish between the design of
processing components and their composition into radios. At
present, a large number of components are available in the
Iris component library as software, with a growing number of
hardware components being developed. It is possible to add
custom hardware or software components to the library.

LOTZE et al.: A MODEL-BASED APPROACH TO COGNITIVE RADIO DESIGN

/(Processor Subsystem)
PowerPC Y
Processor (Memory) (Ethernet) (Storage)

[[[
_ I J
(I)
Customisable Processing Region
Bus Interface
| Register Interface |
T R
| 3o] 1] oueu
1
Memory | 1 processing Chain | | Memory
- " J
\ Xilinx FPGA j

Fig. 4. The FPGA architecture, showing the processor subsystem with the
basic components to run Linux, and one customisable processing region to
hold radio processing chains.

Components must implement a simple interface, either in
software or in hardware. Software components are imple-
mented in C++ using class inheritance. The interface for
hardware components consists of FIFO signals for the input
and output ports and signals for triggering events and setting
parameters. We do not specify how hardware components
should be implemented internally; designers may use standard
hardware description languages or high-level design tools
(e.g., AccelDSP for MATLAB-based design on Xilinx FP-
GAs).

Since Iris supports both software and hardware components,
we can combine the two within a single system, and this
provides a powerful verification and debugging mechanism. It
is possible to process data through hardware, then store it in a
file for offline analysis, or transfer the data for visualisation in
MATLAB. This is also beneficial when developing a custom
hardware component, since this data can be be used to verify
the implementation against software versions.

D. Control Plane Implementation

The operations of the control plane are, by definition,
control-driven and are hence amenable to implementation in
software; the performance benefit in moving such operations
into hardware is marginal and likely to be outweighed by the
complexity of doing so. Thus, we implement the control plane
in software.

The control plane in the Iris framework consists of two
parts, the Decision Engine and the Iris Runtime System,
as shown in Fig. 5. The Decision Engine implements the
cognitive decision making process of the radio, and uses a
simple API to subscribe to component events and perform
reconfiguration actions, as described in Section III-C. This API
is provided by the Iris Runtime System, which manages the
radio execution and performs the low-level actions associated
with reconfiguration commands.

The hierarchical radio model (see Section III) for execution
by Iris is described in XML form. The Iris Runtime System
parses the specified XML file, instantiates and connects the

XML Radio Model

Component
Library
v control plane
@ external
> IRIS Runtime | _ | Decision | __event
@ Sysltem -----1-{ Engine
| | ! A
start/ 1 react! | react i
stop ¥ ! v eventi
T
! T
|
C. proc. reg. cust. processing region
data plane

Fig. 5. The run-time system architecture for a target with two customisable
processing regions.

required components, loads the Decision Engine, and controls
and monitors system execution.

E. Implementing Reconfiguration

As described in Section III-B, reconfigurations can be either
a switch of the active mode within a subsystem (a functional
or structural reconfiguration), or a reconfiguration of a compo-
nent parameter (parametric reconfiguration). Reconfigurations
in software are straightforward and do not need special treat-
ment. In the following we focus on reconfigurations involving
hardware components.

Mode switches are facilitated through reconfiguration of the
FPGA; swapping modes for a subsystem implies reconfiguring
the corresponding customisable processing region. When the
number of available regions in the platform is sufficient to
accommodate the number of subsystems in the radio being
modelled, configurations have a one-to-one mapping. Consider
now, the case where the number of regions in the platform is
less than the number required for the high level radio model.
In such a case, we can proceed to transform our radio model
using the transformations given in Section III-E until we have
the same number of subsystems containing only hardware
components as customisable processing regions on the FPGA.
These hardware subsystems cannot contain further subsystems
and must therefore be flattened using the transformation rules.
Extra subsystems are allowed, but can only contain software
components.

Parametric reconfigurations are less straightforward. If the
parameter to be reconfigured can be mapped to a simple
hardware parameter, e.g. the gain parameter of a scaling
component, the software writes the new parameter value
into a hardware register. The hardware reads this register
and changes its behaviour accordingly. If a parameter to
be changed implies considerable changes in the hardware
circuitry, e.g. the generating polynomial of a Viterbi decoder,
a subsystem must be generated during model synthesis with
a replicated Viterbi decoder, each with a different polynomial
(applying transformation rule 2) in Section III-E). That is,
when the generating polynomial is to be changed, the hardware

464 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL.

needs to be reconfigured, as represented by the modes in the
subsystem.

Our aim is to maintain the interface to the Decision Engine
as defined in the high-level model during design. Radio
designers should not concern themselves with the transfor-
mations that have to be applied to the model to fit the target
platform, and it should be transparent to the designer whether
components run in software or hardware. This requires a
translation layer, which converts high-level events and recon-
figuration commands to the low-level equivalents that execute
on the target platform.

Events can be triggered from the hardware in the cus-
tomisable processing region by setting a value in a register.
The translation layer reads these registers and triggers a
software event to the Decision Engine which can then react.
Reconfiguration actions from the Decision Engine are con-
verted into low-level reconfiguration actions by the translation
layer, performing hardware reconfigurations (mode switches)
or register write operations as needed.

F. Automatic Radio Model Synthesis

For our target platform, the user implements the Decision
Engine using the Control Specification and a simple API in
C++. It can subscribe to events published by components,
and apply functional, structural or parametric reconfiguration
to the data plane.

The only two inputs that the radio developer needs to
specify are: the XML radio model description, including the
Control Specification; and the C++ Decision Engine. The
Decision Engine does not need to consider implementation
details of the components it is controlling (i.e., software or
hardware), since the interfaces are abstracted.

Since the Decision Engine is implemented in software,
cognitive algorithms are limited by the processing power
and capabilities of the embedded processor. However, the
designer has the flexibility to interface the Decision Engine
with external event triggers, other hardware, or alternative
cognitive engines.

These two inputs are given to the platform synthesis tool,
which we have named the Composer. It uses the Control
Specification, the XML description of the radio model, and the
component library to generate the FPGA configurations. First,
it determines which components to implement in hardware,
based on the availability of hardware implementations, the
available hardware resources, and performance constraints. It
then applies the model transformation rules given in Sec-
tion III-E to fit the FPGA architecture (as explained in Sec-
tion IV-E). It then generates the required FPGA configurations,
the translation layer as outlined above, and an XML file for the
Iris Runtime System. The radio is now ready to be executed
on the FPGA-based platform.

G. Summary

We showed how the platform-independent model presented
in Section III can be mapped to a real implementation plat-
form. We are able to use the transformations presented in
Section III-E to make the model amenable to implementation
on a wide variety of platforms. The high-level model allows

29, NO. 2, FEBRUARY 2011

Transmission Reception
VLC Player VLC Player
(PC) (PC)

v 1
Processing Processing
Chain (FPGA) Chain (FPGA)
v 1
Radio Frontend Wireless Radio Frontend
(USRP) Channel (USRP)

Fig. 6. Demonstration setup. We used the Xilinx University Program (XUP)
Virtex-II Pro FPGA board for Section V-A, the Xilinx ML507 board with a
Virtex 5 FPGA for Section V-B, and the USRP radio frontend [35].

designers to develop and reason about cognitive radio appli-
cations while being decoupled from specific implementations.
We showed our custom design flow for mapping models to
FPGA platforms. Since the model captures the information re-
quired for automatic model synthesis, developers do not need
to concern themselves with low-level details. We also showed
how the model facilitates the incorporation of new processing
components and complex control capability, making it scalable
to different types of systems.

V. ExampPLE RADIO APPLICATIONS

There is a clear trend towards more adaptability in emerging
wireless communication standards, where several radio param-
eters are changed at run-time according to channel quality.
Examples are LTE [31] and WiMAX [32], where the coding
and modulation schemes are adapted.

In this section, we apply the proposed cognitive radio design
methods to the development of a similar radio which can
adapt its coding method to current channel conditions. We
then extend that system to include spectrum sensing at the
receiver. The application data is a video stream, provided by
VLC Player through its UDP interface. The implementation
platform is the Xilinx University Program (XUP) board [33]
which hosts a Xilinx Virtex-II Pro FPGA for the adaptive
coding demonstrator. The design is then ported to the Xilinx
ML507 board [34] hosting a more powerful Virtex 5 FPGA
and extended with sensing. We use the Universal Software Ra-
dio Peripheral (USRP) radio frontend [35] which we connect
to through a TCP socket via a PC bridge. This was necessary
due to a lack of USB 2.0 connectors on the development
boards. Figure 6 shows an overview of the demo setup used
for the examples below.

A. Adaptive Coding Link

For simplicity, we have chosen a simple point-to-point
link, where the transmitter encodes video data using con-
volutional codes with rate 1/2, and the receiver decodes the
data using a Viterbi decoder. The error correction capability
of a code improves with larger constraint lengths. On the
other hand, larger constraint lengths result in much more
complex implementations of the Viterbi decoder, resulting in
significant increases in area usage and power consumption on
the FPGA [10]. Therefore we have designed a system to switch

LOTZE et al.: A MODEL-BASED APPROACH TO COGNITIVE RADIO DESIGN

Data Plane
MoC: SDF

[UsrpTx HRRC FiIter]<—[UpSampIer
[UpP frvick—>{ Framer

Encoder DgpskMod

select “enable/
constr. !disable
length i coding

__ J PR
i
i

Control Plane
(state machine, switches coding if requested from Rx via feedback channel)

Fig. 7. The adaptive coding transmitter model. Either no coding, or coding
with constraint length 6 or 8 is applied. The controller obtains information
about which coding method to apply from the receiver through a feedback
channel.

Data Plane

MoC: SDF

[UsrpRx]—»[RRC FiIter]—)[CarrierSync

[UDP to VLCH Deframer
T

TimingSync

Decoder DgpskDemod

| tenable/
\ . idisable
............................... 4._..jlength icoding
\

i
|

Control Plane
(state machine, switching coding if BER/FER is above/below thresholds)

Fig. 8. The adaptive coding receiver model. Either no decoder, or decoders
with constraint lengths 6 or 8 can be used.

between codes with constraint lengths 6 and 8, as well as no
coding, always selecting the least complex scheme that can
still achieve a target bit error rate (BER) or frame error rate
(FER), in order to minimise power dissipation.

1) Transmitter: Fig. 7 shows the transmitter radio model.
It operates as follows. Data is passed from the video source to
the transmission chain via UDP (a VLC Player is running on a
laptop connected to the Tx FPGA board). The Framer adds a
64-bit frame access code to each frame of data to identify
it, and appends a checksum. The Convolutional Encoder
encodes the data with 1/2 code rate and a reconfigurable
constraint length code. The Differential QPSK Modulator
maps information dibits (2-bit units) into phase changes in
the complex base band signal. The UpSampler and RRC
Filter (root-raised cosine filter) act as a pulse shaper, used to
control the transmission bandwidth and signal-to-noise ratio
(SNR). Data is transmitted to the receiver by the UsrpTx
component, which controls the USRP radio front-end used
for this demonstration [35].

465
t=ty t=to t=1t
10” \ ‘ ‘ .
—no coding
o e -0 constraint length 6
ASECNR stop 3 “-=..__ |- -constraint length 8
1072F koSN e Dt ;]
trgetBER Mo T\ TR]
3
% 3 s o
= 10 S
o R
o S B o N
= * \step 1° -,
9] . .
= ; a .
S 10°L LSRR NN
3 AN ~ o
.
5 AN
10°L %
.
N \
. .
. ‘s
i i AN
10° . - L | Y ©
7 8 9 10 11 12 13
signal-to-noise ratio (SNR) [dB]
Fig. 9. Simulated BER vs. SNR for different codes, and an example code

switching sequence.

2) Receiver: The receiver model is shown in Fig. 7. Data
is obtained from the USRP radio frontend. It passes through
the RRC Filter, which acts as a matched filter, increasing the
SNR. When a modulated signal is received, the frequency of
the local oscillator is typically off by some variable margin,
which is corrected by the Carrier Synchronisation component.
Timing Synchronisation finds the correct sampling points for
each symbol, eliminating the effects of timing shifts and jitter.
The Differential QPSK Demodulator is then used to map
the complex signal samples back into information dibits. The
Viterbi Decoder decodes the data, using codes that match the
convolutional coder at the transmitter. The Deframer correlates
the fixed 64-bit frame access code inserted at the transmitter
with the data, in order to identify the start of a frame. It
extracts the data from the frames and performs checksum
verification. The data is then passed to a VLC player running
on a separate laptop via UDP, which plays the received video
stream.

3) Radio Controller: The radio controllers work as fol-
lows. At the receiver side, the controller subscribes to events
holding the current BER and FER and implements a simple
state machine which changes the active coding configuration
depending on pre-defined BER/FER thresholds. When a new
coding scheme is selected, the transmitter is informed through
a feedback channel. In this example we implemented the
feedback channel using Ethernet for simplicity, though this can
be done wirelessly. The transmitter controller reconfigures the
radio according to the information received on this feedback
channel.

Figure 9 shows simulated BER vs. SNR curves. The thresh-
olds for switching the coding scheme are chosen based on
these curves, so that the target BER is maintained.

The figure also illustrates an example adaptation sequence.
The system starts in the most robust coding state (¢ = 8) at
time t = fy. The controller monitors the BER output of the
Viterbi decoder at the receiver. The threshold for switching to
less robust coding is passed at time ¢ = ¢, so it initiates a
parametric reconfiguration by setting the ¢ parameter of the
Encoder and Decoder blocks to 6 (step 1 in Fig. 9). At time
t = t1, the signal quality increased so that the BER is lower

466 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

MoC: SDF
[UsrpRx

C. proc. rng:»[Deframer]—»[UDP to VLC}

(“MoC: SDF A

< {RRC FiIterHCarrier SyncHTiming SyncHquskDemod]-> >
@RRC FilterHCarrier Sync})[Timing Sync],[DqpskDemod}[\/itecrb:i gecB
. . . Viterbi Dec.
@RRC FllterHCarner SyncHTlmlng SyncHquskDemodH c=8 }9
. J

Fig. 10. Adaptive coding receiver data plane synthesised for an FPGA
platform with one customisable processing region. A mode switch is mapped
to hardware reconfiguration.

than the threshold. The controller disables coding (step 2 in
Fig. 9). At time ¢ = t,, the channel conditions have worsened
considerably and the BER has risen above the threshold, so the
Encoder and Decoder are reconfigured to the constraint length
8 code (step 3 in Fig. 9). In this manner, the system continues
to use the most suitable type of coding for the current channel
conditions.

4) Model Synthesis: At this point in the design, the model
can be checked for correctness using the methods described
in Section III-D. The XML model description and the Control
Specification are given to the model checking tool, which
performs the correctness checks. Once successful, the Deci-
sion Engine for transmitter and receiver are implemented as
outlined above, and the Composer tool is used to synthesise
the designs for our FPGA-based platform running Iris.

In this example, the FPGA is configured to have only one
customisable processing region. The component library holds
efficient hardware implementations of the computational com-
plex components, i.e., the encoder, decoder, synchronisation,
modulation, demodulation, and filter components. The Com-
poser applies the model transformations given in Section III-E
and synthesises the data plane. The synthesised receiver is
shown in Fig. 10, the transmitter is synthesised similarly. It
further generates the required bitstreams for the FPGA and
a translation layer mapping the events and reconfiguration
commands from the controllers to hardware register read and
write operations and hardware reconfiguration commands.

The resulting configurations are ready to be executed on our
FPGA-based Iris platform. The radio designer did not have to
deal with low-level implementation details, the radio model
was checked for errors before synthesis, and the radio can be
executed on a real system.

5) Results: A throughput of 6.25Mbit/s with coding is
achievable if the radio front-end is integrated into hardware.
Since the USRP front-end is connected to the XUP board
via an Ethernet bridge through a PC, the performance at the
Framer/Deframer was limited to 0.5 Mbit/s.

In order to quantify the power benefits of adaptation, we
have measured the average power consumption of the three
receiver radio chain configurations (i.e., no coding and coding
with constraint lengths 6 and 8). Figure 11 shows the power
consumption when increasing the throughput for the complete
FPGA; it increases linearly with throughput. Additionally, the
graph shows the large impact constraint length has on power
consumption given the increased amount of FPGA resources

1.8 ,
—kconstraint length 8
16- - -O- constraint length 6 ||
’ * -x -no coding
T4l <75 = 0109 + 0.924 |
g 1.4 x
5] *" e
e L HO] = 0.066 + 0.827 1
o * o
L y = 0.0292 + 0.784
0.8F i
0 2 4 6 10 12

8
Throughput [Mbit/s]

Fig. 11. Measured power consumption with linear regression curves.

required. As we can see in the figure, at a throughput of
6 Mbit/s, the constraint length 8 implementation consumes
approximately 1.6 W. If the received SNR improves to the
point where a non-coding radio chain implementation can
provide the required BER, an adaptive reconfiguration can
reduce power consumption to under 1 W, a saving of 60 %.

This adaptive coding system was demonstrated at FCCM
2009 [10].

B. Extending the Radio With Spectrum Sensing

Extending the above radio to more complex systems is a
relatively easy task using the proposed design methods. We
need to add a sensing mode to the receiver, for searching for
the transmission frequency without prior knowledge.

1) Receiver: To achieve that, the receiver is modified to
include the USRP receive component and a single subsystem
at the top level. That subsystem contains two modes, one
for normal reception, containing the full receiver radio for
adaptive coding as described above, and another for sensing.
This sensing mode consists of a component to estimate the
power spectral density (PSD) and a detector component for
detecting the transmitter’s frequency.

2) Transmitter: The transmitter is only modified slightly.
The controller changes the transmit frequency in the UsrpTx
component randomly every 30 seconds to demonstrate the
sensing receiver functionality. Thus the transmitter model is
similar to Fig. 7.

3) Radio Controller: The controller at the transmitter is
unmodified from Section V-A. The controller at the receiver
subscribes to a LostSignal event published by the Deframer,
which is triggered when no frames are found. It also subscribes
to the CarrierFreq event published by the Detector component,
which holds the estimated transmit frequency. If the LostSignal
event is triggered, the controller switches to sensing mode,
and tries to locate the transmit frequency. Once found (the
CarrierFreq event is received), it reconfigures the frequency
in the UsrpRx component and switches back to receive mode.
During receive mode, the adaptive coding scheme is applied
as described above.

Figure 12 shows the receiver radio model.

4) Model Synthesis: The component library for the
Iris/FPGA target platform contains an efficient hardware im-
plementation of a PSD estimator component, while the de-
tector is available in software. Thus, Composer synthesises

LOTZE et al.: A MODEL-BASED APPROACH TO COGNITIVE RADIO DESIGN

Data Plane
MoC: SDF
_,[UsrpRx

) Subsys. J\

oC: SDF

|
|
o
o
f Q:'Ec' S Iselect lenable/ I'-j.:) | switch
;econ_ w'ui' Q! iconstr. idisable 'S i coding/
requency m|'-L|3| length icoding 1§ | sensing
RPN B A A RRE IEEERERE RSB Blosh g
Control Plane

(state machine, switches coding if BER/FER cross thresholds;
switches to sensing if LostSignal & to Rx with new CarrierFreq)

Fig. 12. Adaptive coding receiver with sensing mode. The Rx Subsystem is
the full radio shown in Fig. 8.

the system as shown in Fig. 13, applying the transformations
discussed in Section III-E. Again, only one customisable
processing region is used. A second subsystem running in
software is generated, to hold the software components at the
end of the radio chains.

This demonstrator was implemented on a different board,
the Xilinx ML507, featuring a newer Virtex-5 FPGA, showing
the portability of our design approach. No changes to the
model were neccessary to synthesise for this new board.

5) Results: The combined sensing and adaptive coding
demonstrator is able to follow frequency changes of the trans-
mitter with minimal interruption of the video stream. It adapts
its coding scheme to the current channel conditions, always
selecting the code with the lowest power consumption while
ensuring the BER is below the target. This demonstrator com-
bines software and hardware components, a mode-switching
radio controller, and uses FPGA partial reconfiguration, yet, it
was composed from a high-level platform-independent model
automatically.

This combined adaptive coding and sensing radio has been
demonstrated at SIGCOMM 2009 [36].

C. Summary

As shown by these two simple example applications, the
proposed model-based design technique is suitable for de-
veloping real cognitive radios. It can be used for FPGA-
based embedded systems, combining hardware and software
components, as well as for pure software platform. Extending
a radio is a simple task due to the re-usability of model
subsystems and automatic mapping to physical subsystems.

VI. CoNCLUSION

In this paper, we identified some major challenges faced
when using existing cognitive/software radio platforms for the
development of and experimentation with cognitive radios. We
have presented a novel approach to developing such radios,
based on a high-level radio model. The model describes radio
behaviour, including possible reconfigurations, independent of
the target platform. Correctness checks have been presented,
allowing error detection at design-time. It has been shown
that the model can be transformed to fit a variety of target
platforms.

467
MoC: SDF
{ UsrpRx C. proc. reg. Defr./Detect|
MoC: SDF MoC: SDF

Rx Rx
Rx :
C@_’DC PSD Estim. > < Detector >

Fig. 13. Synthesised adaptive coding receiver with sensing mode (data plane).
The model is transformed to map to one customisable processing subsystem
on the FPGA and another in software. The Rx systems are the same as shown
in Fig. 10, the Deframer/Detector subsystem is running in software.

Automatic tools take the high-level model and synthesise
a specific implementation for a chosen target platform. We
chose an FPGA-based port of the Iris software radio as
a demonstrator platform. An adaptive coding and sensing
cognitive radio was successfully developed using the proposed
techniques, underlining the applicability to real systems.

With this approach, radio developers do not require detailed
platform knowledge, the development process requires less
manual effort, and the design can be easily ported to other
target platforms. Hence, researchers are able to test their
algorithms in the real world with significantly reduced effort.
We believe that this contribution will drive cognitive radio
research forward significantly.

REFERENCES

[1] IEEE Standard Definitions and Concepts for Dynamic Spectrum Access:
Terminology Relating to Emerging Wireless Networks, System Function-
ality, and Spectrum Management, IEEE Std. 1900.1-2008, Sep. 2008.

[2] J. Mitola III, “Cognitive Radio: An Integrated Agent Architecture
for Software Defined Radio,” Ph.D. dissertation, Royal Institute of
Technology, Stockholm, Sweden, May 2000.

[3] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, 2005.

[4] R. W. Thomas, L. A. DaSilva, and A. B. MacKenzie, “Cognitive
networks,” in IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks (DySPAN), Nov. 2005, pp. 352—
360.

[5] Free Software Foundation, Inc. (2009) GNU Radio - the GNU software
radio. [Online]. Available: http://www.gnu.org/software/gnuradio/

[6] C.R. A. Gonzalez, C. B. Dietrich, S. Sayed, H. I. Volos, J. D. Gaeddert,
P. M. Robert, J. H. Reed, and F. E. Kragh, “Open-source SCA-based
core framework and rapid development tools enable software-defined
radio education and research,” IEEE Commun. Mag., vol. 47, no. 10,
pp. 48-55, Oct. 2009.

[7] Joint Tactical Radio System (JTRS) Joint Program Executive Office
(JPEO), “Software communications architecture specification,” JTRS
Standards, final, version 2.2.2, 15 May 2006. [Online]. Available:
http://jtrs.spawar.navy.mil/sca/downloads.asp?ID=2.2.2

[8] C. R. A. Gonzdlez, “Design and implementation of an efficient SCA
framework for software-defined radios,” M.Sc. thesis, Virginia Tech.,
2006.

[9] P. MacKenzie, “Software and reconfigurability for software radio sys-

tems,” Ph.D. dissertation, Trinity College Dublin, Ireland, 2004.

S. Fahmy, J. Lotze, J. Noguera, L. E. Doyle, and R. Esser, “Generic

software framework for adaptive applications on FPGAs,” in IEEE Sym-

posium on Field-Programmable Custom Computing Machines (FCCM),

Napa, CA, USA, Apr. 2009.

J. Lotze, S. A. Fahmy, J. Noguera, B. ()zgijl, L. E. Doyle, and

R. Esser, “Development framework for implementing FPGA-based

cognitive network nodes,” in IEEE Global Communications Conference

(GLOBECOM), Honolulu, Hawaii, USA, Dec. 2009.

P. D. Sutton, J. Lotze, H. Lahlou, S. A. Fahmy, K. E. Nolan, B. ()zgijl,

T. W. Rondeau, J. Noguera, and L. E. Doyle, “Iris - an architecture

for cognitive radio networking testbeds,” IEEE Commun. Mag., vol. 48,

no. 9, Sep. 2010.

[10]

[11]

[12]

468

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 2, FEBRUARY 2011

K. Amiri et al., “WARP, a unified wireless network testbed for education
and research,” in IEEE International Conference on Microelectronic
Systems Education (MSE), San Diego, CA, USA, 3—4 Jun. 2007.
(2009) WARP FPGA Board — Hardware Version 2.2. Mango
Communications, Inc. [Online]. Available: http://mangocomm.com/
products/boards/warp-fpga-board-v2

R. Sathappan, M. Dumas, L. Belanger, and M. Uhm, “New architecture
for development platform targeted to portable applications,” in SDR
Forum Technical Conference (SDR), Orlando, Florida, USA, 2006.

J. Jacob and M. Dumas, “CORBA for FPGA the missing link for SCA
radios,” Lyrtech, Quebec, Canada, white paper, Feb. 2007.

G. J. Minden et al., “KUAR: A flexibile software-defined radio develop-
ment platform,” in Symposium on New Frontiers in Dynamic Spectrum
Access Networks (DySPAN), Dublin, Ireland, 17-22 Apr. 2007.

Z. Miljanic, 1. Seskar, K. Le, and D. Raychaudhuri, “The WINLAB
network centric cognitive radio hardware platform — WiNC2R,” Mobile
Networks and Applications, vol. 13, no. 5, pp. 533-541, Oct. 2008.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity - the Ptolemy
approach,” Proc. IEEE, vol. 91, no. 1, pp. 127-144, Jan. 2003.
Simulink 7, The MathWorks, Inc., Sep. 2007, no. 9320v06.
[Online]. Available: http://www.mathworks.com/mason/tag/proxy.html?
dataid=9798&fileid=43815

D. Silage, Digital Communication Systems Using SystemVue. London,
UK: Charles River Media, Jan. 2006.

E. A. Lee, “Embedded software — an agenda for research,” University
of California at Berkely, UCB ERL Memorandum M99/63, Dec. 1999.
G. Kahn, “The semantics of a simple language for parallel pro-
gramming,” in Information Processing '74: Proceedings of the IFIP
Congress, New York, USA, 1974, pp. 471-475.

E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. IEEE,
vol. 83, no. 5, pp. 773-801, May 1995.

P. D. Sutton, B. Ozgul, K. E. Nolan, and L. E. Doyle, “Bandwidth-
adaptive waveforms for dynamic spectrum access networks,” in 3rd
IEEE Symposium on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN), 14-17 Oct. 2008, pp. 1-7.

E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235-1245, Sep. 1987.

— —, “Static scheduling of synchronous data flow programs for digital
signal processing,” IEEE Trans. Comput., vol. C-36, no. 1, pp. 24-35,
Jan. 1987.

J. Mitola IIT and G. Q. Maguire, Jr., “Cognitive radio: Making software
radios more personal,” IEEE Personal Commun., vol. 6, no. 4, pp. 13—
18, 1999.

A. He, K. K. Bae, T. R. Newman, J. Gaeddert, K. Kim, R. Menon,
L. Morales-Tirado, J. Neel, Y. Zhao, J. H. Reed, and W. H. Tranter, “A
survey of artificial intelligence for cognitive radios,” IEEE Trans. Veh.
Technol., vol. 59, no. 4, pp. 1578-1592, 2010.

C. A. Petri, “Communication with automata,” Reconnaisesance-
Intellegence Data Handling Branch, Rome Air Development Center,
New York, suppl. I to tech. rep. no. RADC-TR-65-377, Jan. 1966.

J. Zyren and W. McCoy, “Overview of the 3GPP long term evolution
physical layer,” Freescale Semiconductor, Inc., white paper, Jul. 2007.
J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX
— Understanding Broadband Wireless Networking, ser. Communications
Engineering and Emerging Technologies, T. S. Rappaport, Ed. New
Jersey, USA: Prentice Hall, 2007.

Xilinx University Program Virtex-II Pro Development System -—
Hardware Reference Manual, Xilinx, Inc., San Jose, CA, USA, 8 Mar.
2005, UG069 v1.0. [Online]. Available: http://www.xilinx.com/univ/
XUPV2P/Documentation/XUPV2P _ User_ Guide.pdf
ML505/ML506/ML507 Evaluation Platform: User Guide, Xilinx,
Inc., San Jose, CA, USA, 7 Oct. 2009, UG347 v3.1.1. [Online].
Available: http://www.xilinx.com/support/documentation/boards _and _
kits/ug347.pdf

Universal Software Radio Peripheral — The Foundation for Complete
Software Radio Systems, Ettus Research LLC, Mountain View,
California, USA, Nov. 2006. [Online]. Available: http://www.ettus.com/
downloads/usrp_ v4.pdf

[36] J. Lotze, S. A. Fahmy, L. E. Doyle, and J. Noguera, “An FPGA-based
autonomous adaptive radio,” in ACM SIGCOMM Conference, Barcelona,
Spain, Aug. 2009, demonstration paper.

Jorg Lotze received his Dipl-Ing. degree in Com-
puter Engineering from the Ilmenau University of
Technology, Germany in 2006. He is currently
in his final year as a PhD student with CTVR,
the Telecommunications Research Centre, at Trinity
College Dublin. He has been actively involved in
research and development of cognitive radio systems
since 2007. His work has addressed key challenges
in cognitive radio design and experimentation and
cognitive radio platform architectures.

Suhaib A. Fahmy received the MEng degree in In-
formation Systems Engineering and the PhD degree
in Reconfigurable Computing from Imperial College
London in 2003 and 2007 respectively. From 2007
to 2009, he was a Research Fellow at the University
of Dublin, Trinity College, and Visiting Research
Engineer at Xilinx Research Labs in Ireland. He
joined Nanyang Technological University as Assis-

- tant Professor in the School of Computer Engi-
Va ? neering in late 2009. His research interests include
] reconfigurable computing, high-level system design
and computational acceleration of complex algorithms.

Juanjo Noguera received his B.Sc. degree in Com-
puter Science from the Autonomous University of
Barcelona, Spain, in 1997, and his PhD degree in
Computer Science from the Technical University
of Catalonia, Barcelona, Spain, in 2005. He has
worked for the Spanish National Centre for Micro-
electronics, the Technical University of Catalonia,
and Hewlett-Packard Inkjet Commercial Division.
Since 2006, he has been with the Xilinx Research
Labs, Ireland. His interests include high-level sys-
tem design, reconfigurable architectures and next-
generation wireless communications.

Professor Linda E. Doyle is a member of faculty
in the School of Engineering, University of Dublin,
Trinity College, Ireland. She is currently the Director
of CTVR, the Telecommunications Research Centre,
a national research centre headquartered in Trinity
College and based in five other universities in Ire-
land. CTVR carries out industry-informed research
in the area of telecommunications and focuses both
on wireless and optical communication systems.
Prof. Doyle is responsible for the direction of the
CTVR as well as running a large research group
that is part of the centre, which focuses on cognitive radio, reconfigurable
networks, spectrum management and telecommunications and digital art.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

