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Abstract—Probability density functions (PDFs) have a wide
range of uses across an array of application domains. Since
computing the PDF of real-time data is typically expensive, var-
ious estimations have been devised that attempt to approximate
the real PDFs based on fitting data to an expected underlying
distribution. As we move to more adaptive systems, real-time
monitoring of signal statistics increases in importance. In this
paper, we present a technique that leverages the heterogeneous
resources on modern FPGAs to enable real time computation
of PDFs of sampled data at speeds of over 200 Msamples per
second. We detail a flexible architecture that can be used to
extract statistical information in real time while consuming a
moderate amount of area, allowing it to be incorporated into
existing FPGA-based applications.

I. INTRODUCTION

Information on the probability density function (PDF) of

sampled data has a wide range of uses across a variety of

application domains. A variety of techniques have been pro-

posed over the years [1], however computational complexity

often means these cannot be implemented in real time. The

preference is thus to rely on techniques that use a reduced

data set, attempting to fit to a predefined parametric model.

This can be inaccurate, especially if the PDF of the data is

unknown or changing.

In most references to applications of PDF estimation in the

literature, one-time statistics are computed on a block of data.

In image processing applications, for example, the statistics

are typically required for a single frame. In this paper, we are

more interested in facilitating real-time monitoring of signals

that may change over time. Specifically, adaptive systems

may need to monitor changes in certain environmental factors,

before making changes based on those statistics. An example

might be a cognitive radio that reacts to channel occupancy

statistics, or an adaptive networking node that may modify its

routing behaviour based on network queue length statistics. In

order for such applications to be feasible, we must be able to

compute PDFs in real-time on streaming data.

In this paper, we present a PDF calculation architecture that

can be integrated within FPGA-based applications, which is

both flexible and moderate in terms of area usage. The aim is

to allow designers of applications that can make use of PDF

estimation to leverage this capability within their hardware

designs. The primary focus is for adaptive applications, that

we feel are becoming more practical on FPGAs.

In Section II, PDF estimation is discussed along with exist-

ing hardware approaches. Section III introduces the proposed

architecture used for PDF calculations and how it has been

tailored for FPGA implementation. Section V discusses some

extensions to the architecture that allow it to compute more

complex functions. In Section IV we present synthesis results

and discuss accuracy issues. Finally, Section VI concludes by

discussing further development of this architecture.

II. RELATED WORK

PDF estimation techniques fall into two categories: paramet-

ric and non-parametric. [1] Parametric techniques try to fit a

known model to the data and deduce values for the model

parameters based on the data. Non-parametric techniques

use the samples themselves to construct the PDF. The most

common non-parametric technique is the use of a histogram,

which when normalised, gives the PDF. Given a good model,

parametric techniques can give more accurate results with less

data than a non-parametric model. However, the requirement

for a good model means that where the PDF’s nature is

unknown or changing, parametric approaches can result in

poor accuracy.

PDF estimation is of value in a number of different ap-

plications areas, including image processing [2], [3], machine

learning [4], computer security [5], and medical imaging [6]

among others.

Existing work on hardware architectures for PDF estimation

is minimal. In [7] a histogram of an image is constructed

for histogram equalisation. However, since this is done for

one image at a time, they process accumulation at the end of

histogram construction, during the blanking period between

frames in a video, using a sequential approach. This would

not be suitable for a constantly updating window. In [8], a

novel technique for constructing histograms is shown, but with

an application to median computation. In this paper, we use

a similar approach to construct the histogram, but tailored to

PDF calculation. In [3] a histogram is constructed within a

hardware architecture but using a sequential approach, again

on a per-image basis.

Elsewhere, in [9], a Parzen window PDF estimator is used as

an example application for their performance migration tool.

However it processes a single block of data loaded from a

host PC, and the performance comparison is made between
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single- and dual-core acceleration of a mostly sequential

implementation.

The architecture presented in this paper allows for high-

speed non-parametric PDF estimation based on the histogram

method. It is targeted at applications with changing PDFs

or where the model is not known in advance. The work in

this paper extends beyond simply constructing a histogram to

extracting a variety of statistical metrics in real time from

the histogram. We also describe how the architecture can

be adapted to kernel-based density estimation in Section V.

Kernel-based estimation can give more accurate results from

a reduced dataset.

III. PARALLEL PDF ARCHITECTURE

A. Outline

The architecture presented here accepts sampled data at its

input and computes the cumulative density function of that

data, which is stored internally. By normalising by the window

size, which can be changed to any power of 2, the resultant

information contained in the circuit represents the probability

density function. The desired output function of the PDF can

then be chosen as required for a specific application. It is

possible to compute p(x = a) (where x is a candidate sample

value and a is a given value), p(x > a), p(a < x < b) as well

as percentile calculations. These do not impact the complexity

of the architecture in any significant way, and the architecture

is built to enable selection of the required function at runtime.

B. Computing the PDF

In order to compute the PDF of sampled data, we are

required to keep a tally of the number of occurrences of

different input values. Doing this for all possible values would

result in a histogram. Normalising a histogram, by dividing by

the number of samples gives the PDF. In hardware, we are able

to compile a histogram of input data using the technique pre-

viously presented in [8]. This involves keeping an occurrence

counter for each possible input value and incrementing it when

that value is seen at the input.

A hardware architecture containing a set of counters, one

for each bin, and each enabled only when the corresponding

value occurs at the input, would suffice for this. The number

of bins impacts resource utilisation linearly in this scheme.

For median calculation, we required a bin to represent each

possible input value. For PDF estimation, the number of bins

is typically less, since it is the shape that is of most interest,

and a reduced number of bins leads to a “smoother” PDF.

Analytical techniques described in [1] can be used to find the

number of bins that would provide sufficient accuracy given

some assumptions about the input data.

If we calculate that 2l histogram bins is sufficient, we

simply use the l most significant bits of the input samples to

address the histogram counters. This results in an architecture

similar to the one shown in Fig. 1, where the bin en[] signal

determines whether a specific bin should be incremented.

Since each bin can be addressed in parallel, this architecture

could function on a continuous stream of data.
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Fig. 1. Basic histogram bin structure.
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Fig. 2. Comparison of probability calculation from histogram and cumulative
histogram.

While the circuit described above would give the PDF of the

input samples, extracting meaningful statistics from this PDF

involves further calculations. A p(x = a) calculation would

be straightforward, by looking up the count value at index a.

However, more useful statistics can be gained by using the

cumulative distribution function (CDF). The CDF of a set of

data is simply an accumulation of the PDF values at each

bin. Hence at index a, the count value would be equal to

the sum of PDF bin values for all indexes from 0 to a. The

CDF is, by definition, a monotonic function. Fig. 2 shows

how using a PDF, anything other than the exact probability

for a single index is represented by an area. Computing this in

real time would require summation of all the necessary bins,

which would be an expensive operation. With a cumulative

histogram, a single lookup gives the probability for a range

of values. To constrain the range on both sides, would only

require one more lookup and the probability would be the

difference between the two.

However, the CDF allows for more interesting statistics to

be extracted in real time. For example p(x < a) is now simply



the bin value at index a. Similarly p(a < x < b) would be the

bin value at index b minus the bin value at index a. We can also

extract percentiles, that is the value of c such that p(x < c)
equals some given value, as will be discussed shortly.

To compute the cumulative histogram in real time, the

architecture must be able to update all the necessary bins for

each input sample in a single step. An input sample of value x
should increment the corresponding bin with index x and all

subsequent bins. This could be achieved by using a comparator

as the enable signal for each bin counter. If the bin index is

greater than or equal to the input sample, it should enable the

incrementation, otherwise not. However, for an architecture

with hundreds of bins, this would be costly in hardware terms.

Another approach previously exploited in [8] involves the

use of a memory to enable the corresponding bins. This echoes

somewhat the now defunct microprogrammed control digital

design technique. As each input sample arrives, it is used

to address a memory with pre-stored access patterns. The

corresponding data is used to enable the necessary bins. For

this case, the contents of the memory are very simple as shown

in Table I. The embedded memory blocks on modern devices

mean this technique is highly amenable to implementation on

FPGAs. Furthermore, the sparse layout of these memories, and

the fact that large memories are stitched together from smaller

ones means routing is not hampered by this centralised control

module.

TABLE I
ACCESS PATTERN MEMORY CONTENTS.

Address Contents[0:255]
0 0xFFFF· · · FFFF
1 0x7FFF· · · FFFF
2 0x3FFF· · · FFFF
2 0x1FFF· · · FFFF
4 0x0FFF· · · FFFF
5 0x07FF· · · FFFF

.

.

.
.
.
.

253 0x0000· · · 0007
254 0x0000· · · 0003
255 0x0000· · · 0001

It would be fair to require the histogram to be calculated

over a fixed-length sliding window. This would allow for

continuous monitoring of the required data in real time. In

order to allow this, a FIFO buffer of length equal to the

window must be instantiated. This buffer keeps track of the

samples in the window. As samples stream through, the oldest

samples emerge at the other end of the FIFO and can be

removed from the histogram. We only need to store the l
most significant bits of each input sample since that is the

only portion used to address the bins.

To remove an old sample from the histogram, its cor-

responding bins must be decremented. By using the mem-

ory approach described above, this becomes straightforward.

Embedded Block RAMs on Xilinx FPGAs have dual-port

capability; this allows two addresses to be read in the same

clock cycle. By extracting the access patterns for the new and

oldest sample, it is possible to update the histogram in a single

step by considering which bins need to be incremented, which

should be decremented and which should be left as is. Further

detail on this particular optimisation is given in [10]. The input

to each bin is now not a count enable but rather a signal that

either increments, decrements or maintains the count value.

In order to normalise the histogram, to compute the PDF, we

need to divide the count values by the window length. Since

division by arbitrary amounts is expensive in hardware, we

restrict the window length to be a power of 2. Hence, we can

accommodate window lengths such as 8K, 16K, 32K, 64K
and so on. Then normalisation is simply a case of shifting the

binary count value to the right by the corresponding number

of bits, n, where 2n is the window size. So for a window

size of 8K the count value of a particular bin is shifted right

by 13 bits. This is equivalent to shifting the location of the

binary point up by 13 bits, which is preferred since it maintains

precision. Rather than lose any precision in the counter itself,

all scaling is only done at the output of the circuit.

C. Computing Centiles

Centiles are a useful tool in statistical analysis. For a

dynamic system, centiles allow for quality of service oriented

decisions. For example, in a networking context, a router might

decide that 80% of packets should wait in a queue for less than

a given threshold of time. In a cognitive radio, we might decide

that a frequency channel is vacant if 95% of the activity in that

channel falls below a certain noise margin. Given a cumulative

histogram, we can compute these percentiles in real time using

a novel technique.

A value at the output of a particular bin counter in a

cumulative histogram tells us that the corresponding number

of occurrences have values that are less than or equal to that

bin’s index. Hence, if we have a value of 100 at bin index b,
that means there have been 100 occurrences of samples with

values up to b. Given a fixed window size of 1000, that would

tell us that value b is the 10th percentile. More generally, if

we want the nth percentile, we need to find the index whose

count value is equal to or exceeds N/n where N is the PDF

window size.

To do this in a hardware architecture, we can use a priority

encoder combined with comparators. A priority encoder finds

the highest index occurrence of a ‘1’ in a binary word. If we

know the value we are looking for, a bank of comparators, one

for each bin counter, can be used to compare the bin counts

to the required value. This results in a series of zeros for the

initial bins, followed by ones for the bin corresponding to the

first count to exceed this value, and all subsequent bins. The

priority encoder gives the index of the first bin to output a

one.

Constructing a priority encoder for hundreds of bits is not

straightforward if speed is important. However, a technique in

[11] shows how it is possible to pipeline many small priority

encoders together into a larger one. Fig. 3 shows how 5 4-

bit priority encoders can be combined into a 16-bit priority

encoder. Similarly, 9 8-bit priority encoders can be combined
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Fig. 3. A 16-bit priority encoder constructed from 5 4-bit priority encoders.
The first stage computes the least significant bits of the output while the second
computes the most significant bits and selects the required output from the
first stage. The output is a concatenation of the two.

into a 64-bit priority encoder. By pipelining between each

stage, only a few clock cycles of latency are added, while

we are able to clock the circuit significantly faster.

D. Architecture Design

Fig. 4 shows the overall architecture of the system. Samples

enter the system and are fed into a FIFO, the output position

of which can be set by the fifo length signal. This offers fixed

positions based on how the FIFO is constructed, but is always

a power of 2. The output of the FIFO represents the oldest

sample emerging from the sampling window. Together with

the new sample, they are used to address the two ports of the

dual port access pattern memory. The output of this memory

tells each bin whether to increment, decrement or maintain the

existing value. The outputs of all the bins (bincount[0:N-1])

are then passed through to the next stage, where statistics can

be extracted.

Two types of statistic calculation are facilitated in this

architecture and two of each unit are shown. The first gives a

probability range output such as p(x < a). The prindex signal

is set to the required value of a and the output represents

p(x < a). For p(x > a), the value is simply subtracted from

the window size. For p(a < x < b), the two pr out values

are subtracted from each other. Recall that these counts must

be normalised, and hence the position of the binary point is

inferred to be n from the left for a window size of N = 2n.

The second type of calculation is the centile. We use

the method described in Section III-C to calculate the input

value at a given required centile. Since the counters store the

histogram counts for all items in the window, the input to the

centile calculation, centval, must be given as a proportion of

the window size, rather than a raw percentile (in the range of

0 to 100). The Comp block compares the count values of all

the bins, in parallel, to the required centile value returning a

binary one for each bin where the count exceeds the required

value. The priority encoder then determines the position of

this crossing, giving the index for the required centile. The

outputs can be used for monitoring the centiles themselves or

inter-centile range, simply by tracking the difference between

two centiles.

The architecture shown includes two of each calculation

type, however this can be modified based on the application

requirements. Further compositions are possible since the

histogram data is all stored within the bin counters.

IV. RESULTS

The above architecture was implemented using VHDL on a

Xilinx Virtex-4 XC4VLX80. We selected a maximum config-

urable window size of 128K samples and set the maximum

number of bins to 256. We used only the standard bin access

pattern and allow for two direct probability and two percentile

calculations in parallel, as in Fig 4.

For the FIFO, we used Xilinx embedded memory cores.

Since we only need access to specific points within the FIFO

queue, FIFOs of length 8K, 8K, 16K, 32K, and 64K were

chained together, allowing for window sizes of 8K, 16K, 32K,

64K and 128K, while maintaining maximum speed. For the

priority encoder, the technique detailed in Section III-C was

used to build a 256-bit module using four 64-bit and one 4-

bit priority encoders. The 64-bit priority encoders are created

using nine 8-bit priority encoders. For the access pattern

memory, a standard Block RAM module in CoreGen was used.

It stitches together 8 Block RAMs to create the 256× 256-bit

memory.

For the parameters given above, we obtained the area results

shown in Table II. The architecture comfortably achieved a

200MHz clock speed.

TABLE II
FPGA RESOURCE UTILISATION.

Module LUT/FF Pairs BlockRAMs
Access Memory 100 8
Window FIFO 350 64
Centile Unit (ea.) 620 0
Full System 11,350 76
Available 35,840 200

The area usage is dominated by the histogram circuitry,

which in this case consists of 256 14-bit counters and associ-

ated control circuitry for histogram updating. The BlockRAM

usage is primarily due to the FIFO. If smaller windows

are required, this usage is reduced. We believe the area

consumption, while not completely insignificant is sufficiently

compact, at around 30% of the chosen device, for use within

larger systems. Furthermore, optimisations can be made to

reduce area usage, by reducing the number of bins for the

histogram, reducing percentile calculations, or reducing the

reconfigurability of the window size.
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Fig. 4. Complete PDF estimator architecture.

V. ARCHITECTURE EXTENSIONS

The architecture presented thus far computes the histogram

and maintains the real-time statistics over the sliding window.

The structure of the circuit enables some interesting modifi-

cations that we shall briefly mention here, and which require

further investigation.

Using a memory to control the access pattern to the bins for

updating the histogram serves as a level of indirection between

the samples and bin indexes. Hence, alternative patterns can

change the way the input sample values are mapped to the

histogram bins, allowing us to analyse data in a non-uniform

manner.

It is also possible to model uncertainty in input accuracy

by spreading the effect of an input sample into adjacent bins.

This mirrors Kernel-based PDF estimation. To enable this,

each sample must be able to address the set of bins required

for its kernel. Instead of binary increment/decrement of the

corresponding bins, the circuit could be modified to allow

to addition/subtraction using kernel-based values stored in a

larger memory.

More interestingly, in an adaptive system, it would be

possible to change the histogram access pattern at runtime

based on existing statistics. For example, interquartile range

could determine that the centre of the PDF needs to be

extended, and an appropriate access pattern could be loaded

at runtime.

VI. CONCLUSION

We have shown a novel architecture for real time computa-

tion of PDF estimates based on the histogram method. It makes

extensive use of FPGA resources to parallelise the algorithm.

We showed how a cumulative histogram can be constructed

in parallel, how statistical properties can be extracted in real-

time, and how priority encoders can be used to extract further

statistics. We also detailed a technique for building wide

priority encoders with high performance. We showed how

this architecture could be extended to more advanced PDF

calculation methods, and presented results for a single basic

configuration.

Future work involves implementing the extensions proposed

in this paper and more architectural exploration as well as an

analysis of the PDF parameters for various applications.
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