
IEEE Communications Magazine • September 2010114 0163-6804/10/$25.00 © 2010 IEEE

This material is based on
work supported by Science
Foundation Ireland under
Grant no. 03/CE3/I405 as
part of the Centre for
Telecommunications
Value-Chain Research
(CTVR) at the University
of Dublin, Trinity College,
Ireland, and by Enterprise
Ireland under its Innova-
tion Partnership scheme,
project IP20060367.

INTRODUCTION

Over the past five years, the Iris architecture has
formed the basis for demonstration systems
addressing key challenges in dynamic spectrum
access and cognitive radio networking. These
have included:
• An opportunistic dynamic spectrum access

network using novel physical (PHY)-layer
signaling techniques for network ren-
dezvous and coordination

• A TV white space network using orthogonal
frequency-division multiplexing (OFDM)-
based waveforms in licensed test spectrum
awarded by Comreg, the Irish communica-
tions regulator

• A reconfigurable field programmable gate
array (FPGA)-based system employing
sensing and using a single carrier waveform
with adaptive coding

• A real-time cyclostationary analyzer imple-
mented using the Cell Broadband Engine
(CellBE) platform

• A demonstration of coexistence between
reconfigurable non-contiguous OFDM-
based and co-channel single-carrier wave-
forms.
These systems have served to verify theory-

based research and have been demonstrated at a
number of key international conferences on cog-
nitive radio and reconfigurable radio systems. In
this article we provide an overview of the archi-
tecture and take a closer look at examples in
which the unique features of Iris have been
exploited to realize highly reconfigurable radio
networks.

Modern radio communication standards and
protocols feature increasing flexibility and recon-
figurability as designers strive to use the
resources available in the most efficient manner
possible. From the self-organization and coexis-
tence capabilities required by Third Generation
Partnership Project Long Term Evolution (3GPP
LTE) femtocells to the dynamic spectrum access
of emerging cognitive radio standards such as
IEEE 802.22, the ability of network nodes to
examine the operating environment and recon-
figure accordingly is becoming more and more
important.

With increasing system flexibility and automa-
tion come the challenges of interference mitiga-
tion and coexistence both within a single
homogeneous network and between heteroge-
neous networks. These are challenges that can-
not be overcome at design time alone, so there
is a need for testbeds to play a greater role in
the development, testing, and verification of
these systems.

Through real-world experimentation, we can
develop reconfigurable network designs to
ensure their stability and verify that they do not
cause harmful interference to other spectrum
users. This, in turn, informs regulators of the
practical limitations of such systems, promoting
the use of fair and efficient spectrum manage-
ment regimes.

The following sections provide an overview of
Iris, a software architecture designed from the

ABSTRACT

Iris is a software architecture for building
highly reconfigurable radio networks. It has
formed the basis for a wide range of dynamic
spectrum access and cognitive radio demonstra-
tion systems presented at a number of interna-
tional conferences between 2007 and 2010. These
systems have been developed using heteroge-
neous processing platforms including general-
purpose processors, field-programmable gate
arrays and the Cell Broadband Engine. Focusing
on runtime reconfiguration, Iris offers support
for all layers of the network stack and provides a
platform for the development of not only recon-
figurable point-to-point radio links but complete
networks of cognitive radios. This article pro-
vides an overview of Iris, presenting the unique
features of the architecture and illustrating how
it can be used to develop a cognitive radio
testbed.

COGNITIVE RADIO NETWORKS

Paul D. Sutton, Jörg Lotze, and Hicham Lahlou, Trinity College Dublin

Suhaib A. Fahmy, Nanyang Technological University

Keith E. Nolan and Barıs, Özgül, Trinity College Dublin

Thomas W. Rondeau, IDA/CCR

Juanjo Noguera, Xilinx Research Labs

Linda E. Doyle, Trinity College Dublin

Iris: An Architecture for 
Cognitive Radio Networking Testbeds

SUTTON LAYOUT  8/23/10  4:34 PM  Page 114



IEEE Communications Magazine • September 2010 115

ground up for the implementation of runtime
reconfigurable radio network testbeds. Key fea-
tures of the Iris architecture include:
• Full support for runtime reconfiguration of

a radio
• Support for all layers of the network stack,

not just the PHY layer
• A well defined interface to controllers, deci-

sion making processes that reconfigure the
radio in response to observations of the
environment and the radio itself

• Support for advanced processing platforms
including FPGAs and the CellBE.

• Portable C++ for multiple operating sys-
tems and CPU architectures

THE IRIS ARCHITECTURE:
RECONFIGURABLE RADIO

A key motivation for software radio is the flexi-
bility afforded by general-purpose processing
platforms. When implemented in software, any
part of the radio becomes dynamically reconfig-
urable. With the addition of a software radio
controller, this reconfigurability can be har-

nessed to enable concepts such as dynamic spec-
trum access and cognitive radio networks. In
designing the Iris software radio architecture,
the fundamental design goal was thus to maxi-
mize the reconfigurability of the system. The fol-
lowing sections present the mechanisms provided
to realize this flexibility.

CORE ARCHITECTURE
Iris was originally designed and implemented in
2004 [1]. In 2008 the architecture was completely
redesigned in order to provide increased flexibil-
ity, support higher layers of the network stack,
and leverage the parallel processing capabilities
of emerging processor platforms. As in software
radio architectures such as GNU Radio [2] and
the Software Communication Architecture
(SCA) [3], Iris is designed to be component-
based. Discrete signal processing functions such
as a digital filter or modulator are implemented
as components with generic interfaces for life-
cycle control, data passing, and reconfiguration.
These components are linked together to build
radio transmit and receive chains, which are in
turn connected to higher layers of the network
stack to create the complete network node. In

Figure 1. Key elements of the Iris architecture.

XML
Parser

Reconfiguration
Manager

Radio
representation

XML
configuration

Reconfiguration
set

Component
repository

Reconfiguration

Controller Component

EventData

Controller Manager

Engine manager

Component
manager

Engine Engine

System

IRIS 2.0 interface

XML

XML

Component
manager

When implemented

in software, any 

part of the radio

becomes dynamically

reconfigurable. With

the addition of a

software radio con-

troller, this reconfig-

urability can be

harnessed to enable

concepts such as

dynamic spectrum

access and cognitive

radio networks.

SUTTON LAYOUT  8/23/10  4:34 PM  Page 115



IEEE Communications Magazine • September 2010116

Iris these structures of components are repre-
sented using Extensible Markup Language
(XML). XML has the advantage of being
human-readable while unambiguously capturing
the complex flow graph structures that can be
supported by Iris. In addition, XML allows us to
use a simple interface for external reconfigura-
tion of a running radio.

In building demonstration systems using the
first version of Iris (v1.0), a number of key
lessons were learned, which motivated the
redesign of the system in 2008. Among these
lessons was the need for flexibility in data pass-
ing mechanisms to support a high degree of
component reconfiguration. Reconfiguration of
a component can often change the rate at which
that component consumes and produces data.
As these dynamic rate changes may not be pre-
dicted, they must be supported by the underlying
architecture. This flexibility was a key design
goal for Iris 2.0. A second lesson was that no sin-
gle mechanism for data passing, component exe-
cution, and reconfiguration is sufficient to
support all parts of a reconfigurable network
node. This lesson prompted the introduction of
multiple Iris engines. Iris engines define a partic-
ular domain within which components can exe-
cute, and a single network node design may
consist of more than one type of engine. Differ-
ent engines support different mechanisms for
data passing, execution, and reconfiguration,
providing a high degree of flexibility for the sys-
tem designer. Engines are key to supporting
higher layers of the network stack in Iris, lever-
aging emerging processing platforms and making
the Iris core architecture modular and extensi-
ble. The next section provides more detail about
the Iris engines. In designing Iris 2.0, many of
the weaknesses of Iris 1.0 were addressed; how-
ever, the key strengths of the architecture were
preserved. These strengths include the focus on
reconfigurability and the modular component-
based design.

Both the Iris runtime system and the Iris
components are implemented completely in
portable C++, simplifying code management,
permitting straightforward debugging of a run-
ning radio, and supporting cross-platform devel-
opment. Figure 1 illustrates the principal
elements that constitute the Iris architecture.
These are examined in more detail in the follow-
ing sections.

THE KEY DESIGN GOAL OF IRIS:
RECONFIGURATION

In contrast with software architectures such as
GNU Radio and the SCA, Iris is designed specif-
ically to support maximum reconfigurability
while the radio is running. This permits a net-
work node to carry out reconfigurations seam-
lessly in response to observed changes in the
operating environment. This reconfigurability is
realized through a number of mechanisms that
were built into the Iris architecture. The first of
these is the component parameter. When imple-
menting an Iris component, the designer can
choose to expose a number of parameters. While
the radio is running, these parameters can be
dynamically reconfigured to adjust the operation

of the component. For example, an OFDM mod-
ulator may expose a parameter that controls the
length of cyclic prefix used on modulated sym-
bols. Both the IEEE 802.16e [4], and the 3GPP
LTE [5] standards use this approach to adjust
the robustness of modulated symbols to multi-
path channel delay. In Fig. 1 the reconfiguration
of component parameters is illustrated by a
dashed and dotted line.

Another powerful way in which component
parameters can be used is to implement dataflow
switching. A switch component can be used to
direct the flow of data in the system to one of
two or more signal processing branches. A
parameter exposed on the component specifies
the active output port to which data is written,
and thus the active signal processing branch.
This approach can be used, for example, in a
receiver with independent receive chains for
demodulation, and for signal detection and clas-
sification. When searching for a signal of inter-
est, the flow of data is directed to the processing
chain for signal detection and classification.
When a signal is detected and classified, the
switch component is reconfigured to direct the
flow of data to the demodulation chain for data
extraction.

In addition to the mechanisms provided to
support parametric and structural reconfigura-
tion, the Iris architecture provides specific sup-
port for the triggers which determine when these
reconfigurations must take place. The first type
of trigger that can occur within a radio is internal
and typically takes place in response to a change
detected by one of the radio components. Such a
trigger could be used, for example, by a digital
television (DTV) or wireless microphone signal
detection component within an IEEE 802.22 sys-
tem to prompt reconfiguration of the network
and avoid the creation of harmful interference.
In order to support such a trigger, Iris provides
support for component events, illustrated by a
dashed line in Fig. 1. These events are specified
by the component designer and may be triggered
by the component at any time.

The elements of the Iris architecture with
responsibility for listening for and responding to
these events are the controllers. Controllers have
a global view of the running radio and are capa-
ble of reconfiguring all aspects of it in response
to component events. The Controller Manager is
illustrated in Fig. 1, and is responsible for load-
ing and managing the life cycle of controllers
within Iris. In addition to reconfiguring compo-
nent parameters, controllers can adjust the struc-
ture of a running radio by inserting and removing
components. Like components, controllers are
implemented in portable C++ and are loaded
into a radio according to the XML configuration
file. A key advantage of using controllers in this
way is the avoidance of inter-component depen-
dencies. By ensuring that components remain
independent of one another, maximum reusabili-
ty can be achieved. Controllers may consist of
simple reconfiguration responses to predefined
events or they may be much more complex enti-
ties, listening for multiple events, monitoring the
state of the overall radio, reconfiguring many
different aspects of it when necessary, and learn-
ing over time. In this way a controller can be

A switch component

can be used to direct

the flow of data in

the system to one of

two or more signal

processing branches.

A parameter

exposed on the 

component specifies

the active output

port to which data is

written, and thus the

active signal 

processing branch.

SUTTON LAYOUT  8/23/10  4:34 PM  Page 116



IEEE Communications Magazine • September 2010 117

used to implement a cognitive engine which
drives the operation of the entire radio.

As well as reconfiguring in response to inter-
nal triggers, the Iris architecture also provides
support for external reconfiguration triggers. These
external triggers may come, for example, from a
user interface. Through a simple C-based appli-
cation programming interface (API), new XML
configuration documents can be passed to the
system. These are parsed by an XML Parser to
produce a radio representation, a data model of
the radio. This representation is then examined
by a Reconfiguration Manager and used to gener-
ate a reconfiguration set. This set of reconfigura-
tion steps is enacted to reconfigure the running
radio. Figure 1 illustrates both the XML Parser
and the Reconfiguration Manager.

Table 1 compares the Iris architecture with
two other software radio architectures: GNU
Radio and Open Source SCA
Implementation::Embedded (OSSIE) [6], an open
source implementation of the SCA. All three
architectures are implemented in C++, although
GNU Radio uses Python for high-level construc-
tion and management of signal processing
chains. Iris provides full support for runtime
reconfiguration, while within GNU Radio run-
time reconfiguration is possible by pausing an
executing chain, reconfiguring, and resuming. As
the SCA is designed for SDR, rather than cogni-
tive radio networks, OSSIE does not support
runtime reconfiguration. Iris is alone in provid-
ing support for a network stack within the archi-
tecture. Both Iris and OSSIE provide support
for embedded systems, digital signal processors
(DSPs) in the case of OSSIE and FPGAs in the
case of Iris. GNU Radio is currently being port-
ed to the Texas Instruments Open Multimedia
Application Platform (OMAP) embedded pro-
cessor. All three platforms use a component-
based architecture.

IRIS ENGINES
One of the motivations behind the design of the
Iris architecture was to move from experiment-
ing with simple point-to-point links toward larg-
er networks of cognitive radio nodes. The
support provided for not just the PHY layer but
also higher layers of the network stack is some-
thing that differentiates Iris from other architec-
tures such as GNU Radio and the SCA.

By examining the constituent parts of a node
within a cognitive network, we can identify a
number of domains, each with different require-

ments for reconfiguration, datapassing, and exe-
cution. Implementing an architecture that caters
for just one of those domains will lead to
reduced efficiency and greater development
challenges. Within the Iris architecture, the con-
cept of a modular domain engine is used. The
Iris engine encapsulates one or more compo-
nents of the overall data flow graph of the node
and defines the datapassing, execution, and
reconfiguration semantics for those components.
A radio implemented in Iris may consist of one
or more of these engines.

We define three domains within a cognitive
network node and provide an engine for each.
These domains are the scheduled PHY, the flex-
ible PHY, and the network stack.

SCHEDULED PHY ENGINE
Components within the scheduled PHY domain
typically lie close to the digital/analog interface,
operate at high sample rates, and are not recon-
figured on a regular basis. For these compo-
nents, a fixed relationship between the rates of
data consumed and produced can often be estab-
lished. Data flow is generally unidirectional, and
components typically operate on all input data
samples. Examples of components which might
operate within the scheduled PHY domain are
fixed filter or interpolation components. Within
this domain, an engine which supports highly
efficient runtime operation and a low degree of
reconfiguration is required.

The scheduled PHY (sPHY) engine of the
Iris architecture implements a synchronous data
flow (SDF) [7] model of computation (MoC).
SDF MoCs are characterized by the static sam-
ple rates that exist on each port of components
within the flow graph. This knowledge allows a
thorough analysis of the graph at design time.
The model can determine the required buffer
sizes for each link, and the static and efficient
execution schedules. It can also guarantee dead-
lock-free operation. The SDF MoC provides the
most efficient execution for components imple-
menting static signal processing functions that
have fixed input and output data rates. Recon-
figuration of an SDF graph at runtime is possi-
ble; however, it may require recalculation of the
execution schedule and buffer sizes, which may
incur significant overhead.

As components in the scheduled PHY
domain typically operate on all input data sam-
ples, data passing is implemented using memory
buffers at each component port. Components
read data from the buffer at an input port, oper-

Table 1. Software radio architecture comparison.

Language Runtime
reconfiguration

Network
stack support

Embedded
systems support

Component-based
architecture

Iris C++ • • • •

GNU Radio C++, Python ° × ° •

OSSIE C++ × × • •

• : Fully supported            ° : Partly supported              × : Not supported

As components in

the scheduled PHY

domain typically

operate on all input

data samples, data

passing is 

implemented using

memory buffers at

each component

port. Components

read data from the

buffer at an input

port, operate on it,

and write it to the

buffer at one or

more output ports.

SUTTON LAYOUT  8/23/10  4:34 PM  Page 117



IEEE Communications Magazine • September 2010118

ate on it, and write it to the buffer at one or
more output ports.

FLEXIBLE PHY ENGINE
The flexible PHY domain encapsulates the high-
ly reconfigurable components that provide the
key flexibility of the PHY layer of the node.
These components typically exhibit no fixed rela-
tionship between input and output data rates. As
with components in the scheduled PHY domain,
data flow is generally unidirectional and opera-
tions are carried out on all input data elements.
A reconfigurable OFDM demodulation compo-
nent might operate within the flexible PHY
domain, for example.

The flexible PHY (fPHY) engine within the
Iris architecture implements a model of compu-
tation based on data flow process networks
(PNs) [8]. The PN MoC supports the greatest
degree of data flow flexibility. In a PN MoC all
components are processes that execute asyn-
chronously. They read their inputs by blocking
reads on the input ports and write to the output
ports using non-blocking write operations. The
only permitted way for processes to communi-
cate is through input and output links. This
ensures deterministic behavior. There are no
restrictions on when processes output data and
how much data they output.

Implementation of the fPHY engine using a
straightforward PN MoC would involve assigning
a single thread of execution to each component.
One disadvantage of this approach, however, is
the overhead incurred as a result of thread con-
text switches in the case where many compo-
nents execute in parallel on a general-purpose
processor (GPP) platform with a low number of
processor cores. In order to avoid this overhead
and achieve tighter control over the number of
executing threads in a given radio, a different
approach was adopted. Components that execute
in an fPHY engine operate according to a PN
MoC. However, each fPHY engine contains a
single thread of execution, and within that engine
a PN MoC is emulated by that single thread.
Parallel execution of components is achieved
through use of multiple fPHY engines. Thus,
given a chain of three components, one, two, or
three parallel threads of execution can be
employed through use of one, two, or three
fPHY engines. In this way, the fPHY engine
design leverages the flexibility of the PN MoC
while providing the radio designer with tight
control over the number of executing threads in
the radio. While the flexible PHY engine sup-
ports significant component flexibility, the asso-
ciated dynamic allocation of computing and
memory resources can incur overhead at run-
time.

As in the sPHY engine, data passing in the
flexible PHY engine is implemented using data
buffers for each input and output port.

NETWORK STACK ENGINE
A limitation associated with existing software
architectures for reconfigurable radio is the
focus on the PHY layer and lack of support for
higher layers in the network stack such as the
media access control (MAC) and network
(NET). One of the key design goals in redesign-

ing the Iris architecture was to build in this sup-
port for higher layers, while providing the same
support for runtime reconfiguration as in the
PHY. This is achieved in Iris 2.0 by the network
stack engine.

The network stack domain is characterized by
a bidirectional flow of data through components.
These components are often highly reconfig-
urable and capable of spontaneously generating
data which flows through the node. Rather than
operating on the individual data elements in a
block, components in the network stack domain
typically operate on packets of data, and add or
remove headers and footers to these packets. A
component implementing a Time-Division Mul-
tiple Access (TDMA) MAC would operate in
the network stack domain for example.

Like the fPHY engine, the Iris network stack
engine implements an MoC based on PNs. This
MoC provides the flexibility needed for runtime
reconfiguration of components in this domain.
However, in contrast to the sPHY and fPHY
engines, data passing is not implemented using
input and output buffers. Instead, a block of
data within the network stack engine remains in
the same memory buffer as it passes through a
component. Pointers to these memory buffers
are passed between components. As compo-
nents in this domain typically operate on pack-
ets of data, this approach provides greater
efficiency.

The network stack engine supports the cre-
ation of cognitive radio networks through imple-
mentation of MAC and NET protocol layers. A
number of additional Iris features may be used
in such implementations. One of these features
is the metadata associated with each block of
signal data that passes through an Iris radio.
This metadata can, for example, include timing
information provided from an RF front-end that
supports the VITA Radio Transport (VRT) pro-
tocol. Such timing information can be used in
the implementation of a TDMA MAC layer
implementation.

All engines within the Iris architecture imple-
ment a common interface for data passing,
reconfiguration, events, and life cycle manage-
ment. This common engine interface ensures
that all engine types can be handled in the same
manner by the overall Iris system. One advan-
tage of this approach is the ability to implement
controllers that are independent of engine type.
A single controller can for example reconfigure
a component in a network stack engine in
response to an event triggered by a component
in an fPHY engine. A further advantage of the
common engine interface is the ability to extend
the architecture through the addition of new Iris
engines in the future if required.

ADVANCED PROCESSING PLATFORMS
Iris is designed to run on a wide variety of gen-
eral-purpose platforms, ranging from high-per-
formance multicore machines to embedded
systems. All code is written in portable C++
and can be compiled for the Windows, Linux,
and Mac OS X operating systems. Supported
and tested CPU architectures include x86 (32-
and 64-bit), PowerPC, and ARM. However, real-

As with components

in the scheduled

PHY domain, data

flow is generally 

unidirectional and

operations are 

carried out on all

input data elements.

A reconfigurable

OFDM demodulation

component might

operate within the

flexible PHY domain

for example.

SUTTON LAYOUT  8/23/10  4:34 PM  Page 118



IEEE Communications Magazine • September 2010 119

istic cognitive radio systems often require dedi-
cated hardware or specialized processors to
achieve the high performance goals. This section
describes how such systems are supported within
Iris.

Dedicated hardware (e.g., FPGAs), or spe-
cialized processors (e.g., DSPs or the CellBE)
provide high compute performance by exploit-
ing the parallelism inherent in many signal pro-
cessing algorithms. Therefore they are often
used as accelerators in cognitive and software
radio testbeds. Iris supports the integration of
such hardware through the concept of a soft-
ware wrapper. This is a software component for
Iris, typically for the sPHY or fPHY engine,
which manages all interfacing to the FPGA,
DSP, or CellBE. All  parameters and data
inputs and outputs of the software wrapper
component are routed to the accelerator hard-
ware within this component, encapsulating all
low-level tasks. The software wrapper compo-
nent behaves like an ordinary software compo-
nent on the outside but performs compute
functions on dedicated hardware or processors.
Figure 2 illustrates the software wrapper con-
cept using the example of an FPGA-based
receiver system.

Testbeds using this architecture have been
demonstrated at a number of international con-
ferences [9]. For example, a video streaming link
using FPGAs at the transmitter (Tx) and receiv-
er (Rx) was demonstrated at SIGCOMM 2009
(the Rx is outlined in Fig. 2). The data was mod-
ulated using differential quadrature phase shift
keying (DQPSK) and encoded with convolution-
al codes of different strength. The coding
strength was adapted to the current channel con-
ditions through monitoring the current bit error
rate at the receiver, demonstrating runtime
reconfigurability of Iris on FPGAs. Figure 3
shows a photo of the demonstration setup. More
detail on the use of Iris on FPGA platforms can
be found in [10]. During DySPAN 2008, one
demonstration used Iris to perform real-time
computation of the full spectral correlation func-
tion over a 4 MHz bandwidth using the CellBE
processor in a Playstation 3. While the computa-
tional complexity involved would make this
impossible using the standard GPPs found in
PCs today, it is feasible using the parallel pro-
cessing power of the CellBE.

A second possibility for integrating special-
ized hardware in Iris is enabled by the modulari-
ty of the engine concept, as explained in the
previous section. This would be appropriate, for
example, in the case where multiple components
execute on the hardware. It is relatively easy to
add new types of specialized engines that wrap
all functionality required to handle a particular
type of accelerator hardware. For example, a
chain of components to be executed on an FPGA
could be handled by a dedicated FPGA engine,
responsible for configuring the FPGA, carrying
out reconfigurations (by setting register values
or loading a different FPGA configuration), and
all other interaction with the FPGA compo-
nents. The FPGA components themselves would
not need a wrapper component in this case. This
is a very powerful feature which we intend to use
extensively in the future.

EXAMPLE APPLICATION USING IRIS

Iris was not designed with a single particular
standard in mind. However, it contains many of
the features required by a number of emerging
cognitive radio standards such as IEEE 802.22
[11]. The IEEE 802.22 standard addresses the
use of VHF and UHF TV band spectrum on a
non-interfering basis to provide wireless regional
area networks (WRANs) with the aim of provid-
ing broadband internet access to areas of low
population density, typically in rural areas. A
centralized base station (BS) uses vacant televi-
sion channels to form a network with one or
more subscriber stations. These vacant TV chan-
nels may be identified using spectrum sensing or
geolocation together with a database. These
approaches are in line with those proposed by
the Federal Communication Commission (FCC)
in their Second Report and Order [12] adopting
rules to allow unlicensed radio transmitters to
operate in the broadcast television spectrum.

To demonstrate the capabilities of the Iris
architecture, a network of highly reconfigurable
nodes was designed and implemented. While
this network is not an IEEE 802.22 network, the
design goals of both are similar. Nodes within
the network opportunistically use spectrum white
spaces to establish communication links, form a
network, and exchange information. In order to
accomplish this, a highly flexible OFDM wave-
form is employed. By adapting the carrier fre-
quency and the bandwidth of this waveform,
network nodes can take advantage of a wide
range of detected spectrum opportunities.

A significant challenge associated with the
use of such a reconfigurable waveform is net-
work coordination. In order to establish commu-
nications and create a network, nodes must
converge on a common waveform configuration.
In our network this is achieved through use of
intentionally embedded cyclostationary signatures
[13, 14]. These signatures consist of correlation
patterns inserted in the spectrum of a waveform.
They can be detected using a low-complexity

Figure 2. The software wrapper concept for an FPGA-based narrowband
receiver. The DQPSK Rx and Viterbi decoder components are executing in
hardware (FPGA logic fabric). A software wrapper component manages the
hardware/software interface. All hardware required to run Iris on a Linux
operating system is contained in the FPGA.

FPGA

PowerPC
processor

Memory Ethernet Storage

Reconfigurable
region

USRP Rx 
(SW) 

DQPSK Rx 
(HW) 

Viterbi decoder 
(HW) 

Software wrapper 

Deframer 
(SW) 

SUTTON LAYOUT  8/23/10  4:34 PM  Page 119



detector with minimal information about the
parameters of the waveform, and used for node
identification, carrier frequency acquisition, and
bandwidth estimation. Upon detection of such a
signature in a received waveform, a node can
determine all information required to establish a
communications link. Under the proposed IEEE
802.22 standard, the use of predefined TV chan-
nels means that a superframe control header
(SCH) can be broadcast in each channel used. In
this case subscriber stations can simply scan
channels to find an SCH, configure their wave-
form, and join the network. Using cyclostation-
ary signatures, however, such a predefined
channelization scheme is not required. Instead,
nodes can form a network using any detected
spectrum opportunity.

The structure of a single node within our net-
work is illustrated in Fig. 4. In the following sec-
tions we examine the node design and illustrate
how key features of the Iris architecture are
used to support the flexibility required by the
network. In particular, we look at:
• Reconfigurable component parameters
• Component events
• Controllers
• Iris engines

The node structure includes transmit and
receive signal processing chains, linked by a
TDMA MAC component. The transmit chain

consists of a data scrambler, quadrature ampli-
tude modulation (QAM) symbol mapper,
OFDM modulator and USRP transmit (Tx)
component. The Universal Software Radio
Peripheral (USRP) Tx component links to the
reconfigurable USRP RF front-end, feeding
data to the hardware for transmission and con-
trolling parameters such as carrier frequency,
signal bandwidth, and transmit power. The first
component in the receive chain is a USRP
receive (Rx) component, which provides base-
band in-phase and quadrature (IQ) signal sam-
ples received by the USRP. The switch
component in the receive chain switches the
data flow between two paths. The first path con-
sists of two components: a simple spectrum ana-
lyzer, which performs energy detection, and a
low-complexity cyclostationary signature detec-
tor. This path provides the analysis required for
the node to detect spectrum opportunities and
coordinate waveform parameters with other
nodes in the network. The second path per-
forms demodulation of received waveforms and
comprises an OFDM demodulator, QAM sym-
bol demapper, and data descrambler.

The node architecture makes heavy use of
component parameters to support dynamic
reconfiguration. The OFDM modulation compo-
nent exposes parameters to adjust the cyclic pre-
fix length and the number of subcarriers used in
accordance with the bandwidth of the transmit-
ting USRP hardware. In this way a constant sub-
carrier spacing is maintained as the bandwidth of
the transmit waveform is adjusted. This band-
width flexibility supports, for example, the chan-
nel-bonding mechanism required in IEEE 802.22
to achieve required data rates of up to 19 Mb/s
over 30 km. As the OFDM modulation compo-
nent also inserts cyclostationary signatures into
the transmit waveform, additional parameters
are exposed to permit adjustment of these signa-
tures. Also in the transmit chain, the QAM sym-
bol mapper component exposes a parameter to

IEEE Communications Magazine • September 2010120

Figure 3. Setup of the video streaming demo with adaptive coding using FPGAs
at SIGCOMM 2009.

Figure 4. Design of a reconfigurable network node using Iris.

Network stack
engine

TDMA
MAC

Scrambler

Reconfigurable parameter Event 

fPHY engine

sPHY engine

fPHY engineEngine manager

Controller manager

QAM 
symbol 
mapper 

OFDM 
mod 

Signature 
detector 

Spectrum 
analyzer 

USRP 
Rx 

USRP 
Tx 

QAM 
symbol 

demapper 
OFDM 
demod 

Sw
itch 

Descramble

Bandwidth
controller

Frequency
controller

Mod complexity
controller

SUTTON LAYOUT  8/23/10  4:34 PM  Page 120



IEEE Communications Magazine • September 2010 121

control the modulation complexity used accord-
ing to the channel conditions. In the receive
chain complementary parameters are exposed by
the OFDM demodulation and QAM symbol
demapper components. Further parameters are
exposed by the spectrum analysis and signature
detection components to provide a trade-off
between computational complexity and perfor-
mance.

Reconfiguration of component parameters
within the node is triggered internally by a num-
ber of component events. One such event is trig-
gered by the spectrum analysis component to
indicate that a spectrum opportunity has been
identified. A second event can be triggered by
the signature detection component upon detec-
tion of a cyclostationary signature. In order to
choose the correct modulation complexity for
the channel conditions, the OFDM demodula-
tion component can trigger an event according
to the estimated signal-to-noise ratio (SNR).
Reconfiguration of the radio in response to
these events is carried out by a number of con-
trollers. Dedicated controllers are provided to
select the appropriate carrier frequency, band-
width and modulation complexity to be used by
the node. In order to determine spectrum oppor-
tunities using the geolocation and database
lookup approach specified in IEEE 802.22, an
additional controller could be added to the
structure. This controller would determine the
node location using a GPS device and query a
database using a backhaul link. Using data
returned from the database, the controller would
then reconfigure the node to use the spectrum
resources specified.

The use of multiple Iris engine types can also
be seen in Fig. 4. Our node architecture makes
use of four engines in total. An sPHY engine is
adopted for the receive chain branch performing
signal analysis. Components in this chain have a
fixed relationship between input and output data
rates, and exhibit significant computational com-
plexity. The low runtime overhead and limited
flexibility of the sPHY engine is well suited to
this scenario. Two fPHY engines are used in the
node; one each for the transmit signal chain and

demodulation receive chain. Components within
these engines are highly reconfigurable and
change the output:input data rate ratio accord-
ing to their configuration. The flexibility of the
fPHY engine supports the level of reconfigura-
tion required by these components. Finally, the
network stack engine is used to support the
TDMA MAC component. As the MAC differs
from the other components in the structure in
that it operates on packets of data and requires
its own thread of execution, this engine ensures
that efficient data passing and execution mecha-
nisms are used.

In this section we have presented one exam-
ple network implemented using the Iris architec-
ture. Table 2 lists a number of further systems
using Iris, demonstrated at international confer-
ences over the past 5 years.

CONCLUSIONS
The unique challenges inherent in developing
standards for cognitive radio networking require
highly flexible yet robust testbeds for real-world
implementation, development, and verification.
In this article we have presented Iris, an archi-
tecture designed specifically for building highly
reconfigurable radio network testbeds. The
architecture contains built-in features to support
runtime reconfiguration across all layers of the
network stack and a well defined interface to
decision making processes that tailor the opera-
tion of the radio to the changing network envi-
ronment.

Our future plans for Iris include making it
available to the wider research community and
building a base of active users who can benefit
from the architecture and contribute to improv-
ing it. We plan to build on existing PHY layer
implementations and focus on the design of
MAC layer protocols, including carrier-sense
multiple access (CSMA) and TDMA, as well as
ad-hoc NET layer routing protocols such as
Optimized Link State Routing (OLSR) and
Dynamic Source Routing (DSR). We look for-
ward to working with the research community to
make Iris available for testbed implementation,

Table 2. Demonstration systems built using the Iris architecture.

Conference Demonstration system

DySPAN 2007 Cyclostationary signatures for detection, identification, and carrier frequency estimation of OFDM-based waveforms

DySPAN 2007 Coexistence of non-contiguous OFDM-based waveforms with co-channel single-carrier waveforms

DySPAN 2008 A reconfigurable FPGA-based system using a single-carrier waveform, employing sensing for carrier-frequency estimation

DySPAN 2008 A DSA network using a bandwidth-adaptive OFDM waveform with embedded cyclostationary signatures for blind
bandwidth estimation and network coordination

DySPAN 2008 A real-time cyclostationary analyzer using the Cell Broadband Engine

FCCM 2009 A reconfigurable FPGA-based system using a single-carrier waveform with adaptive coding

SIGCOMM 2009 A reconfigurable FPGA-based system employing sensing for carrier-frequency estimation and adaptive coding

DySPAN 2010 A DSA network using reconfigurable pulse-shaped OFDM waveforms to control out-of-band (OOB) emissions

SUTTON LAYOUT  8/23/10  4:34 PM  Page 121



IEEE Communications Magazine • September 2010122

and to enable the development of future stan-
dards for cognitive radio and dynamic spectrum
access.

REFERENCES
[1] P. Mackenzie, Reconfigurable Software Radio Systems,

Ph.D. dissertation, Trinity College Dublin, 2004.
[2] Free Software Foundation, Inc., “GNU Radio — The

GNU Software Radio,” 2009; http://www.gnu.org/soft-
ware/gnuradio/

[3] Joint Tactical Radio System (JTRS) Joint Program Execu-
tive Office (JPEO), “Software Communications Architec-
ture Specification,” JTRS Standards, v. 2.2.2, May 15,
2006; http:// jtrs.spawar.navy.mil/sca/downloads.
asp?ID=2.2.2

[4] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamen-
tals of WiMAX — Understanding Broadband Wireless
Networking, Prentice Hall, 2007.

[5] J. Zyren and W. McCoy, “Overview of the 3GPP Long
Term Evolution Physical Layer,” Freescale Semiconduc-
tor, Inc., white paper, July 2007.

[6] C. R. A. Gonzalez et al., “Open-Source SCA-Based Core
Framework and Rapid Development Tools Enable Soft-
ware-Defined Radio Education and Research,” IEEE
Commun. Mag., vol. 47, no. 10, Oct. 2009, pp. 48–55.

[7] E. A. Lee and D. G. Messerschmitt, “Synchronous Data
Flow,” Proc. IEEE, vol. 75, no. 9, Sept. 1987, pp.
1235–45.

[8] E. A. Lee and T. M. Parks, “Dataflow Process Networks,”
Proc. IEEE, vol. 83, no. 5, May 1995, pp. 773–801.

[9] P. D. Sutton et al., “Multi-Platform Demonstrations
using the Iris Architecture for Cognitive Radio Network
Testbeds,” CROWNCOM, June 2010.

[10] J. Lotze et al., “Development Framework for Imple-
menting FPGA-Based Cognitive Network Nodes,” IEEE
GLOBECOM, Nov. 2009.

[11] C. Cordeiro et al., “IEEE 802.22: The First Worldwide
Wireless Standard Based on Cognitive Radios,” IEEE
DySPAN, Nov. 8–11, 2005, pp. 328–37.

[12] Federal Communication Commission, “Second Report
and Order and Memorandum Opinion and Order in the
Matter of Unlicensed Operation in the TV Broadcast
Bands Additional Spectrum for Unlicensed Devices
below 900 MHz and in the 3 GHz Band,” Nov. 14,
2008.

[13] P. D. Sutton, K. E. Nolan, and L. E. Doyle, “Cyclosta-
tionary Signatures in Practical Cognitive Radio Applica-
tions,” IEEE JSAC, vol. 26, no. 1, 2008, pp. 13–24.

[14] P. D. Sutton et al., “Bandwidth-Adaptive Waveforms
for Dynamic Spectrum Access Networks,” IEEE DySPAN,
Oct. 2008.

BIOGRAPHIES
PAUL SUTTON (suttonpd@tcd.ie) is a research fellow with
CTVR, the Telecommunications Research Centre based at
the University of Dublin, Trinity College, Ireland. He has
been actively involved in the research and development of
software-defined radio systems since 2004. In this time his
work has addressed key challenges in the areas of software
radio architecture design, and rendezvous and coordina-
tion in dynamic spectrum access networks. He received his
Ph.D. in electronic engineering in 2008 from the University
of Dublin, Trinity College. He is currently serving as a direc-
tor of the Wireless Innovation Forum.

JÖRG LOTZE (jlotze@tcd.ie) received his Dipl-Ing. degree in
computer engineering from the Ilmenau University of Tech-
nology, Germany, in 2006. He is currently in his final year
as a Ph.D. student with CTVR, the Telecommunications
Research Centre, at University of Dublin, Trinity College. His
research interests include high-level design for cognitive
radios, experimentation and testbeds, and communications
algorithms.

HICHAM LAHLOU (hlahlou@tcd.ie) received his Master’s
degree in electrical engineering from the Institut National
des Sciences Appliques de Lyon (INSA), France, in 2006,
after which he joined CTVR, the Telecommunications

Research Centre, at University of Dublin, Trinity College as
a research fellow. His research interests include scalable
computing, stream processing, and high-level system
design.

SUHAIB A. FAHMY (sfahmy@ntu.edu.sg) received an M.Eng,
degree in information systems engineering and Ph.D.
degree in digital electronic systems from Imperial College
London in 2003 and 2007, respectively. From 2007 to
2009 he was a postdoctoral research fellow at the Universi-
ty of Dublin, Trinity College, and a visiting research engi-
neer at Xilinx Research Labs in Ireland. He joined Nanyang
Technological University as an assistant professor in the
School of Computer Engineering in late 2009. His research
interests include reconfigurable computing, high-level sys-
tem design, and computational acceleration of complex
algorithms in the domains of computer vision and commu-
nications.

KEITH NOLAN (keithnolan@mee.tcd.ie) received his Ph.D.
degree in electronic engineering from the University of
Dublin, Trinity College in 2005. He is a research fellow with
the Telecommunications Research Centre (CTVR) at the Uni-
versity of Dublin, Trinity College. He organized the world’s
first public collaborative trials of cognitive radio and
dynamic spectrum access in 2007, has served as Chair and
Co-chair of demonstrations for IEEE DySPAN symposia, and
on numerous TPCs for conferences concerning these areas
also. He currently serves on the management committee
for COST Actions IC0902 and IC0905, in addition to being
a member of SCC41 where he is a technical co-author of
the IEEE P1900.1 standard.

BARıS, ÖZGÜL [M‘04] (ozgulb@tcd.ie) is a postdoctoral
research fellow at CTVR, University of Dublin, Trinity Col-
lege. He received his Ph.D. degree in electrical and electron-
ics engineering from Boĝaziçi University, Istanbul, Turkey in
March 2008. From 1998 to 2003 he worked with Nortel
Networks/Netas,, as an R&D engineer and software architect.
He joined Turkcell I

.
letis,im Hizmetleri A.S,. in 2003, where he

worked as an expert in the Network Platform Development
Department until June 2005.His research interests include
communications and signal processing, dynamic spectrum
access networks, software radio systems and prototyping,
multicarrier systems, and MIMO communications.

THOMAS RONDEAU (twronde@idaccr.org) holds a Ph.D. from
Virginia Tech in electrical engineering, graduating in 2007.
He worked as a postdoctoral researcher with CTVR, Univer-
sity of Dublin, Trinity College from 2007 to 2008. He is
now on the research staff of the Center for Communica-
tions Research in Princeton, New Jersey. His research spans
areas of communications theory, signal processing, and
software design, which are all part of his larger interests in
software and cognitive radios.

JUANJO NOGUERA (juanjo.noguera@xilinx.com) received a
B.Sc. degree in computer science from the Autonomous
University of Barcelona, Spain, in 1997, and a Ph.D. degree
in computer science from the Technical University of Cat-
alonia, Barcelona, Spain, in 2005. He has worked for the
Spanish National Centre for Microelectronics, the Technical
University of Catalonia, and Hewlett-Packard Inkjet Com-
mercial Division. Since 2006 he has been with Xilinx
Research Labs, Dublin, Ireland. His interests include high-
level system design, reconfigurable architectures, and next-
generation wireless communications.

LINDA DOYLE (linda.doyle@tcd.ie) is a member of faculty in
the School of Engineering, University of Dublin, Trinity Col-
lege. She is currently the director of CTVR, the Telecommu-
nications Research Centre. CTVR is a national research
center that is headquartered in Trinity College and based in
five other universities in Ireland. CTVR carries out industry-
informed research in the area of telecommunications, and
focuses both on wireless and optical communication sys-
tems. She is responsible for the direction of CTVR as well
as running a large research group that is part of the cen-
ter. Her research group focuses on cognitive radio, recon-
figurable networks, spectrum management, and
telecommunications and digital art.

Our future plans for

Iris include making it

available to the

wider research 

community and

building a base of

active users who can

benefit from the

architecture and 

contribute to

improve it.

SUTTON LAYOUT  8/23/10  4:34 PM  Page 122



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


