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Abstract: Most effort in designing median filters has focused on two-dimensional filters with small window sizes,
used for image processing. However, recent work on novel image processing algorithms, such as the Trace
transform, has highlighted the need for architectures that can compute the median and weighted median of
large one-dimensional windows, to which the optimisations in the aforementioned architectures do not apply.
A set of architectures for computing both the median and weighted median of large, flexibly sized windows
through parallel cumulative histogram construction is presented. The architecture uses embedded memories
to control the highly parallel bank of histogram nodes, and can implicitly determine window sizes for median
and weighted median calculations. The architecture is shown to perform at 72 Msamples, and has been
integrated within a Trace transform architecture.
1 Introduction
The median filter is a highly versatile non-linear filter that has
been used extensively in a variety of domains. Its strength lies
in its ability to filter out noise while minimally affecting the
properties of the underlying signal. The median filter replaces
a sample with the middle ranked value among all the samples
within the sample window, centred around the sample in
question. In this manner, it filters out samples that are not
representative of their surroundings; in other words, outliers.
In the image processing domain, a two-dimensional median
filter allows for the removal of ‘salt-and-pepper’-type noise
from an image without adversely affecting the underlying
edges. The use of a linear filter (such as a Gaussian or mean
filter) in this situation would cause a blurring of edges. The
median filter can still degrade image quality somewhat,
although the preservation of edges is paramount in the
computer vision domain. Such filters within image processing
are almost uniquely two-dimensional and have small window
sizes.

Our recent work with the Trace transform [1, 2] highlighted
the need for a hardware architecture to compute median and
weighted median values on large one-dimensional windows.
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The Trace transform is a recently introduced algorithm that
has been shown to perform well in a variety of image
recognition and categorisation tasks, including image database
search, face authentication and distortion correction [3]. It
maps a standard image to an alternative domain and, while
defining the spatial mapping, is general in terms of
mathematical computation. The transform involves the
computation of mathematical functions on lines crossing an
image. Two of the functions typically used are the median
and weighted median. Given that these lines can traverse the
whole image, the number of sample points is of similar
magnitude to the dimensions of the image, typically hundreds
of pixels. Furthermore, given that the length of these lines is
not fixed, a hardware architecture must cope with variable
window sizes. The weighted median presents its own
challenge in implementation terms, and we believe the work
presented here and originally introduced in [4] to be the first
hardware implementation of weighted median filters on large
windows.

The median of a set of samples is often computed by
sorting the input samples and then selecting the middle
value. The weighted median can be computed in multiple
stages: first expanding the weighted sample sequence, then
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
doi: 10.1049/iet-cdt.2008.0119



IET
do

www.ietdl.org
sorting and finally locating the median. However, these
methods are not suitable for incorporation within a
streaming architecture because of the multi-stage approach.

We present a high-throughput hardware architecture that
can compute the median and weighted median over a exibly
sized window. The architecture is fully pipelined and thus
implementable within the streaming architecture of the
Trace transform presented in [10]. Indeed, the high
performance afforded by this architecture was a main factor
in achieving real-time (256 � 256 pixel 30 fps)
performance for the Trace transform implementation de-
scribed in that paper. This paper extends the work in [4],
by generalising the architecture in terms of wordlengths of
the bins and weights, including a detailed look at the
weighted median implementation, allowing for fixed or
variable median indices as well as a thorough investigation
of field-programmable gate array (FPGA) resource
utilisation for a wide range of different configurations.

The contributions of this paper are as follows:

† A highly parallel architecture for computing the median of
input samples on large windows, which takes advantage of
FPGA-embedded memories for parallel control (Section 4).

† An extension of the above architecture to computation of
weighted medians (Section 5).

† A thorough investigation of resource requirements for
different configurations (Section 6).

2 Definition
Given an input sequence x1, x2, x3, . . . , a window of size
2Kþ 1 is defined, centred on the ith value, xi, as Wi ¼ fxi2K,
xi2Kþ1, . . . , xi, . . . , xiþK21, xiþKg. The output of the
median filter, yi, is thus the median of Wi; the middle value in
the sorted list.

The weighted median is an extension of the standard
median, wherein each sample in the window has an
associated weight that determines how much that sample
contributes to the final result. Weights can have fractional
or integer values. From a computational perspective, this
makes no difference as long as fractional weights are fixed
point and lie within the same limits for all samples.
Negative weights are undefined.

The input sequence for a weighted median filter can be
written as

(x1, w1), (x2, w2), (x3, w3), . . .

where xi are the input samples and wi are the corresponding
weights. An integer weight would simply correspond to
having wi copies of sample xi taken into account in the
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
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median calculation. Consider the example sequence

(1, 3), (5, 1), (2, 5), (4, 2), (7, 2), (3, 5), (4, 1)

After expanding, this becomes

1, 1, 1, 5, 2, 2, 2, 2, 2, 4, 4, 7, 7, 3, 3, 3, 3, 3, 4

To determine the median, this sequence must be sorted as
follows

1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 7, 7

Finally, the middle value in the sequence, 3, is selected as the
weighted median of this series.

It is important to note that for the weighted median, the
size of the window is the sum of weights rather than the
number of tuples received. So for the above sequence it is
19 and not 7. The median index can be calculated by
halving this number and adding one, so in this case the
median index is 10.

3 Related work
Much of the literature dealing with median filters in image
processing is focused on two-dimensional filters of small
size [5]. We consider these below, noting that the
optimisations applied in these cases cannot map to the
large-windowed one-dimensional requirements we are
dealing with. Considering the simplicity of small two-
dimensional median filters, work in the area has been
generally saturated for a number of years, though
developments at higher levels continue; an example is two-
dimensional adaptive median filters [6]. Weighted median
does not enjoy widespread use in image processing at
present and thus little work has been done on efficient
implementations.

Median filters have been implemented in hardware in a
variety of ways. Reference [5] provides a very good review
of the area. There are two main methods. The first is to
maintain the input sample list in its original order and then
pass it through some type of sorting network. The median
value is then extracted from the relevant position in the
ordered list. The other method involves sorting the samples
as they enter the system. Of the first approach, the simplest
implementation is the bubble sorting grid, where a grid of
dual input sorters each swap their inputs to propagate the
higher valued samples upwards and the lower valued
samples downwards (or vice versa). The median is simply
the middle sample of the grid output. An example of this
architecture is shown in Fig. 1. This method is regular, yet
its hardware requirements increase in proportion to the
square of the window size and hence it is not scalable to
larger windows. For a window of size 2Kþ 1,
(3K 2

þ 3K )/2 dual input sorters and Kþ 1 registers are
required as can be seen in Fig. 1.
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For small windows, simplifications can be made [7], where
the columns and then rows of a two-dimensional window are
each sorted using a triple-input sorter. Then only one
diagonal needs to be sorted to give the median. This saves
on hardware requirements. Karaman et al. [8] propose a
change to the standard sorting network by dealing with
samples in a bitwise manner, needing only single-bit
sorters; however, their implementation is still proportional
to the square of window size in area terms. The strength of
regular array architectures is that they can be pipelined
down to a single compare-swap stage. This results in high
throughput. Benkrid and Crookes [9] create a sorting
structure based on Quick Sort using a bit-voter block; the
area requirements are O(N ). However, the scheme is only
practical for small window sizes. Other methods that use
fewer building blocks of higher complexity are described in
[10–12]. Another method is that of threshold
decomposition, as used in [13]; however, the architecture
proposed relies on the window being of size 3 � 3 and uses
three input adders and thus is not scalable to large
windows. Systolic median architectures based on insertion
sort have also been proposed [14]; in this case, the amount
of hardware is proportional to the window size. Similarly
for the implementation in [15]. In [16], the authors take
advantage of the wide data buses on a development board
to allow the median calculations for multiple pixels in
parallel. The overlapping data between 3 � 3 windows are
re-used and the sorting circuit is modified to reduce the
number of compare-swap blocks. The proposed architecture
is, however, limited to two-dimensional windows of 3 � 3
pixels and larger windows would not scale due to the
sorting circuitry.

Another method for computation of the median of a
sequence of numbers involves computing the cumulative
histogram for this sequence, and then finding the index of
the first bin total to exceed the median index. The
principle is well established and known, having been
mentioned in basic textbooks on image processing. Both
[17] and [18] deal with software implementations of this
algorithm running on general-purpose processors. The
architecture first proposed in [4], and developed here, is the

Figure 1 A simple 11-sample bubble-sorting circuit layout

The large blocks are compare- swap units that swap their inputs if
necessary to propagate the larger values upwards and the smaller
ones downwards: The small blocks are registers. Note that the
shaded blocks are not required for median calculation
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first hardware implementation of this algorithm. The high
degree of parallelism that can be exploited in hardware,
coupled with the independence of resource usage with
regard to window size, is what makes this method so
attractive as compared with a sorting structure.
Furthermore, this method is elegantly extensible to the
weighted median as will be shown.

4 Proposed architecture
4.1 General overview

The proposed architecture works by constructing a
cumulative histogram of the input data. Each bin in this
histogram represents one of the possible input values. The
aim is that a new sample is accepted at every clock cycle;
hence the whole histogram must update in a single cycle.
The count values for each bin can then be compared with
the median index, in parallel; the median value is the index
of the first bin whose count exceeds the median index.
This scheme has no sequential processing mode, and hence
can continue to give median values in real time as new data
arrive. In this section, we build the architecture starting
with a basic fixed window median architecture. We then
show how this can be extended to sliding windows, by
keeping track of old samples that fall out of the window.

Since the application domain in this case is video
processing, 8-bit unsigned numbers (let l ¼ 8) have been
assumed. This means there are 28 ¼ 256 possible input
values, and so a rank of 256 bins is used to store the
cumulative histogram. When an input value is received, the
bin corresponding to the sample value is incremented. For
a cumulative histogram, each subsequent bin must also be
incremented. In software, this is normally done as an
additional step after the histogram has been fully
populated. A pass through all the bins adds the value of the
previous bin to each bin. Hence, the value stored in the
final bin will always be equal to the number of input
samples received. The median is then simply the first bin
whose count reaches or exceeds the median index.

For example, if the median is to be calculated over a
window of 101 elements, that is, 2Kþ 1 ¼ 101, K ¼ 50,
then the 51st or generally (Kþ 1)th element in the ordered
list is required. Using the histogram, find the first bin
whose count is 51 or above; this gives the median of the
input samples, since the 51st ordered element must lie in
this bin.

To implement this in hardware, a rank of parallel bin
nodes is instantiated. A separate register is required to keep
a count for each of the possible input values. Fig. 2 shows
the design for a histogram node. For all the registers to be
updated in parallel, each register also requires its own
incrementer, which is activated only when that bin needs to
be incremented. (Recall that to construct a histogram, only
the bin with an index corresponding to the input sample
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
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needs to be incremented.) Hence, each bin has an enable
input (enable in Fig. 2) that determines whether it should
be incremented in the current clock cycle, and a median
index input (med_index). The output is a single binary
value (gt_med) that is 1 when the value equals or exceeds
the median index and 0 otherwise. 256, or in the general
case of l-bit samples, 2l, such nodes are required in the
proposed system. Note that the width of the bin registers
depends on the window size required. This will be
investigated further in Section 6.

A circuit composed of such processors would yield the
histogram of the input signals. In order to compute the
cumulative histogram, some further processing is needed. As
mentioned above, it is possible to separate the construction of
the cumulative histogram and do this as a subsequent step.
This, however, would be wasteful, as the accumulation for
each bin would have to be done in turn, taking 256 cycles in
total. One possible alternative approach is to instantiate a
comparator for each bin, and compare the input sample value
to the index of each bin. Those bins with an index greater
than or equal to the input sample value would be
incremented. However, this would be costly in terms of
hardware, since each bin would require its own l-bit comparator.

Another approach would be to connect each bin to the
previous one, such that if the previous bin is being
incremented, then it increments too. However, this would
slow down the system down significantly, since that
incrementation signal would need to propagate through
256 stages in the worst case, all in one clock cycle.
Analogous to this is the carry chain in a carry-ripple adder.

A more efficient method, which takes advantage of the
heterogeneous resources on modern FPGAs, is to use
embedded Block RAMs on the FPGA as a ROM to store
the bin access patterns. For the 8-bit inputs previously
mentioned, a 256 � 256-bit ROM would be required to
decode the 8-bit number into a 256-bit signal, where each
bit represents the select input shown in Fig. 2, to the
corresponding bin; each bit of the output addresses a
single-bin node processor. The access patterns stored in the
ROM ensure that the correct bins are enabled for any given
input sample. The contents of the ROM are shown in
Table 1, whereas an overview of the circuit is shown in Fig. 3.

This method of constructing a cumulative histogram is
highly efficient and allows for a fully updated histogram in

Figure 2 A histogram bin node processor
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every cycle. This method has also subsequently been
adapted for histogram equalisation on images [19] and
shown to perform significantly better than a software
implementation on a Graphics Processing Unit (GPU)
[20]. Note that histogram generation is just one part of the
median and weighted median implementation.

Now, the count value for each bin is compared with the
median index (in this example, 51), resulting in a 0 if the
bin count is smaller, and a 1 if it is equal or larger. Hence
the result for all bins before the one containing the median
will be 0, and all the others will be 1. A priority encoder
can then be used to find the index of the first bin in the
series of 1’s. A priority encoder takes a B-bit input in
which there are b zeros followed by B 2 b ones, and returns
bþ 1, the index of the first 1. This gives the median of the
input.

4.2 Sliding window implementation

Thus far, the system takes a sequence of samples and
returns the median for a fixed window, once it has been
filled. Such a circuit, however, is not useful, since

Table 1 Access pattern ROM contents

Address Contents[0:255]

0 0xFFFFFFF. . . FFFFF

1 0x7FFFFFF. . . FFFFF

2 0x3FFFFFF. . . FFFFF

3 0x1FFFFFF. . . FFFFF

4 0x0FFFFFF. . . FFFFF

5 0x07FFFFF. . . FFFFF

..

. ..
.

253 0x0000000. . . 00007

254 0x0000000. . . 00003

255 0x0000000. . . 00001

Figure 3 Histogram-based median filter architecture
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normally the median must be computed for a sliding
window. This means that in each cycle, the window
moves one sample down the sequence, discarding the
oldest sample and adding the newest into the window. To
implement this algorithm for sliding windows, some
changes must be made. Consider that now while
constructing a histogram, with each new sample that
enters, the oldest sample is removed from the window,
and thus its effect on the histogram must also be negated.
This, however, only happens after the window has
become full. Hence some way of keeping track of the old
samples, knowing when the window has become full for
the first time, and some way of updating the histogram
based on the new and oldest samples must be devised.

Firstly, a FIFO buffer is used to store the samples for the
window over which the median must be found. When a new
sample is received and the window is full, the oldest sample is
removed from the FIFO (oldsamp in Fig. 6). Updating the
histogram requires all bins corresponding to the access
pattern for the oldest sample to be decremented. At the
same time, the bins corresponding to the new input sample
must be incremented. This can all be done in one cycle, by
simply leaving any bins that are included in both sets
unchanged, since they increment and decrement at the
same time. Bins that are only enabled by the access pattern
of the new sample are incremented, whereas bins enabled
only by the access pattern of the removed sample are
decremented. Updating the histogram in this fashion
means that it is up-to-date in every clock cycle, and there
need not be a pause in the input samples. The new node
design is shown in Fig. 4.

On-chip Block RAMs are particularly useful for this
architecture. Because these RAMs are dual ported on the
target architecture, it is possible to extract the enable
signals for both the new and oldest samples from the access
pattern ROM in parallel. These can then be processed to
determine which bins are incremented and decremented, as
illustrated in Fig. 5.

To implement this, a simple two-input, two-output look-
up table is required to determine the resultant action. This is
shown in Table 2. This small logic function must be

Figure 4 A bin node for the sliding window implementation

Enincdec is simply a concatenation of the two bits from the ROM
lookup
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implemented for each bin, and this represents the enincdec
input shown in Fig. 4. Recall that as the window is filling
with values the first time, no subtractions take place, since
this would mean that the histogram would never fill up
with values. As such, a single valid bit is appended to each
input sample. This propagates through the FIFO and
emerges at the final stage of the FIFO (windowfull) only
when a full window of values has been received. This bit
gates the subtraction control signal, so no subtraction can
take place until it emerges. The revised architecture is
shown in Fig. 6.

5 Weighted median architecture
The architecture thus far computes a standard median, on a
fixed window size. To implement weighted median, further
changes to the architecture in Fig. 6 are needed. Recall that

Figure 5 Application to sliding windows

The arrows aside the bins show the access patterns for the oldest
(2) and new (þ) samples. The leftmost example shows a new
sample value of 4 arriving whereas the oldest sample is of value 7.
Only bins 4 – 7 need to be incremented; all others retain their
current values. The rightmost example shows a new sample of
value 8 arriving, whereas the oldest sample is of value 2. Only
bins 2–8 need to be decremented; others are left alone

Table 2 Extra sliding window logic

OldEn NewEn enincdec[1:0]

0 0 00

0 1 10

1 0 01

1 1 00

The signals OldEn and NewEn are the
enable signals for the bin resulting from
the ROM lookup of the oldest and new
samples, respectively. Enincdec is the
signal that instructs the bin counter
whether to increment (10), decrement
(01) or do nothing (00)
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
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Figure 6 Architecture of the sliding window median filter
the weighted median is computed on samples that have
associated weights and that those weights are equivalent to
duplicating the sample the corresponding number of times.
Further recall that the window size, and thus the median
index, is dependent on these weights. To construct the
histogram for weighted samples, rather than increment
each bin for corresponding samples, the weight of that
sample is added to the corresponding bin. The cumulative
histogram is constructed as per the standard median.

To make the necessary changes in hardware, another input
signal is introduced to provide the weights. Instead of a
simple incrementer, each bin processor must now add the
weight value. Just as with the standard median, it is
possible to keep the histogram fully updated at each clock
cycle. Another FIFO is instantiated, to keep track of the
old weights that fall out of the window (oldweight in
Fig. 7). For bins enabled by the access pattern for the
oldest sample falling outside the window, the weight of
that sample (oldweight) is subtracted. For those bins
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
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enabled by both access patterns, the difference of the two
weights (weightdiff) is added (while being careful to
maintain the correct sign). For those bins enabled only by
the access pattern for the new sample, the new sample’s
corresponding weight (weight) is added. The resultant
architecture is shown in Fig. 7. The three signals fed into
each of the bins are the weight of the new input sample,
the difference in weights and the weight corresponding to
the sample falling outside the window.

The rank, or position, of the median is not known in
advance for weighted median. Consider the expansion of
the sequence shown in Section 1, and it becomes clear that
the number of ‘real’ samples received is equal to the sum of
sample weights. Hence, the index of the median must be
half of that plus one, which is simply a right shift and
increment in hardware. In the proposed architecture, the
difference of the two weights (that of the new sample and
that of the oldest, weightdiff in Figure 7) is simply added
to a register on each clock cycle. This maintains the current
Figure 7 Architecture of the weighted median filter
389

& The Institution of Engineering and Technology 2009



390

&

www.ietdl.org
sum of weights (weightsum). This is right shifted to divide by
two and incremented and fed into each of the bins as
med_index, where it is used for the comparison.

The wordlength of each bin register must be wide enough
to accommodate the maximum sum of the weights to prevent
overow. In order to do this, the width of the bin counters
must be equal to log2 of the window size plus the width of
the weights.

This weighted median implementation also opens the door
to a flexible standard median implementation. Rather than
have a fixed median index, it is possible to use the count of
input samples received to determine the median index.
This allows us to use a single implementation for multiple
window sizes. This is a requirement for implementation
within the Trace transform.

6 Implementation results
Implementation of the above designs was originally coded
in Handel-C and compiled using the Celoxica DK
Compiler. The target device in this case is a Xilinx
Virtex II 6000, as found on the Celoxica RC300
development board. For comparison, an alternative
implementation of the median filter based on the sorting
grid mentioned in Section 3 was also synthesised. Note
that this comparison is for illustrative purposes only. The
key motivator for this architecture is the fact that it is
completely flexible with regard to window size, even for
subsequently processed windows. Other architectures are
designed as point solutions for a single window size.
Sorting architectures also fail to deal elegantly with
weighted median calculation.

Using Handel-C was found to give acceptable area and
speed results for the sorting-grid architecture. However, the
proposed circuit was found to have a high clock period. For
the proposed architecture, the area usage was halved and
the clock period reduced by over 60% when it was re-
implemented in VHDL. The reason for this disparity is a
function of how Handel-C is implemented in hardware. A
Handel-C circuit functions using token passing, effectively
enabling subsequent parts of the circuit. The problem arises
when there are a large number of units that have to be
enabled in parallel, as with the 256 bins in this case. The
single token passing signal must be fanned out to a huge
number of circuit elements and this fan-out introduces
significant routing delay.

6.1 Design variations

In order to thoroughly investigate the proposed architecture,
a number of variations were considered. Fixed window
implementations were ignored, since they are of little use,
returning a single result for a whole window. Instead,
sliding window implementations were favoured because of
their computation of a new result every cycle. A number of
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design parameters were varied, leading to multiple
implementations. Before discussing these, consider the
parameters that might affect area. Firstly, all
implementations were synthesised for sample widths of
8-bits. This is an assumption that is valid for most of the
calculations one would wish to conduct on images.
Furthermore, this is the only significant limiting factor for
this design because the number of bins varies exponentially
with the sample wordlength.

Clearly, changing the wordlength of input samples would
also impact the number of memories required for the design.
The 8-bit samples require a 256 � 256-bit memory, whereas
the 10-bit samples require a 1024 � 1024-bit memory. This
would require a re-implementation of the design, although
this can be done through a simple parameter change and
re-synthesis. If complete accuracy is not necessary, it is also
possible to simply use 256 bins for 10-bit samples by
slicing off the upper 8-bits for the median calculation.
Sample wordlength represents the main scaling dependency
for this architecture. Since this implementation is to be
used in the Trace transform, 8-bit wordlengths are sufficient.

The counters in each of the bins need to be wide enough to
accommodate the maximum count, equal to the maximum
number of samples to be considered, which is equivalent to
the window size. Hence the width of the bins is equal to
the base-2 logarithm of the window size. One can set this
arbitrarily to a fixed number such as 8-bits as we previously
did in [4]. This would allow for window sizes up to 255
samples. However, to keep the design as compact as
possible it should be set to the appropriate width. The
window size also affects the length of the FIFO buffer used
to track older samples. This buffer is equal in length to the
window size. Finally, one may choose to implement a
design that uses a fixed window size, or one in which the
window size is determined by the number of samples
entering the system. The advantage of the second method
is that the window size can be changed at runtime. The
first method would synthesise a fixed value comparator;
although this saves area, it is less flexible.

6.2 Synthesis results

All designs were synthesised to run at 72 MHz. All designs
used 8 Block RAMs to implement the bin selection
lookup. Each on-chip 18 Kb Block RAM can be
configured in a number of width and depth configurations.
The shallowest configuration is 512 � 36 bits. Hence a
256 � 256 memory would require eight of these side by side.

The first set of results, shown in Fig. 8, shows the area
usage for basic sliding window implementations and how
this varies with the window size for each of three metrics:
Look-Up Tables (LUTs), Flip-Flops (FFs) and Slices.
Note that slices are the realistic area metric, but FFs and
LUTs are shown as they map well to discussion of the
architecture. These implementations were for fixed window
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
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sizes using hard-wired fixed value comparators. The vertical
lines in the graph indicate the boundaries of different
wordlengths for the bin counters.

It is clear from the graph that each time the counter
wordlength requirements increase by one bit, there is a
distinct jump in area requirements, in the general case. FF
usage has a general rising trend, even between designs with
counters of the same wordlength. This is due to the
increasing size of the FIFO buffer; this also explains the
increasing gradient of the FF segments since the window
size is on a logarithmic scale.

The considerable variations in LUT usage can be put down
to the optimisation of the fixed value comparator. When
comparing values to a fixed number, and depending on the
value of the fixed number, not all bits need to be taken into
account. The synthesis tools will optimise the comparators
as required. This is most evident for window sizes of 127,
255 and 511 in the graph. The binary representation of
these values is 1111111, 11111111 and 111111111,
respectively. The median index will thus be half plus one,
giving 1000000, 10000000 and 100000000, respectively.
When comparing a number to determine whether it is
greater than or equal to these numbers, only a single bit
needs to be tested. This means that the comparator is
reduced to a one-bit comparator, resulting in a significant
reduction in area. Other fluctuations are the result of
similar optimisations applied by the tools.

The graph also shows a lack of a jump in the Slice count
around the 64- and 512-sample window sizes. This can be
attributed to the synthesis tools packing the LUTs and FFs
differently, resulting in a more dense arrangement within
the slices. Again, the designer has little control over this.

The general trend for area requirements can thus be
described as being of the form Aþ log2 B, where B is the
window size and A is the fixed area required by the rest of
the design regardless of window size. The graph in Fig. 9
shows how this compares very favourably with the area

Figure 8 Graph of synthesis results for various window
sizes
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
: 10.1049/iet-cdt.2008.0119
usage of the standard sorting grid architecture that was also
implemented. The sorting grid architecture’s area
requirement increases exponentially with regard to window
size. The point at which the proposed architecture becomes
more efficient is at a window size of approximately 23
samples. Note that other sorting algorithms can be used.
However, the best case complexity for a window of N
samples is of order N log(N ), so the proposed algorithm
remains advantageous, especially for large window sizes.

The next variation involves generalised comparators. In
these implementations, the median index is computed
automatically from the value of the counter in the last bin.
Recall that the last bin in a cumulative histogram contains
the count of the total number of samples in the system.
This can be halved and incremented to give the median
index. The strength of this system is that it allows for
variable window sizes. Clearly, the area requirements will
increase, since the comparators cannot now be optimised by
the synthesis tools and must be full l-bit comparators,
where l is the wordlength of the bin counter. The graph in
Fig. 10 shows how each of the area metrics increases when
this modification is made. A window size was selected from
the middle of the range of values used for the first set of
results and an equivalent circuit was implemented but with
a variable median index. The window sizes used for each of
the different wordlengths were 13, 25, 51, 109, 211, 387
and 739, respectively. There was no need to synthesise the
full range of window sizes, as the only difference would be
in the FIFO length. The dotted lines in the graph indicate
the requirements for the fixed comparator equivalents. The
number of FFs remains almost constant since the FIFO is
not affected by this architectural change. The LUT usage,
however, increases by between 23 and 26%, whereas the
slice count increases by between 19 and 22%. An
implementation with generalised comparators is the one
used for the Trace transform.

The final variation of designs was the weighted median
implementation. Recall that each sample in this
implementation has an associated weight; this weight is

Figure 9 Comparison of area requirements for proposed
algorithm and sorting grid
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Figure 10 Comparison of area requirements for fixed value and variable comparators
used to update the histogram. This introduces another
variable. the width of this weight in bits. Clearly, this will
have an effect on the window sizes that can be
implemented for each bin size. If the bin width is set to
p-bits, then for the standard median it can accommodate a
window size of up to 2p 2 1 samples. For the weighted
median, this window size will depend upon the width of
the weights. If the weights are given widths of q-bits, then
the maximum window size for a bin width of p-bits is
2p2q 2 1. Hence, increasing the width of the weights
means wider bins are required for an equivalent window size.

The results of this set of implementations are shown in
Fig. 11. It can be seen that increasing the width of either
the bin counter or weight has a similar effect. Furthermore,
the area required for a weighted median implementation
with weights 2-bits wide is not very different from the
generalised version of the standard median filter. As the
width of the weights increases, the resource requirements of
he Institution of Engineering and Technology 2009
the weighted median implementation begin to exceed the
generalised median more significantly.

6.3 Discussion

Through developing a parameterised design, it is easy to
tailor the implementation to specific requirements in terms
of wordlengths and window size. The only assumption that
holds for all the above designs is that the input samples are
8-bits wide, as one would find reasonable in the sphere of
image and video processing. The extensibility of the
original design coupled with full pipelining has meant that
all these derivatives could be derived from one architecture,
and all can run at 72 MHz, returning one result in every
clock cycle. The throughput is thus 72 Msamples/s. Note
that this cannot be converted to frames per second since
the implementation is not designed as a spatial filter; it is
an arithmetic unit. However, for illustration’s sake, the
Figure 11 Area requirements for various weight and bin width combinations
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computation throughput of this circuit would equal 234
frames per second for 640 � 480 pixel images.

Comparing with sorting-based methods is not
straightforward. It is worth noting that optimal sorting
topologies differ according to the size of the window to be
sorted. Although an optimal design for a specific window
size may be obtained, this may not be optimal when
applied to different sizes. Furthermore, the topologies can
be non-regular, which precludes their use in a generalised
fashion for exible window sizes. This is one of the
strengths of the proposed architecture since it is not
dependent on window size. A further point to consider is
that even if a sorting topology’s area requirements may
increase proportional to N log N, the connectivity for more
complicated sorting structures could present a challenge to
FPGA routing tools as window sizes increase, resulting in
higher clock periods and hence lower throughput as
window sizes increase. This is a topic for further research.

The 72 MHz clock speed is achieved using the Xilinx tools
with their standard settings. Routing delays due to the heavy
routing required for a massively parallel design contribute to
this. Furthermore, we are limited by the pipeline speed of the
Block RAM primitives as well as the fact that we are using
them stitched together as part of a larger logical memory.
We expect the performance to scale well with
improvements in the target architecture.

7 Conclusions and future work
This paper presented an alternative implementation of median
filtering for arbitrarily large one-dimensional windows. The
architecture is highly scalable in terms of window size. The
design also allows for a exible window size that can change
from one window to the next. The use of heterogeneous
FPGA resources allow the circuitry to be simplified and fully
pipelined. The area requirements were compared with that of
a standard sorting-grid architecture and show the efficiency of
this method for larger windows. An extension to weighted
median calculation was also shown, which has a modest
impact on resource requirements. A full analysis of area
requirements for fixed-sized windows, flexible windows and
the weighted median implementation was shown. The
presented method is elegant in its flexibility with regard to
window size. Of course, for very small windows other
techniques may be more compact. However, for large
windows, or systems where flexibility in window size is
needed, or for weighted median calculation, the proposed
method is scalable, offers a throughput of 72 Msamples/s and
uses area equivalent to 15% of the target FPGA. The method
could be extended to window sizes orders of magnitude larger
if required. The only impact on the design is the need for
wider bin counters in the histogram. A derivative of this
architecture was incorporated into the Trace transform system
described in [2].
Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
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We intend to investigate further uses of the cumulative
histogram architecture within image and signal processing.
We are also investigating further applications of the ROM-
based parallel control scheme used to control histogram
bins in this architecture.
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‘An FPGA-based implementation for median filter meeting
The Institution of Engineering and Technology 2009
the real-time requirements of automated visual
inspection systems’. Proc. 10th Mediterranean Conf.
Control and Automation, 2002

[17] ANGELOPOULOS G., PITAS I.: ‘A fast implementation of two-
dimensional weighted median filters’. Proc. 12th Int. Conf.
Pattern Recognition, 9–13 October 1994, vol. 3, pp. 140–142

[18] HAYAT L., FLEURY M., CLARK A.F.: ‘Two-dimensional median
filter algorithm for parallel reconfigurable computers’, IEE
Proc. Vision, Image Signal Process., 1995, 142, (6),
pp. 345–350

[19] ALSUWAILEM A.M., ALSHEBEILI S.A.: ‘A new approach for real-
time histogram equalization using FPGA’. Proc. 2005 Int.
Symp. Intelligent Signal Processing and Communication
Systems. ISPACS, 2005, pp. 397–400

[20] COPE B., CHEUNG P.Y.K., LUK W.: ‘Bridging the gap between
FPGAs and multiprocessor architectures: a video
processing perspective’. Int. Conf. Application-specific
Systems, Architectures and Processors (ASAP), 2007,
pp. 308–313
IET Comput. Digit. Tech., 2009, Vol. 3, Iss. 4, pp. 384–394
doi: 10.1049/iet-cdt.2008.0119


