
Generic Software Framework for Adaptive Applications on FPGAs

Suhaib A. Fahmy∗, Jörg Lotze∗, Juanjo Noguera†, Linda Doyle∗ and Robert Esser†

∗CTVR, Trinity College, Dublin, Ireland
Email: {suhaib.fahmy, jlotze, linda.doyle}@tcd.ie

†Xilinx Research Labs
Email: {juanjo.noguera, robert.esser}@xilinx.com

Abstract

Adaptive systems are set to become more mainstream,
as numerous practical applications in the communications
domain emerge. FPGAs offer an ideal implementation plat-
form, combining high performance with flexibility. While
significant research has been undertaken in the area of
FPGA partial reconfiguration, it has focussed primarily on
low-level architecture-specific implementations. Building
upon this previous work, we present a system model and
software architecture for implementing runtime adaptive
applications on FPGAs, separating the control and process-
ing planes and abstracting away the details of hardware re-
configuration from the system designer. Hardware process-
ing components appear as software components in the run-
time system, enabling their inclusion in adaptive applica-
tions. We present an adaptive wireless application, demon-
strating the use of the model and software architecture.

1 Introduction

Runtime adaptive systems are able to respond to events

by modifying their behaviour at runtime according to some

reasoning process. As real applications that depend on

adaptive behaviour become more mainstream, the demand

for a practical implementation framework increases. Appli-

cations such as cognitive radios [1] and recent advances in

autonomous self-configuring networks [2], rely wholly on

adaptive capability. Such systems have thus far relied on the

flexibility afforded by general purpose processors (GPPs)

and Application Specific Standard Parts (ASSPs). However

as standards and algorithms become more complex, hard-

ware platforms that can handle high throughput will become

an essential enabler of such systems. FPGAs, combining

the performance advantages of hardware with some of the

flexibility of software, offer an ideal platform for the imple-

mentation of adaptive applications.

Much effort within the research community has been fo-

cussed, thus far, at facilitating FPGA partial reconfiguration

through novel architectures and low-level design tool ad-

vancements. However, hardware reconfiguration is but a

piece of the adaptive systems jigsaw, and how to harness

this capability when developing adaptive applications is an

area in need of attention. While the ability to reconfigure

an FPGA, even partially, is essential to the development of

adaptive hardware applications, the mapping between this

and application level adaptation requires further investiga-

tion. A framework that enables the design of adaptive appli-

cations for those not specialised in the minutiae of FPGA ar-

chitecture features will accelerate the adoption of such tech-

nologies by application designers. The aim of this work is

to de-couple the implementation of adaptation, as viewed at

the application level, from the details of reconfiguration, as

typically discussed at the hardware level.

We present a framework for implementing adaptive ap-

plications on FPGAs, comprising three key contributions:

• A system model that separates the control and pro-

cessing planes of adaptive applications and defines a

generic interface between them.

• A software architecture that enables self-adaptation

while abstracting away low-level hardware details

from the control plane, thus narrowing the gap between

application level adaptation and hardware reconfigura-

tion.

• An adaptive wireless video demonstrator that is built

upon this framework.

We present some related work in Section 2, then describe

our system model in Section 3 including the software ar-

chitecture and the hardware interface. Section 4 presents

an application of our system framework to adaptive video

transmission and reception. Finally in Section 5, we draw

conclusions and discuss future work.

2009 17th IEEE Symposium on Field Programmable Custom Computing Machines

978-0-7695-3716-0/09 $25.00 © 2009 IEEE

DOI 10.1109/FCCM.2009.6

55

2 Previous Work

Adaptive systems, when referred to in the literature, can

mean a variety of things, from low-level partial reconfig-

uration techniques to adaptive implementations. Other re-

searchers consider adaptive systems as being those where

tasks can be mapped to different processing resources at

run-time [3]. We have chosen to use the term adaptive ap-
plications to refer to the class of systems where application

behaviour changes dynamically at runtime. This adaptation

is not defined as part of a protocol, rather occurs on rare

occasions in response to events.

Partial Reconfiguration with Xilinx FPGAs has been re-

ceiving increased attention thanks to recent improvements

in the capabilities of modern devices such as the Virtex-5

but also thanks to enhanced low-level design tools [4]. Xil-

inx FPGAs have the capability to modify part of a design,

while the rest remains operational, making them attractive

for implementing adaptive systems.

Much of the effort recently undertaken within this area

has focussed on low-level implementation. Examples in-

clude 1- and 2-dimensional slot-based reconfigurable archi-

tectures [5] and the online placement and routing of adap-

tive systems on FPGAs [6, 7]. These efforts provide a foun-

dation for building adaptive systems, however, they do not

tackle the application level view of adaptation, where a sys-

tem is able to reason about events and respond by modifying

its behaviour at runtime; this is something we tackle in this

paper.

Numerous adaptive applications have been implemented

on FPGAs. These include automotive [8] and networking

applications to improve performance [9] and reduce power

consumption [10]. Some of the closest work we have found

to that proposed here is in [11], where the authors design an

autonomous system for interference avoidance. They use

a Bayesian network to select one of three mitigation filters

depending on an estimate of the noise. The key differences

between our work and theirs is that they require the sys-

tem designer to have hardware knowledge, they also explic-

itly incorporate hardware reconfiguration within the control

software. In our work, we have abstracted away hardware

reconfiguration, allowing a system designer with no FPGA

experience to program an adaptive system in C++, while

making use of optimised hardware components.

It is clear from the literature, that previous solutions to

the design of adaptive applications have generally been ad-

hoc and lack the definition of a general solution or frame-

work. Our work provides a general framework that can be

used for designing adaptive applications at the application

level, and which separates this view from the details of hard-

ware implementation, while taking full advantage of the ca-

pabilities that exist in modern devices.

A

e.g. fsm, petri net

A B C D

start/
stop

external
event

event

react react

control plane

processing plane
synchronous dataflow

react

Figure 1. Adaptive System Model.

3 Adaptive Systems on FPGAs

3.1 System Model

We focus in this work on data-driven applications such

as signal processing which are typically modelled using the

Synchronous Data Flow (SDF) paradigm. In this model of

computation, a directed graph represents the system; this

contains nodes, each representing a function, and arcs con-

necting them, representing the flow of data. It can become

cumbersome to introduce control within such a paradigm,

and hence we define a separate control plane that interfaces

with this processing plane. This also allows for the con-

trol plane of an application to be implemented in the most

suitable way, whether using Petri nets, state machines, or

any other design construct. This system model is shown in

Figure 1.

The core process in an adaptive system, that represents

the interface between these two planes, can be summarised

in the “sense, reason, react” cycle. Events are triggered

by components within the processing plane, or externally.

The control plane senses these events, and reasons to deter-

mine the required response(s), before selecting a response

to apply to the processing plane. We define components

within the processing plane as having parameters, to which

the control plane has access. The control plane also has ac-

cess to the top level of the processing plane. Since the two

planes are distinct, their implementations are independent.

The manner by which the control plane can effect a

change in the processing plane is defined at three levels (il-

lustrated by the numbers 1, 2, and 3 in Figure 1):

1. Functional reconfiguration1 involves completely over-

hauling the system defined in the processing plane and

replacing it with a new system, e.g., a radio switching

from a passive receiver to a transceiver.

2. Structural reconfiguration involves replacing, remov-

ing or introducing new components in the processing

plane, e.g., a radio changing the modulation scheme.

1Note that reconfiguration in this section does not refer to FPGA re-

configuration.

56

XML Processing ChainsXML Processing Chains

A
(SW)

B
(HW)

C
(HW)

D
(HW)

start/
stop

external
event

event

react react

control plane

processing plane

IRIS Runtime System Decision
Engine

XML Processing Chains

Component
Library

Figure 2. The Runtime Software Architecture.

3. Parametric reconfiguration means modifying a param-

eter of one of the components within the processing

plane, e.g., changing the gain of a scaling component.

These levels of reconfiguration are as viewed at the applica-

tion level.

This system model maps intuitively to the architecture of

modern FPGAs, where the processing plane can be imple-

mented in the logic fabric, while the control plane can be

implemented on embedded processors.

3.2 Software Architecture

The software architecture which realises the system

model described in the previous section, builds on the soft-

ware radio application, IRIS, which has been extended to

run under Linux on the FPGA and support hardware com-

ponents in the logic fabric [12]. The architecture is illus-

trated in Figure 2. The graph of the processing plane of the

system, containing the processing components, which are

selected from a pre-existent library, and the flow of data be-

tween them, is described in an XML file. Each component

has a set of parameters and an interface to the user-created

Decision Engine, which allows for re-use in different ap-

plications. The Decision Engine can subscribe to events

triggered by processing components. It is responsible for

reasoning and reacting to these events. Reactions include

parametric, structural or functional reconfigurations of the

processing chain, as defined above, and are effected through

the Runtime System. The Decision Engine is implemented

using C++, with a simple interface to allow for rapid proto-

typing of adaptive applications.

To allow the execution of IRIS on FPGA hardware, we

have adopted a Linux on FPGA implementation for embed-

ded PowerPCs, as offered by Xilinx [13]. While some work

has been done on designing operating systems for FPGA re-

configuration [14], we believe that adaptive applications are

best served by managing reconfiguration in the user space.

setParameter, subscribeToEvent

trigger eventtrigger event

ComponentInterface

 setParameter(string parameter, float val)
 initialise()
 process(signal & input, signal & output)
 destroy()
 subscribeToEvent(int eventID, callbackFcn)

FPGAComponent

 FPGASetup()
 FPGALoadBitstream(string file)
 FPGAWriteRegister(unsigned offset, unsigned value)
 unsigned FPGAReadRegister(unsigned offset)
 FPGAReadMemory(unsigned offset, unsigned* data, int len)
 FPGAWriteMemory(unsigned offset, const unsigned* data, int len)

<<Software Wrapper>>

 initialise()
 process(signal & input, signal & output)
 destroy()
 setParameter(string parameter, int val)
 subscribeToEvent(int eventID, callbackFcn)

SoftwareComponent

 initialise()
 process(signal & input, signal & output)
 destroy()
 setParameter(string parameter, int val)
 subscribeToEvent(int eventID, callbackFcn)

DecisionEngine

 subscribeToEvents()
 EventCallback(int data)

HardwareComponent

Figure 3. Component class hierarchy.

An adaptive application designer wishes to determine, in

some predictable way, how the system will adapt to vari-

ous events, and what reasoning method the system uses to

determine the type of adaptation. Hence, the adaptation is

determined by the designer as required for the application,

and not by low level OS criteria. Adopting this approach

also means that the system is abstracted from the under-

lying hardware, and at the same time, is able to take full

advantage of standard operating system features.

System execution is managed by the IRIS Runtime Sys-
tem, which parses the specified XML file, instantiates and

connects the required components, loads the Decision En-
gine, and controls and monitors system execution. Thus,

both the Decision Engine and the Runtime System together

form the control plane, as shown in Figure 2.

Based on this software architecture, the only two inputs

that the user needs to specify are: the XML radio chains;

and the C++ Decision Engine. The user’s implementation

of the Decision Engine does not need to consider imple-

mentation details of the components it is controlling (i.e.,

software or hardware implementation), since it is only ac-

cessing the ComponentInterface (Figure 3).

Processing components can be described in software us-

ing C++, or in hardware using a hardware description lan-

guage. We do not deal with the high-level design of com-

ponents, as this can be done using existing tools. Any tool

that can generate HDL output is suitable. For example, Xil-

inx System Generator allows components to be designed

using Simulink. To allow a common interface to both types

of components from the control plane, one or more hard-

ware components are wrapped in a software wrapper with

an identical interface to standard software components. The

class FPGAComponent, shown in Figure 3, provides a set of
FPGA operations for software wrappers, such as methods

for accessing registers and embedded memories (BRAMs).

57

System Bus

Bus Macros

Bus Interface

Input
Memory

Output
Memory

Register Interface

Partially Reconfigurable Region

Sensing
Registers

Control
Registers

Processing Chain

Figure 4. The partially reconfigurable region.

3.3 Integrating Hardware

Figure 4 shows the interface of a hardware chain, as

loaded into the partially reconfigurable region. This hard-
ware wrapper, containing one or more components, pro-

vides the common interface which is connected to the rest

of the system (i.e., static design) using the system bus.

In order to transfer data into and out of the partially re-

configurable region, the first and last components in a chain

are connected to BRAMs. A set of registers, accessible

from software, is used for controlling hardware execution,

accessing component parameters and sensing events.

When the run-time system initialises the software wrap-

per, the input and output memories as well as the register

addresses are mapped into the Linux virtual memory space

(FPGASetup operation in Figure 3). A bitstream is loaded

into the partially reconfigurable region of the FPGA us-

ing the Linux ICAP (Internal Configuration Access Port)

driver (FPGALoadBitstream). When the execution reaches

the software wrapper, data is transferred to the hardware in-

put memory, then the hardware is enabled using the register

interface. Once execution has completed, data can be read

back from the output memory by the software wrapper. The

software wrapper is written such that it allows for process-

ing of variable sized blocks of data (i.e., multiple iterations

are completed if the amount of data to process is larger than

the size of the shared memories).

Events can be triggered from the hardware in the partial

region by setting a value in a sensing register. The wrap-

per checks these registers regularly and triggers a software

event to the Decision Engine.
It is important to distinguish between application level

adaptation and its manifestation in terms of hardware recon-

figuration. Clearly, functional reconfiguration involves the

whole processing chain being replaced. This simply maps

to a hardware reconfiguration of the whole region, which is

achieved by calling the FPGALoadBitstream method in the

implementation of the initialise method.

Structural reconfiguration involves the replacement of

components or the introduction of new components. In an

ideal scenario, this could map to a partial reconfiguration of

just the necessary part of the chain. If one partially recon-

figurable region holds multiple components, represented by

one wrapper from the software perspective, the whole re-

gion must be reconfigured (a call to FPGALoadBitstream).

While it is possible to implement a hardware chain that con-

tains multiple alternatives of a component and uses a multi-

plexer to select between them, this clearly wastes resources,

while precluding the need for, and foregoing the benefits of,

partial reconfiguration.

Parametric reconfiguration (the setParameter method in

the software wrapper of a hardware component) is less

straightforward. Parameters can include the gain of a scal-

ing component or the constraint length of a convolutional

code, amongst other possibilities. In some cases, where

changing the parameter has minimal impact on the com-

putational circuitry, setting a parameter can simply map to

a write into a software accessible register (a call to FP-
GAWriteRegister). An example is a scaling component

where the gain is reconfigurable. By introducing a register

that holds the gain to be used by the hardware, a reconfig-

uration of this parameter can be made without the need for

an FPGA reconfiguration. However, if the parameter to be

changed implies considerable changes in the hardware cir-

cuitry, e.g. constraint length of a Viterbi decoder, it maps to

an FPGA reconfiguration (a call to FPGALoadBitstream).

3.4 Abstracting from Hardware Implementation

To abstract away hardware implementation details, we

use a design-time Composer tool which automatically con-

verts the high-level (i.e., functional) XML description of a

processing chain to a low-level XML representation, map-

ping components to the available partially reconfigurable

regions and processors. It connects the hardware compo-

nents in the chain, adds the hardware wrapper shown in

Figure 4, generates bitstreams, and creates the software

wrappers. The new composed chain is represented by an

automatically-generated merged XML description.

The different types of reconfiguration are dealt with in

the following manner. In functional reconfiguration, we as-

sume that the Decision Engine invokes a new XML chain

and so this chain is explicitly defined, separately, and the

Composer creates its corresponding bitstream. For struc-

tural reconfiguration, a separately defined chain is also used,

complete with its bitstream as produced by the Composer.
For parametric reconfiguration, the Composer tracks which
parameters map to register names of the corresponding

component. In such cases, a reconfiguration does not re-

quire a change of bitstream, and so the change in value in

the merged XML maps correctly to a change in parame-

58

ter in the hardware component. In the case where differ-

ent hardware implementations are required for a change in

parameter, the designer specifies the mapping of parameter

values to implementations in a text file within the hardware

component tree. The Composer modifies the merged XML

to facilitate the loading of the alternative bitstream by the

software wrapper, using this file to determine the mapping.

A mapping from the original high-level processing chain

to the low-level version is generated by the Composer, and
this is used by the IRIS Runtime System to abstract away

the low-level details from the Decision Engine.

4 An Adaptive Wireless Application

In this section, we present an application that demon-

strates the use of our software architecture. We show how

adaptation is incorporated into the system and how the de-

signer can specify the adaptive behaviour without concern-

ing himself with the details of reconfiguration.

4.1 Overview

An application consisting of an adaptive wireless video

transmitter and receiver has been implemented and demon-

strated. The implementation platform is the Xilinx Univer-

sity Program (XUP) Board which hosts a Xilinx Virtex II

Pro FPGA. We use the Universal Software Radio Peripheral

(USRP) radio frontend [15] which we connect to through a

TCP socket via a PC bridge.

The transmit chain receives UDP packets, through eth-

ernet, containing video data, streamed from a PC using the

VideoLAN VLC Player. These are processed through the

transmission chain on the FPGA, then transmitted by the

USRP. At the receiver, the signal is processed by the re-

ception chain in the FPGA, then passed, through UDP, to a

VLC Player window on a PC which displays the video.

The adaptation in this application is implemented by al-

lowing coding to be used. A wireless channel with poor

signal-to-noise ratio (SNR) can cause high Bit Error Rates

(BER) at the receiver. Using forward error correction

reduces these errors. A convolutional coder, with vari-

able constraint length can optionally be inserted prior to

the modulator in the transmitter, and a matching Viterbi

decoder after the demodulator in the receiver (shown by

dashed boxes in Figure 5). Adding coding and increasing

constraint length increases the robustness of the communi-

cation. A BER estimate produced by the Viterbi decoder or

Deframer at the receiver is used by the Decision Engine to

decide when to switch constraint lengths. A control channel

instructs the transmitter which constraint length to use.

The radio chains for this application are shown in Fig-

ure 5. Components implemented in the FPGA fabric are

UDP from VLC

Framer

Conv. Encoder

DQPSK Mod.

Pulse Shaper

RF Frontend RF Frontend

Matched Filter

Carrier Recovry

Timing Recovery

DQPSK Demod.

Viterbi Decoder

Deframer

UDP to VLC

(a) (b)

constraint
length

constraint
length

roll-off
factor

roll-off
factor

bit error
rate

PowerPC

FPGA logic fabric

Figure 5. Transmitter (a), and receiver (b) ra-
dio chains.

shown in white, while components executed in the embed-

ded PowerPC are shown in grey. Data is passed from the

video source to the transmission chain via UDP. The Framer
adds a 64-bit frame access code to each frame of data to

identify it, and appends a checksum. The Differential QPSK
Modulator maps information dibits (2-bit units) into phase

changes of the complex base band signal. The Pulse Shaper
(an upsampler and FIR square-root raised-cosine filter) is

used to modify the signal in order to control the transmis-

sion bandwidth and SNR. Data is transmitted to the receiver

by the RF Frontend. For forward error correction we use the
Xilinx Convolutional Coder core, which can be added into

the transmission chain as part of system adaptation. We use

codes with constraint lengths 6 and 8 with a 1/2 code rate.

At the receiver, data is obtained from the USRP radio

frontend. It passes through the Matched Filter, which in-

creases the SNR. When a modulated signal is received, the

frequency of the local oscillator is typically off by some

variable margin, which is corrected by the Carrier Recovery
block. Timing Recovery finds the correct sampling points

for each symbol, eliminating the effects of timing shifts and

jitter. The DQPSK Demodulator is then used to map the

complex signal samples back into information dibits. The

Viterbi Decoder also uses a Xilinx core, with codes to match

the convolutional coder at the transmitter. The Deframer
correlates the fixed 64-bit frame access code inserted at the

transmitter with the streaming data, in order to identify the

start of a frame of data. It extracts the data from the frames

and performs checksum verification.

4.2 Adaptation Algorithm

As can be seen in Figure 6, the BER at the receiver

depends significantly on the coding scheme used. On the

other hand, lower constraint length codes or no coding re-

59

none coding

7 8 9 10 11 12 13
SNR [dB]

B
E

R

constraint length 8
constraint length 6
no coding

target BER

t=t

step 1

step 3

step 2

10
−1

10−2

10−3

10−4

10−5

10−6

1t=tt=t 02

Figure 6. BER vs. SNR for different codes,
and an example code switching sequence.

sults in considerable area and power savings on the FPGA,

as will be discussed in more detail in Section 4.3. To re-

solve this trade-off we have designed an adaptive applica-

tion which changes the coding scheme depending on the

perceived BER.

Setting a target BER, as shown in Figure 6, the adapta-

tion algorithm implemented in the Decision Engine at the

receiver decides when a switch of the coding scheme is re-

quired2. Decisions are based on the simulated BER versus

SNR curves shown in the figure, which are programmed

into the Decision Engine using a lookup table. Based on

this table, the Decision Engine can predict how the BER

changes when a different constraint length is used. If the

current BER is higher than the target, a reconfiguration to

a higher constraint length code is triggered, representing a

parametric reconfiguration. If the BER is low enough that a

less complex code is sufficient to achieve the target, the De-

cision Engine lowers the constraint length or switches the

coding off completely, representing a structural reconfigu-

ration. To allow the transmitter to respond to an event at

the receiver and reconfigure to the same constraint length, a

control channel is needed. In this implementation ethernet

is used, though this could be done wirelessly.

An example adaptation sequence is shown in Figure 6.

The system starts in the most robust coding state (CL = 8)
at time t = t0. The Decision Engine monitors the BER

output of the Viterbi decoder at the receiver. The hardware

reports this value to the software wrapper using the regis-

ter interface (see Figure 4), which in turn triggers an event

to the Decision Engine. The Decision Engine estimates the

BER with less robust coding (CL = 6) using the lookup ta-
ble, and sees that it remains below the target BER, so it

2The target BER in Figure 6 is chosen for illustrative purposes only.

PSSa Tx Rx

CLb none 6 8 none 6 8

Slices 6715 1426 1433 1435 2594 3693 6555

(% regionc) 98% 21% 21% 21% 38% 54% 95%

BRAMs 13 8 8 8 10 12 14

Mults 0 24 24 24 41 41 41

aProcessor Subsystem, basic hardware to run Linux, in static region.
bConstraint length of convolutional code in radio chain (partial region).
cPercentage of static/partial region, respectively (6848 slices each).

Table 1. FPGA resource utilisation.

initiates a parametric reconfiguration by setting the param-

eter constraintLength of the Encoder and Decoder blocks

to 6 (step 1 in Figure 6). The runtime system maps this

parameter to the software wrapper of the hardware chain

(as described in Section 3.3) which performs the necessary

hardware reconfiguration.

At time t = t1, the signal quality increases. When it is

high enough that the target BER can be achieved without

coding, the Decision Engine applies a structural reconfig-

uration to the radio to remove coding (step 2 in Figure 6).

To estimate the BER without coding, we use the frame ac-

cess code correlation value determined by the Deframer.

It knows the sequence inserted by the Framer exactly and

can therefore estimate the BER by averaging the correla-

tion value over a predetermined number of frames. At time

t = t2, the channel conditions have worsened considerably

and the BER has risen above the target, so the Encoder and

Decoder are reconfigured through the parameter to the con-

straint length 8 code (step 3 in Figure 6).

In this manner, the system continues to use the most suit-

able type of coding for the current channel conditions.

4.3 Hardware Implementation

The FPGA implementation consists of a static region

(i.e., processor subsystem), which includes the required

modules to run Linux on the embedded PowerPC, such as

the memory controller, the ethernet core and the ICAPmod-

ule, used for reconfiguring the FPGA. The partially recon-

figurable (PR) region is attached to the processor subsystem

via the OPB bus and is within the address space of the Pow-

erPC (see Figure 4). The PR region contains the processing

chain and is reconfigured by the software wrapper through

the Linux ICAP driver.

We decided to use a single PR region for this implemen-

tation since it is a more general solution. Since the sizes of

the PR regions are fixed and must be large enough to accom-

modate the largest module, using multiple PR regions was

deemed too inflexible and application-specific at present.

As tool support is expanded, improved low-level technolo-

gies could be exploited within this framework.

Table 1 shows the resource utilisation of the processor

60

Sampling Ratea Bitrateb

[Msamples/s] [Mbps]

Coding CL 6 or 8 none 6 or 8 none

Tx HW maxc 100 100 25 50

Rx HW maxc 25 25 6.25 12.5

Demonstratord 2 1 0.5 0.5

aRate of 32-bit samples (16-bit complex) sent to the USRP.
bRate at the Framer/Deframer (PHY layer bitrate).
cMaximum of FPGA hardware chain (from FPGA simulation).
dRate chosen for video demonstrator.

Table 2. Demonstrator performance.

subsystem and various chain configurations. All chains

meet the 100MHz bus frequency requirement. While the

resource requirements of the transmission chain are almost

constant, the area savings when reducing the constraint

length at the receiver are clear. The hardware wrapper area

overhead consists of the two memories used to transfer data,

along with the register interface and minimal logic used to

interface to the OPB bus.

We should also consider the fact that implementing all

three receiver processing possibilities on a single device

without partial reconfiguration would require a larger de-

vice for the receiver. We can see that in this case, the re-

ceive chain with constraint length 8 Viterbi decoder is close

to filling the capacity of the partially reconfigurable region.

Table 2 shows both the maximum performance of the

signal processing hardware and the sampling and bit rates

we chose for the demonstrator setup. The maximum perfor-

mance is the rate achievable by the hardware chain on its

own, neglecting the interface to the software and to the ra-

dio frontend. In our demonstrator we are primarily limited

by the bandwidth of the ethernet connection used to connect

to the radio frontend. This limits the maximum achievable

bit rate to 500Kbps3. Clearly if the demonstrator is exe-

cuted on a more advanced development board with built-in

radio frontend, throughput can be drastically improved, up

to a maximum of 6.25Mbps. Since all radio components

are clocked at the same speed, throughput is identical for

all chains.

In order to quantify the power benefits of adaptation, we

have measured the average power consumption of the three

receiver radio chain configurations (i.e., no coding and cod-

ing with constraint lengths 6 and 8). In our experimental

set-up, we connected a power supply with integrated amme-

ter to the FPGA internal core voltage (i.e., VccInt = 1.5V).

Figure 7 shows the power consumption when increasing

the throughput for the complete FPGA (i.e., processor sub-

system and specific receiver chain in the PR region).

3Since each complex sample is represented by two 16-bit numbers, a

2Msps sampling rate represents 64Mbps of data over the ethernet. With

4 samples per symbol and 1/2 code rate, the 2Msps gives a bitrate of

500Kbps at the Framer/Deframer.

0 2 4 6 8 10 12

0.8

1

1.2

1.4

1.6

1.8

2

y = 0.109x + 0.924

y = 0.066x + 0.827

y = 0.029x + 0.784

Throughput [Mbps]

P
ow

er
 [W

at
ts

]

constraint length 8
constraint length 6
no coding

Figure 7. Measured power consumption with
linear regression curves.

It is apparent that the power consumption increases lin-

early with throughput. Additionally, the graph shows the

large impact constraint length has on power consumption

given the increased amount of FPGA resources required.

4.4 Discussion

In this application, coding might be required when there

is a noisy channel, yet when channel conditions are more

favourable, switching off coding offers a power saving at

the receiver. For applications that require a constant bitrate,

such as video streaming, this means we can halve the sam-

pling rate at the radio frontend when no coding is used (due

to the 1/2 code rate of the coder). This results in less radio

spectrum occupancy and therefore reduces noise and possi-

ble interference in the signal. So it is preferable to use non-

coded transmission when possible. Hence adaptation offers

both power and performance advantages in this scenario.

From Figure 7, we can quantify the power reduction

benefits of run-time adaptation to channel conditions (i.e.,

SNR) using an illustrative scenario. Assume that in order to

provide the required BER in a high noise environment, we

are using a radio chain with coding using constraint length

8. As we can see in the figure, at a throughput of 6Mbps,

the constraint length 8 implementation consumes approx-

imately 1.6W. If the received SNR improves to the point

where a non-coding radio chain implementation can provide

the required BER, an adaptive reconfiguration can reduce

power consumption to under 1W, a saving of over 60%.

In this figure, we have only considered the resultant dy-
namic power reduction through adaptation at the application
level. It must be also noted that using FPGA partial recon-

figuration also contributes to reducing the static power con-
sumption, given that we can time-multiplex functionality on

the same physical resources, enabling the use of a smaller

FPGA, hence reducing the static power.

61

Reconfiguration of the FPGA, when required, takes a

time in the order of tens of milliseconds [4]. However,

the adaptive applications we consider are designed to adapt

over longer terms of minutes or hours, just as channel con-

ditions are slow-changing, so this is not considered a signif-

icant overhead. During reconfiguration, the partial region is

disabled, and thus consumes no power. The energy required

to write the new configuration is minimal as it is done seri-

ally via the ICAP port.

This application presents a possible use of our system

model and software architecture. The architecture is appli-

cable well beyond the example presented here, which only

serves as a proof of concept, highlighting both the benefits

of using partial reconfiguration for adaptive systems, and

the benefits of abstracting adaptation from reconfiguration.

5 Conclusions and Future Work

We have presented a system model and software archi-

tecture for implementing adaptive applications, harnessing

the performance and reconfigurability advantages of mod-

ern FPGAs. By adopting an application level approach to

adaptation, we enable system designers to implement self-

adaptive applications in which the computation can exploit

the performance of hardware, while the adaptation is man-

aged in software code that can be modified easily, and use

reasoning algorithms not suited to hardware implementa-

tion. This enables us to narrow the gap between application

level adaptation and FPGA reconfiguration. We showed an

example application that has been fully tested and demon-

strated.

Our main aim at present is to continue work on the Com-
poser, to improve its level of automation. We also intend

to explore methods by which to exploit some of the more

recent advances in FPGA partial reconfiguration. Finally,

we are exploring the use of more advanced cognitive algo-

rithms within the control plane, aided by the fact that these

only need to be implemented in software.

Acknowledgements

The authors acknowledge Stephen Neuendorffer and

Kees Vissers of Xilinx Labs for their support in providing

the Linux on FPGA implementation used in this work.

This research project IP20060367, is funded by Enter-

prise Ireland under its Innovation Partnership scheme.

References

[1] S. Haykin, “Cognitive radio: Brain-empowered wireless

communications,” IEEE J. Sel. Areas Commun., vol. 23, no.
2, pp. 201–220, Feb. 2005.

[2] F.J. Mullany et al., “Self-deployment, self-configuration:

Critical future paradigms for wireless access networks,” in

Workshop on Autonomic Communication (WAC), 2004.

[3] R. Lysecky and F. Vahid, “A configurable logic architecture

for dynamic hardware/software partitioning,” Design, Au-
tomation and Test in Europe (DATE), 2004.

[4] P. Lysaght et al., “Enhanced architectures, design method-

ologies and CAD tools for dynamic reconfiguration of Xil-

inx FPGAs,” in International Conference on Field Pro-
grammable Logic and Applications (FPL), 2006.

[5] M. Hübner et al., “New 2-dimensional partial dynamic re-

configuration techniques for real-time adaptive microelec-

tronic circuits,” in International Symposium on Emerging
VLSI Technologies and Architectures (ISVLSI), 2006.

[6] K. Paulsson et al., “On-line routing of reconfigurable func-

tions for future self-adaptive systems - investigations within

the æther project,” in International Conference on Field Pro-
grammable Logic and Applications (FPL), Aug. 2007.

[7] N. Steiner and P. M. Athanas, “Autonomous computing

systems: A proof-of-concept,” in Engineering of Reconfig-
urable Systems & Algorithms (ERSA), 2007.

[8] C. Claus et al., “Using partial-run-time reconfigurable hard-

ware to accelerate video processing in driver assistance sys-

tem,” in Design, Automation and Test in Europe (DATE),
2007.

[9] C. Kachris and S. Vassiliadis, “Performance evaluation of an

adaptive FPGA for network applications,” in Workshop on
Rapid System Prototyping, 2006.

[10] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel,

andW. Burleson, “A reconfigurable, power-efficient adaptive

viterbi decoder,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 13, no. 4, pp. 484–488, 2005.

[11] M. French, E. Anderson, and D. Kang, “Autonomous sys-

tem on a chip adaptation through partial runtime reconfigu-

ration,” in IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), Apr. 2008.

[12] J. Lotze, S.A. Fahmy, J. Noguera, L. Doyle, and R. Esser,

“An FPGA-based cognitive radio framework,” in Irish Sig-
nals and Systems Conference (ISSC), 2008.

[13] S. Neuendorffer and C. Epifanio, “Generic partially recon-

figured processor systems applied to software defined radio,”

in SDR Forum Technical Conference, 2007.

[14] G. Wrigley et al., “ReConfigME: A detailed implementation

of an operating system for reconfigurable computing,” in

Parallel and Distributed Processing (PDP), 2006.

[15] Ettus Research LLC, Mountain View, California, USA, Uni-
versal Software Radio Peripheral – The Foundation for Com-
plete Software Radio Systems, Nov. 2006.

62

