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Abstract- Cognitive radios are a promising technology for future wireless networks due to their
ability to change behaviour according to their operating context. These radios require a platform
which otTers high performance while also being highly reconfigurable. This paper proposes a novel
design methodology, along with a flexible software/hardware system and associated high-level tools
for the implementation of cognitive radios on modern Field Programmable Gate Arrays (FPGAs).
The platform presented can be used by wireless communication engineers with no hardware design
experience. We present an initial case study demonstrating the use of the platform for a real appli­
cation.
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I INTRODUCTION

According to Mitola [I], cognitive radios are self­
aware, user-aware and radio frequency (RF)-aware ra­
dios which incorporate elements of machine learning
and machine vision. In other words, a cognitive radio
can change its behaviour according to its context au­
tonomously, based on experience and learning. Due to
technology advances in recent years, Mitola's vision is
close to becoming a reality today.

Typically machine learning and reasoning, in a cog­
nitive radio, is implemented in a cognitive engine, able
to interact with the reconfigurable network node. It ob­
tains operating and environmental parameters from the
radio, performs learning, reasoning and decision mak­
ing, and reconfigures the radio accordingly. This pa­
per's focus is on a radio platform that can include such
a cognitive engine.

A major driver for cognitive radios are dynamic
spectrum access networks [2]. In such networks the
cognitive nodes continuously sense the available spec­
trum and use free spectrum bands for communica­
tion. This has the potential to increase spectrum utilisa­
tion, thus making efficient use of a valuable and scarce
ressource. The enabling technology for dynamic spec­
trum access networks is the cognitive radio.

Cognitive radios are computationally intensive wire­
less systems that implement highly demanding digital
signal processing algorithms, on different platforms.
General Purpose Processors (GPPs) are the most pro­
grammable and flexible platforms, though is reflected
in their relatively poor performance. On the other
hand, Application Specific Integrated Circuits (ASICs)
provide high performance at the cost of reduced flex­
ibility. FPGAs are an enticing alternative since they
provide some measure of the flexibility afforded by
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GPPs along with performance and power efficiency
closer to that of ASICs.

Modern FPGAs, in addition to providing pro­
grammable logic resources, integrate embedded pro­
cessors and on-chip memory resources on a single
die. Conventionally, FPGAs are completely config­
ured at start-up and the functionality implemented in
the FPGA does not change during application execu­
tion (i.e., static FPGA implementation).

Recent advances in the partial reconfiguration capa­
bility of Xilinx FPGAs [3] enable the reconfiguration
of a region of the device while the rest of the FPGA
continues operating. This approach, where the appli­
cation functionality is time-multiplexed on the device,
has several benefits; for instance, the ability to use
smaller devices for a given set of functions by alternat­
ing the specific function implemented at anyone time,
rather than implementing all of them together. This di­
rectly translates into cost and power consumption sav­
ings.

In this paper we propose a design methodology, a re­
configurable platform, and associated high-level tools
for the implementation of cognitive radios on modern
FPGAs. Furthermore, we abstract the process of ra­
dio design away from its FPGA implementation de­
tails, opening the features of modern FPGAs to engi­
neers without hardware design experience. With the
proposed system, radio designers and communication
engineers will be able to build cognitive radios, ben­
efiting from the performance and power consumption
advantages of FPGAs.

We give a brief overview of related work in Sec­
tion II before introducing the project goals and high
level system architecture in Section III. In Section IV,
we discuss an initial case study demonstrating the plat-



form's use in an audio transmitter. Section V draws
conclusions and identifies the future research direction.

II RELATED WORK

There are a number of radio plaforms available for
software defined radio and cognitive radio research,
with more still in development. In the following we
give a brief overview of a selection of those directly
related to the one proposed in this paper and of current
interest to the authors.

a) The Kansas Universtiy Agile Radio
The cognitive radio platform developed at the Uni­

versity of Kansas is aimed for research in the areas of
cognitive radio and dynamic spectrum access [4]. It is
a custom-built hybrid system of a full embedded Pen­
tium PC running the Linux Operating System (OS), a
Xilinx Virtex-II Pro FPGA, an RF front-end for the
5 GHz band, and active transmit and receive anten­
nas. Radio applications are composed of library com­
ponents which can run on the PC, in FPGA logic, or on
the embedded PowerPC processor cores of the Virtex­
II Pro FPGA. An intelligent radio control and manage­
ment structure instantiates the components and handles
reconfiguration of the radio at run-time.

b) The Wireless Open-Access Research Platfonn
Rice university's Wireless Open-Access Research

Platform (WARP) is a scalable, extensible and pro­
grammable wireless platform with a Xilinx Virtex-II
Pro FPGA as its baseband processor and up to four RF
daughter boards [5]. The physical layer of a radio is
implemented in FPGA logic, while MAC layer func­
tionality can be implemented in C using the embedded
PowerPC processor cores. The C programs are com­
piled for the bare core, without an OS. This platform
allows very efficient software radio implementations
either written in VHDL or generated by the MATLAB
language toolbox in Xilinx SystemGenerator. How­
ever, it does not allow C-library based development of
radio or cognitive functionality for the PowerPC pro­
cessor cores.

c) Rutgers WINlAB
The Wireless Information Network LABoratory

(WINLAB) at Rutgers University has a network cen­
tric cognitive radio project aimed at the development
of a multi-band, frequency agile radio platform [6]. In
its current state it has two Xilinx FPGAs, one as a base­
band signal processor and the other as a network packet
processor. An embedded CPU is used for manage­
ment and control of the radio. The first evaluation tests
use the Universal Software Radio Peripheral (USRP)
as a commercially available and inexpensive RF front­
end [7].

d) GNU Radio
GNURadio is an open-source software radio imple­

mentation for PCs [8]. It provides a large library of
signal processing components as well as a framework,
based on the Python language, to connect these com­
ponents together to build a radio. Although not re-
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quired, it is mostly used with the USRP RF front­
end [7], which is connected to the host PC via USB
2.0. A large number of signal processing components
have been developed by the open-source community
making it a powerful tool for PC-based cognitive radio
experiments.

e) Why another platforln?

The proposed platform is a hybrid FPGA hardware
and software platform, benefiting from the high speed
and low power consumption of an FPGA with its em­
bedded processor cores. In that respect it is similar to
the Kansas Universtiy Agile Radio (KUAR) or WARP
platforms. However, we propose a system that includes
a set of design tools to abstract the hardware details
from the radio designer. Additionally we utilise run­
time partial reconfiguration of FPGAs, so that a cogni­
tive engine can reconfigure hardware and software in
exactly the same way.

III A NEW ApPROACH TO COGNITIVE

RADIO DESIGN

a) Project Goals

The primary project goal is to allow communica­
tions engineers (i.e., non-hardware experts) to quickly
design and implement cognitive radios on FPGAs, thus
gaining from the significant performance and power
advantages they provide. FPGAs are traditionally con­
sidered to be hardware devices, which are difficult to
use since they require experience in low-level hardware
design.

The radio designer on the other hand prefers to focus
on the radio design and not think about implementation
details on the FPGAs. We will develop a set of high­
level tools that will enable the radio designer to choose
radio components from a library and connect them to­
gether to create a functional description of the cogni­
tive radio without knowing low-level implementation
details.

A second objective is to show that FPGAs are pro­
grammable computing platforms and not rigid comput­
ing devices. Hence, an important goal of the project is
to demonstrate that using FPGAs we can implement
cognitive radios which are programmable at run-time.
Examples of run-time reconfiguration of the radio l are:

• Parametric reconfiguration: changing the param­
eters that control the functionality of the Digital
Signal Processing (DSP) components used in the
radio chain.

• Structural reconfiguration: changing the structure
of the radio chain. This could mean, for exam­
ple, the addition or removal of DSP components
at run-time.

We will study the mechanisms required to imple­
ment these two types of radio reconfiguration on an

1reconfiguration here does not refer to FPGA partial reconfigura­
tion
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Fig. I: The IRIS architecture.

FPGA platform. Additionally, an important aspect of
this second project goal is to investigate how the radio
designer could describe and reason about this adapta­
tion process.

As mentioned in Section I, a major driver for cog­
nitive radio research is dynamic spectrum access net­
works [2]. In these networks the cognitive radio has
the capability to sense available spectrum and use only
free bands. Therefore, the final project goal is to inves­
tigate spectrum sensing algorithms and build a demon­
strator for a dynamic spectrum access cognitive radio
using the proposed FPGAs-based radio platform.

b) Implementing Radio In Software (IRIS)
The Implementing Radio In Software (IRIS) plat­

form has been under development at Trinity College
Dublin since 1999 [9]. It is a highly flexible and highly
reconfigurable software radio platform for an x86 GPP
running the Windows operating system.

The IRIS architecture is illustrated in Figure I. The
building blocks of an IRIS radio are DSP components,
each performing a distinct task. Examples for such
components are modulators, framers, or filters. Each
of the components has a set of parameters and an in­
terface to the decision engine, which allow for re-use
in different radio configurations. The decision engine2

is a software component designed for a specific radio
configuration, i. e., it is aware of the full radio chain
while the processing components are not. This deci­
sion engine can subscribe to events triggered by radio
components, and change radio parameters or reconfig­
ure the radio's structure. A cognitive engine would
therefore use this decision engine mechanism to con­
trol the radio.

The typical flow used to design a radio with IRIS
is as follows. The radio designer writes an eXtensible
Markup Language (XML) radio configuration specify­
ing the radio components, their parameters and con­
nections. If a decision engine is required, the radio
designer implements it in C++ with a simple interface
to the radio components and the IRIS run-time engine.

On IRIS start up, triggered by the radio launcher,
the XML file is parsed and the IRIS run-time engine

2In previous IRIS publications, the term Control LORie was used
instead of Decision Engine.
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Fig. 2: The system architecture.

creates the radio by instantiating and connecting the
specified components. The run-time engine then loads
the decision engine, also given in the XML file, and at­
taches it to the components. Finally the radio is started
and blocks of data generated by the source component
will be processed by each of the components in the ra­
dio chain. When one of the events the decision engine
has subscribed to is triggered, the decision engine can
react. The reaction could be anything from diagnostic
output to a full reconfiguration of the radio.

c) Systenz Architecture

In order to execute IRIS on a Xilinx Virtex FPGA,
we initially ported it to the Linux as since IRIS re­
quires an as for its execution. Recently, there have
been multiple research efforts to run the Linux as on
FPGAs. For the proposed framework, we use the em­
bedded Linux as distribution described in [10].

When executing a cognitive radio on an FPGA, the
DSP components can be implemented in either the
PowerPC processor or in the logic fabric. In order to
support the execution of hardware components within
IRIS, we extended the library of DSP components.
Each DSP component in the library consist of two de­
scriptions: a c++ description for a software implemen­
tation, and a VHDL description for a hardware imple­
mentation, both provided by the IRIS system. How­
ever, it is important to note that from the radio de­
signer's perspective, both representations are function­
ally identical but with different non functional charac­
teristics, i.e. performance, area, power, etc. The ra­
dio designer only knows about DSP components im­
plementing the required functionalities.

To decouple the radio design as much as possible
from the implementation details we propose the sys­
tem architecture shown in Figure 2. All the radio de­
signer has to provide is an XML description of the ra­
dio chain and optionally a c++ description of the deci­
sion engine. The composer takes that radio description
and creates an efficient FPGA implementation con­
sisting of some radio components implemented on the
PowerPC processor and other radio components imple-



Fig. 4: Radio components for the initial case study. The PC which
transmits the data using a USRP is not shown in the figure.
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the Windows version of IRIS. Note that we only imple­
mented physical layer functionality for this initial case
study. This has the advantage that the quality of the
physical channel becomes immediately apparent when
listening to the received audio. The audio itself was en­
coded as simple 16 bit Pulse Code Modulation (PCM)
samples with the sampling rate tailored to the physical
layer data rate of 238 kbitls.

b) Transmitter

The transmitter radio components are shown in Fig­
ure 4(a). The first component in the chain is the PCM
file reader. It reads PCM encoded audio from a file
in the Linux OS file system into memory and transfers
this data to the Framer. The simple frame structure
used for the initial case study starts with a frame check
sequence, so that receiver can synchronise with each
frame, followed by the payload length, the whitened
payload and a checksum field. The payload is whitened
with a pseudo random sequence known at the receiver,
so that the data sent over the air appears random. This
simplifies synchronisation at the receiver. The DBPSK
Modulator performs Differential Binary Phase Shift
Keying (DBPSK) modulation, encoding a binary '1'
as 1800 phase shift and a '0' as no phase shift. To limit
the spectral footprint of the signal, it is upsampled and
filtered with a root raised cosine pulse shaper in the
Upsampler and Pulse Shaper components. The data

Fig. 3: The system setup in the initial case study. The only purpose
of the PC at the transmitter side is to link the XUP board to the USRP
due to the lack of USB 2.0 connections.

mented in the FPGA logic fabric. Thus, the output of
the composer is a partial bitstream that must be down­
loaded to the partially reconfigurable region defined in
the FPGA (see Figure 2).

In addition, the composer will create a software
wrapper for the hardware radio sub-system (i.e., the
partial bitstream). The main goal of this software
wrapper is to implement the same interface as the rest
of software components. That is, the newly created
hardware sub-system is seen by the IRIS run-time sys­
tem as another software component. A key feature
of this software wrapper is to trigger the FPGA par­
tial reconfiguration process (i.e., actually downloading
the partial bitstream), which will be triggered when the
IRIS run-time system instantiates the component.

The static part of the FPGA design consists of all
the infrastructure necessary to run the Linux OS. This
static design is completely transparent to the radio de­
signer. The static design used for our initial case study
is described in Section IV. Given the composer out­
put, the IRIS run-time engine instantiates the radio and
the decision engine and runs the radio as described in
Section III b).

Finally, it is important to note that the static design is
the only building block in our proposed methodology
which is FPGA and board specific. All other build­
ing blocks (i.e., library of DSP components, Composer
and IRIS run-time system) are independent of the tar­
get FPGA platform. In our framework, we plan to pro­
vide multiple static designs targeting different FPGA
boards, thus making our framework portable across
multiple FPGA platforms.

IV INITIAL CASE STUDY

We have successfully demonstrated a live audio
transmission application with the transmitter running
on the Xilinx University Program (XUP) board [11]
using the system architecture described above. In this
section, the demonstrator setup is described.

a) High Level Description

The demonstrator was implemented on a XUP board
featuring a Xilinx Virtex-II Pro FPGA with an embed­
ded PowerPC processor running the Linux OS. As an
RF front-end we used the USRP [7], which can be con­
nected to a PC using USB 2.0. The USRP is a flex­
ible frequency agile radio front-end which can trans­
mit and receive arbitrary waveforms at a reconfigurable
frequency. It converts digital complex baseband data to
RF for transmission, and vice versa for receiving. Un­
fortunately the XUP development board does not in­
clude a USB 2.0 master connection, so the baseband
data was routed through a PC in order to access the
USRP. The high level setup for the demonstrator is
shown in Figure 3.

All transmitter signal processing is performed in
the Virtex-II Pro FPGA while the transmit PC simply
routes the processed data to the USRP. The receiver
is implemented fully on a standard Windows PC using
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Fig. 5: The static design of the FPGA.

is transferred to the transmit PC using TCP sockets,
where it is then transmitted using the USRP.

In this initial case study we manually partitioned the
radio chain into hardware and software components.
The computationally demanding processing compo­
nents are the modulator, upsampler and filter compo­
nents. Therefore it is a natural choice to implement
these in the logic fabric of the FPGA. Accessing the
Linux as filesystem from hardware is a complex task,
but this can be performed easily in software. The same
is true for sending the data over a TCP socket. There­
fore we chose to implement these components in soft­
ware. The framer component was implemented in soft­
ware as well since its tasks are simple and there would
not be much benefit if it was realised in hardware. Ad­
ditionally, the data after the framer can be treated as a
continuous stream of bits while the framer itself oper­
ates on larger blocks of data. Streams of bits can be
easily pipelined in hardware giving the transmitter sys­
tem a significant performance benefit.

c) Receiver
We only give a brief description of the receiver radio

chain since it is implemented using the Windows ver­
sion of IRIS which is not the focus of this paper. The
receiver radio chain is shown in Figure 4(b).

After receiving signal samples from the USRP Re­
ceiver component, the Matched Filter reduces the
noise in the signal. The Carrier Recovery and Tiln­
ing Recovery components correct the frequency and
phase offset of the receiver's local oscillator as well
as the symbol timing errors. The DBPSK Delnodula­
tor converts the complex baseband samples into bits
and the Deframer correlates with the frame check se­
quence to find the beginning of each frame. It extracts
de-whitenes the payload. Finally the data is transferred
to an audio player and the music is played.

d) FPGA Hardware
The static design of the Virtex-II Pro FPGA on the

XUP development board is shown in Figure 5. It con-

Partially Reconfigurable Region

Fig. 6: Configuration of the parital reconfiguration region with input
and output registers. The solid arrows represent the data flow; the
dashed ones represent the control flow. Note: the number of registers
is not exact.

tains the basic hardware modules required to run the
Linux as on the FPGA and a partially reconfigurable
region in which the hardware radio sub-system is im­
plemented. The Linux as filesystem is stored on a
CompactFlash card attached to the System ACE inter­
face controller in the FPGA. The Internal Configura­
tion Access Port (lCAP) is used to access the FPGA
configuration memory in order to load a specific ra­
dio design into the partially reconfigurable region. A
Linux as device driver for ICAP is available in the
Xilinx Git repository [10].

The partially reconfigurable area has been config­
ured for the initial case study as shown in Figure 6.
As discussed in the previous section, the core compo­
nents are the modulator, the upsampler and the pulse
shapero To allow the PowerPC processor to access the
hardware components the bus interface functions as a
slave on the OPB bus.

Valid samples are indicated using a I-bit "'valid" sig­
nal. The hardware performs DBPSK modulation, tak­
ing I-bit symbols and producing I-bit sample values,
representing either 1 + O· or -1 + O· in the complex
baseband space. These samples are then upsampled
by a factor of 4 and passed to the pulse shaper (i. e. ,
root raised cosine filter). Since the only possible sam­
ple values are ± 1, the filter is implemented without
the use of multipliers. Instead, the value of each fil­
ter coefficient is either added or subtracted, depending
on the input sample. This saves significant logic area,
and allows the circuit to achieve the 100 MHz timing
required by the aPB bus.

The utilisation of the FPGA's logic fabric shown in
Table 1. It is a requirement of the static region that
the PR region achieves timing of 100 MHz. Thus all
hardware components must be designed to meet this
constraint, as is the case for this implementation. It
is clear that the partially reconfigurable region uses
a small portion of the available logic. This suggests
that significantly more complex hardware sub-systems
can be used in future applications. This partial imple-
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Table I: FPGA utilisation in the static and partially reconfigurable
(PR) regions. BlockRAMs are 18 Kb embedded memories, and
slices are the basic measurement of logic utilisation.

Region
Static
PR
Available
Total

Slices
5,927
1,446

13,696
7,373 (53 %)

BlockRAMs
14
o

136
14(10%)

phisticated demonstrator is underway, using the deci­
sion engine to actively reconfigure the radio running in
the FPGA logic fabric. This decision engine will be
a simple congnitive engine making autonomous deci­
sions based on current signal characteristics.

We envisage that the developed platform will prove
useful to the research and commercial communities in
helping cognitive radios become a reality.

mentation did not make use of the other heterogeneous
resources available such as embedded multipliers and
memories, which will be of crucial importance in fu­
ture designs.

e) Software Wrapper for the Radio Sub-System
A software radio component wrapper had to be writ­

ten to transfer the data between software and the hard­
ware component chain. This wrapper performs the
basic steps shown in the following pseudo-code seg­
ment:

1 for each inputbyte do
FPGAWriteReg(DATA_IN, inputbyte)

3 FPGAWriteReg(START_REG, 1)
4 wait until FPGAReadReg(DONE_REG)=1
5 for each output_register

outputSamp[i]=FPGAReadReg(DATA_OUT[i])
7 done
8 done

where the functions FPGAWriteReg and
FPGAReadReg write to and read from a memory­
mapped register, respectively.

After the software has written a byte of data to the
input register (i.e., 8 symbols), it issues a "start" com­
mand by writing to the control register (i.e., START
register in Figure 6). The hardware awaits this signal
and on receiving it begins to process data.

Once the hardware has finished processing the input
data, this is signalled to the software by writing to the
DONE register. The software waits for the hardware to
finish its execution by polling the DONE register (see
line 4 in the above pseudo-code). Finally, the software
wrapper reads the array of sample values. (For one
input byte the hardware generates output 32 samples.)

V CONCLUSIONS AND FUTURE WORK

We introduced a novel cognitive radio system ar­
chitecture, utilising the high performance, power effi­
ciency and flexibility features of modem FPGAs. The
proposed system can handle parts of the radio be­
ing implemented in hardware with other parts in soft­
ware. We propose a composer capable of automat­
ically deciding the hardware/software partitioning of
radio components in a given chain, while hiding the
implementation details from the radio designer. An
initial case study successfully demonstrated the plat­
form's use in a live audio transmission application.

One key point for future work is the implementa­
tion and test of the composer. Furthermore a more so-
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