
SPECIAL ISSUE

Real-time hardware acceleration of the trace transform

Suhaib A. Fahmy Æ Christos-Savvas Bouganis Æ
Peter Y. K. Cheung Æ Wayne Luk

Received: 10 May 2007 / Accepted: 12 November 2007 / Published online: 24 November 2007

� Springer-Verlag 2007

Abstract The trace transform is a novel algorithm that

has been shown to be effective in a number of image

recognition tasks. It is a generalisation of the Radon

transform that has been widely used in image processing

for decades. Its generality—allowing multiple functions to

be used in the mapping—leads to an algorithm that can be

tailored to specific applications. However, its computation

complexity has been a barrier to its widespread adoption.

By harnessing the heterogeneous resources on a modern

FPGA, the algorithm is significantly accelerated. Here, a

flexible system is developed that allows for a wide array of

functionals to be computed without re-implementing the

design. The system is fully scalable, such that the number

and complexity of functionals does not affect the speed of

the circuit. The heterogeneous resources of the FPGA

platform are then used to develop a set of flexible func-

tional blocks that can each implement a number of

different mathematical functionals. The combined result of

this design is a system that can compute the trace transform

on a 256 9 256 pixel image at 26 fps, enabling real-time

processing of captured video frames.

Keywords Trace transform � Image processing �
Field programmable gate arrays � Reconfigurable systems

1 Introduction

The extraction of information from images is a complex

process. An image, in its pixels and intensities, serves no

purpose until useful information can be deduced about it.

This information may be the segmentation or even identi-

fication of objects, or in a temporally changing stream of

images, some deduction of the movement or higher level

behaviour of an object. One of the tools that is of great

benefit in these tasks is the ability to transform an image

from the spatial domain to an alternate domain, in which

information is more easily extracted.

The Radon transform is a classical piece of image pro-

cessing theory, introduced in 1917 and developed

throughout the last century. Its primary utility is in iden-

tifying information on the internal properties of an object

from a set of projections. These projections are obtained by

summing pixel values along all lines crossing the image. Its

main application has been in the field of computed

tomography (CT), a primarily medical application in which

an internal ‘‘image’’ of a patient can be obtained by com-

putation from a set of X-ray profiles [4].

In 1998, Kadyrov and Petrou introduced the trace

transform [8], a generalisation of the Radon transform,

whereby any functional can be used, in place of the sum, to

reduce a vector of pixel intensities along lines crossing the

image to single values in the transform domain. Indeed, a

typical implementation would include a number of func-

tionals being used separately on the lines, yielding a

‘‘Trace’’ of the image for each functional. These Traces can

be used for image analysis tasks, or through further steps, a

set of features can be extracted from the image. Selection

of appropriate functionals can give features that are

invariant or measurably sensitive to standard transforma-

tions (e.g., translation, rotation and scaling) in the image

This work was partially funded by the UK Research Council under

the Basic Technology Research Programme (GR/R87642/02) and by

the EPSRC Research Grant (EP/C549481/1).

S. A. Fahmy (&) � C.-S. Bouganis � P. Y. K. Cheung � W. Luk

Circuits and Systems Group, EEE Department,

Imperial College London, Exhibition Road,

London SW7 2BT, UK

e-mail: s.fahmy99@imperial.ac.uk

123

J Real-Time Image Proc (2007) 2:235–248

DOI 10.1007/s11554-007-0061-x

domain. The algorithm has been shown to perform very

well in tasks such as image database search [9], token

registration, activity monitoring and face authentication

[16, 17] among others.

One of the difficulties in working with the algorithm has

been its high computational complexity. The application

of many functionals (some of which are intrinsically

complex) to the multitude of lines crossing the image

requires significant processing power. By harnessing the

power of modern field programmable gate arrays (FPGAs),

it is possible to design a hardware system that can imple-

ment the algorithm at high frame rates. This opens new

possibilities in applying the trace transform to video as well

as still images.

By exploiting the heterogeneous resources on modern

FPGAs it is possible to create a flexible platform that can

implement a wide array of different functionals. Further-

more, a hardware-accelerated platform as part of a

combined software/hardware system allows for further

experimentation with the algorithm. By allowing a host PC

to take advantage of the flexibility in terms of functional

selection, it is possible to use the system to search for

functionals that are effective for a given task. Flexibility

coupled with speed makes this platform an ideal spring-

board for further investigation of the Trace transform.

2 Introducing the trace transform

The trace transform of an image is a mapping from the

spatial domain with Cartesian coordinates (x,y) to a domain

with coordinates (/,p) where the value at each (/,p) point

is equal to the result of applying a functional T to the image

intensity function along a line that crosses the image tan-

gential to angle / and at a distance p from the centre.

Figure 1 shows this mapping. The flexibility of the trans-

form comes from the freedom to use any functional to

reduce the line to a single value in the (/,p) domain.

Typically, a number of functionals are applied and thus a

number of Trace images are produced.

While the transform is defined in the continuous

domain, its discrete implementation is a trivial develop-

ment. Parameters / and p are sampled discretely.

Considering /, it is clear that lines crossing the image can

be at any angle from 0� through 360�. It is, in fact, possible

to only use angles up to 180�, since a line with angle h and

distance x could be represented by the parameters 180 - h
and -x. However, it is important to note that some func-

tionals take into account the direction of the line, and hence

this simplification cannot be applied generally. For func-

tionals that do not use the line direction, the Trace is

effectively odd-symmetrical, due to the aforementioned

property. A line in the discrete domain is just an array of

values that represent the image intensity at each of the

sampled points.

The functionals used to reduce these arrays to single

values can be arbitrarily defined. One might choose some

variation of sum of differences, mode, median, maximum

difference, root mean squared, etc. For different applica-

tions, different functionals may exhibit strengths that are

not apparent in others. Furthermore, functionals may vary

significantly in their computational complexity.

A further extension of the transform involves the

extraction of ‘‘Triple features’’. This is done by applying a

further functional called the diametrical functional, P(p), to

the each of the p vectors in the resultant trace. Finally a

‘‘circus functional’’, U(/), is applied to the resultant vector,

yielding a single triple feature. This process is shown in

Fig. 2. Applying a number of functionals at each stage

gives a number of triple features. If nT functionals are used

for the trace functional (T), nP functionals are used for the

diametrical functional (P) and nU functionals are used for

the circus functional (U), then a total of nTnPnU triple

features can be extracted. Appropriate selection of func-

tionals at each stage can result in these features being

invariant [10, 13] or measurably sensitive [11] to spatial

transformations.

Fig. 1 Mapping of an image to the new space

Fig. 2 An image, its trace, and the subsequent steps of feature

extraction

236 J Real-Time Image Proc (2007) 2:235–248

123

2.1 Computational complexity

The main issue with the transform thus far has been that of

computational complexity. To investigate this, it is first

necessary to understand the parameters that can be con-

trolled in an implementation. We will concern ourselves

here with only the first step of the Trace transform, the

mapping from the spatial domain to the Trace domain,

since that is the most computationally intensive step.

Firstly, a fixed sampling density of angles can be con-

sidered, n/; one could consider angles down to a 1�
accuracy or lower, or alternatively choose a coarser sam-

pling. The amount of information carried over to the Trace

domain clearly depends on this parameter. Secondly, it is

possible to sample an arbitrary number of lines, np, per

angle, again this has a bearing on the accuracy of the

transformation. For an N 9 N image, we might require an

inter-line distance of a single pixel, so np would have a

maximum value of
ffiffiffi

2
p

N (for a diagonal line). Since each

line maps to a single point in the (/,p) domain, an image

transformed with the above parameters will yield a trace of

size n/ 9 np. Another parameter that can be varied is the

sampling granularity along each line, or more intuitively,

the number of samples taken into account for each line, nt.

If the requirement is to read every pixel along each line,

then the maximum value of nt is also
ffiffiffi

2
p

N: This will not

affect the density of data in the parameter domain but will

affect the accuracy of the results of applying the functional

to the line. Other parameters used in this section are shown

in Table 1.

There are two main steps in computing the trace trans-

form. The first is to extract the necessary pixels from the

source image, given values (/,p) and the second is the

computation of the Trace results. For each of n/ angles and

np lines per angle, let C/ represent the number of opera-

tions required to compute the pixel addresses for a line. To

compute each of NT functional results, nt points on each of

the np lines for each of the n/ angles must be processed. If

CT denotes the number of operations required on average

per pixel per functional, then a total of n/npntNTCT oper-

ations are required to compute the traces for an image,

while n/npC/ operations are required for the line

extraction.

For an N 9 N image, these parameters may take values

as follows: n/ = 180, np ^ N and nt ^ N. This would give

a computation complexity of 180NC/ + 180N2nTCT. The

number of functionals, nT, may be 8–10 in an implemen-

tation, and so the high computational cost is apparent. The

amount of time taken for C/ and CT would depend on the

implementation; in hardware, it might be possible to do

these operations more efficiently than in software. Fur-

thermore, by parallelising in the number of angles (n/), the

number of lines (np) and the number of functionals (nT), the

total run time can be reduced. The key to accelerating any

algorithm in hardware is to identify the inherent parallelism

and then exploit it in the design. By harnessing this par-

allelism, the algorithm could well be accelerated to run at

the speeds required for real-time video.

3 Related work

The work presented in this paper and in [5] is the first to

deal with hardware implementation of the trace transform.

The most closely related work is that which deals with the

Radon transform and so that is what will be considered

here.

In [15], a system based on four parallel DSP processors

for computation of the Radon and Inverse Radon Trans-

form is presented. The parallelism of angles is exploited to

increase performance. Different interpolation techniques

are compared, and while Linear Interpolation is shown to

be slower than nearest neighbour, it is chosen due to the

increase in quality.

In [1], the authors use progressively larger line segments

to approximate the line sums, thus significantly reducing

processing time. The authors of [7] further develop this

algorithm, presenting a hardware implementation that can

process 21 512 9 512 pixel frames per second.

In [14], the presented implementation first maps an

image to the Polar coordinate system, then uses this to

transform it to the Radon domain. The system only deals

with binary images. The authors also suggest parallelisa-

tion in the angles.

In [12], the authors make use of the Radon transform’s

relationship with the Fourier transform. Using efficient

implementations of the FFT and IFFT, they are able to

accelerate computation of the Radon and inverse Radon

transforms.

Finally, in [3], the authors present two architectures for

the acceleration of the Finite Radon Transform. They

Table 1 Trace transform computational parameters

Parameter Explanation

n/ The number of angles to consider

np The number of distances (inverse of the interline distance)

nt The number of points to consider along each trace line

NT The number of Trace functionals

NP The number of diametrical functionals

NU The number of circus functionals

C/ The operations required for trace line address generation

CT The average operations per sample for each T functional

CP The average operations per sample for each P functional

CU The average operations per sample for each U functional

J Real-Time Image Proc (2007) 2:235–248 237

123

mention the clear distinction between the Finite Radon

Transform and the Discrete Radon Transform. The theory

is thus distinct.

There are a few important notes to be mentioned, that

preclude much of this previous work from being useful in

regard to the trace transform. Firstly, Radon transform

implementations assume the function to be applied to each

line is a sum. For the trace transform, this is clearly not

the case, so ideas such as partial results and the summing

of line segments (as in [7]) cannot be applied. The work

in [14] actually links closely to the idea of using rotations

instead of line extractions that will be shown in the next

section. Furthermore, the trace transform does not retain

the mathematical properties of the Radon transform nor its

relationship to other transforms, hence work such as that

in [12] cannot be adapted for a trace transform

architecture.

The presented architecture builds from the ground up,

introducing parallelism wherever possible in order to

allow speed-up. Further simplifications are made, but with

care not to make any assumptions about the types of

functionals to be considered. This paper builds on the

architecture developed in [5] with the introduction of

flexible functional blocks which enable this architecture to

be used in functional exploration for trace transform

applications.

4 Hardware implementation of the trace transform

4.1 Target platform

The target platform for this implementation is the rela-

tively mature Celoxica RC300 Development board [2].

This board hosts a Xilinx Virtex II XC2V6000 FPGA,

alongside a vast array of peripherals. The only other

components that concern us are the on-board pipelined

ZBT SRAMs—there are four 8 MB banks—and the USB

connection to a host computer. The RAMs can be

accessed in pipelined mode, accepting a single read or

write instruction per cycle and are 36 bits wide. The

FPGA has a large logic capacity as well as providing 144

hard-wired multipliers and 144 18 Kb BlockRAMs. These

are small on-chip RAMs that can be used as buffers and

to optimise data flow in the design. The system was

designed and implemented using Celoxica Handel-C, a

high-level C-syntax-based hardware description language.

It is important to note here, that while it is possible to

write mostly standard C and compile it to an FPGA

design, this gives relatively little performance improve-

ment over software. The key to exploiting the full power

of the FPGA is to write the Handel-C code in a manner

that suits the hardware implementation.

4.2 System framework

Before discussing the details of the hardware implemen-

tation, it is necessary to look at the overall system in its

constituent parts. A host PC captures image data by way of

a standard USB camera, at a rate of 25 frames per second.

The camera outputs frames of size 640 9 480 pixels, the

central 256 9 256 pixels are then extracted in software.

The target is to process these frames in real-time, so the

processing rate must meet this minimum requirement. The

image data is pre-processed, including resizing and con-

version to greyscale, before being sent to the development

board via a USB interface. The image data is stored in one

of the on-board SRAMs before any processing occurs. As

each frame becomes available in the SRAMs, the FPGA

reads the frame and computes the results. These results are

stored in another SRAM, from which the result is trans-

mitted back to the PC, again via the USB interface. On the

PC, the data is reorganised and used in the subsequent

processing steps of a higher level system. Hence the crux of

the hardware implementation deals with the data between

the input and result RAMs. (The FPGA is also used to

control the communication with the PC as well as the data

reading and storage.)

The system is composed of a number of blocks, shown

in Fig. 3. A Top-Level Control block oversees the com-

munication between separate blocks and ensures

synchronisation. The Rotation Block reads an input image

from the on-board RAM and produces a rotated copy at its

output. Each Functional Block takes the pixels in this

rotated image and uses them to compute the relevant results

for each line crossing the image at that angle. This is the

first example of parallelism in the design; these functional

blocks work in parallel thus producing all their results in

the time it would normally take to produce a single func-

tional result. Further parallelism will be examined in

subsequent sections. Finally, an Aggregator Block reads

the results from each functional in turn and outputs them

serially to the result RAM.

Fig. 3 Architecture overview

238 J Real-Time Image Proc (2007) 2:235–248

123

The host PC sends the image data, frame by frame to the

image RAM on the board. The FPGA reads from the USB

port and selects a RAM to write the image to. The RAMs

are double-buffered to increase performance. This means

that while an image is being loaded into one RAM, the

other RAM in the pair is being used for calculation. When

one calculation cycle is completed, the roles of the RAMs

are swapped. Since loading the input memory and reading

the result memory takes less time than the processing, the

system is constantly busy with computation, with no need

to wait for data loading.

The rotation block produces rotated versions of the

original image with angles increasing by 2� per iteration.

This increment can be modified as required for an imple-

mentation. The reason for selecting this value, was to

attempt to retain a similar amount of information in the

trace domain representation as in the image domain. This

results in a mapping of a 256t 9 256 pixel image to

256 9 180 points in the transform domain.

The functional blocks read the resultant stream, keeping

track of the row beginnings and endings, and passes the

results for each row to the Aggregator. Each row corre-

sponds to a single line across the original image. Once the

calculation of all lines for all rotations is complete the host

PC reads from the result RAM, while the system writes the

next set of results to the other output RAM. The results can

then be extracted and organised on the host PC for further

processing.

4.3 Top level control

The Top-Level Control block oversees all the other blocks.

It initiates the rotations and ensures that each new rotation is

synchronised with the completion of results calculation for

the previous rotation. It also manages the double-buffering

of the external RAMs.

4.4 Rotation block

Conceptually, the first step in the algorithm is a line tracer:

a block that takes a (/,p) value and produces the coordi-

nates of the relevant pixels in the source image. These

coordinates are then used to extract pixel intensity values

from the source image, stored in off-chip RAM. It is worth

noting, however, that to compute a trace, all values of (/,p)

must be used, hence, the whole image is traced for all

angles and at all distances from the centre. Bearing this in

mind, a simplification can be made that makes for a more

efficient implementation. Rather than iterate over values of

/ and p then mapping them to the Cartesian domain, it is

possible to rotate the whole image by an angle h and

sample pixel values along the horizontal rows in that

rotated version. This would be equivalent to computing all

the trace results for a fixed value of / = 90 - h. This

equivalence is illustrated in Fig. 4.

It is necessary here to mention an important caveat.

When rotating an image, some parts of the image fall

outside the original size limits of the source image. The

rotated version must either be larger than the source image,

to accommodate this extra information, or the information

must be lost. An equivalent amount of empty canvas is also

introduced from areas ‘‘underneath’’ the image that become

exposed. If a square image of size N 9 N is rotated through

all angles from zero through 360�, then only the portions of

the image that fall within a concentric circle with diameter

N would be present in all possible rotations. This is also

shown in Fig. 4. Here, it is worth mentioning that the trace

transform has only been shown to perform well with

masked images in the presence of noise [9]; since the lines

that trace the image may include part of the background

too, a lack of masking would allow the background to

contribute significantly to the functional results. Due to this

fact, it is necessary for the object of interest to be masked;

that is, that a binary overlay be present that determines

whether or not the corresponding pixel in the image is used

in calculations. It is thus a fair assumption for this system

to require any object to fall within the aforementioned area

and to be masked appropriately.

To understand why this modification simplifies the

system, consider first the initial approach. A block would

be required that takes a (/,p) value and outputs a vector of

addresses. To do this, each line must have a starting point

(which must be computed), that may well fall outside the

image coordinates. A counter must then be incremented for

both image axes and coordinates that fall outside the image

must be discarded. The lines will vary in length, and so,

some way of tracking the position of the perpendicular to

the centre is needed. Furthermore, some way of tracking

(b)(a)

Fig. 4 Rotating an image then reading across its rows can replace the

address generation required for extracting line pixels. The line shown

in a is equivalent to the row of the rotated image in b. The shaded
area shows the part of the image that will fall out of the image frame

for some rotations, and so must not contain an area of interest

J Real-Time Image Proc (2007) 2:235–248 239

123

the correct (/,p) values for each line is required, since each

line is extracted independently. Due to the variation in line

lengths, there is the added problem of reading from the

image RAM inefficiently. Alignment of vectors to take

account for the gaps in between readings would also be

necessary.

Now consider the approach where the whole image is

rotated. Each rotation produces a set of all p values for the

given rotation angle (note the offset mentioned above).

Since the resultant rotated image is produced in raster scan

format, there are no gaps, and the vectors are all aligned.

This means that no further logic is required before reading

from the source RAM. Dealing with a fixed line length of N

also simplifies tracking of the p values in the functional

blocks, since this is simply the row number in the rotated

image (again there is a fixed offset). Once a rotation has

been completed, the source image is again rotated by a new

angle, and this produces the vectors for another value of /
and so on. This technique simplifies the system signifi-

cantly and allows for full pipelining of the architecture.

The Rotation Block thus takes an angle as its input and

produces the raster scan of the source image rotated by that

angle at its output. The source image is read out of order,

and since the output is in order, there is no need for image

buffers or other signals, since all addressing is inherent in

the data.

So far, this modification has dealt with data handling. To

fully harness the power of hardware implementation, it is

also worthwhile to look at exploiting parallelism in the

algorithm. Since results for one angle, /, are in no way

computationally related to other values of /, the algorithm

could be said to be independent in /. Hence a number of

parallel calculations could be computed, equal to the

number of angles considered. It is, however, necessary to

consider data-path limitations. For each rotation that occurs

in parallel, separate accesses would be required to the

source image, due to the out-of-order access imposed by

the design specified above. Hence we would require mul-

tiple copies of the image in separate RAMs, since the board

RAMs on our development board only provide single-port

access to only four banks, and this is unfeasible.

There is, however, another way of multiplying perfor-

mance without sacrificing much area. Consider that any

rotation by a multiple of 90� is simply a rearrangement of

data (or alternatively a reassigning of axes values); this is

easily implemented in software. It is also clear that a

rotation by any (positive) angle, h, is equivalent to a

rotation by some multiple of 90� plus the remaining angle.

Formally:

h ¼ bh=90c � 90þ h mod 90: ð1Þ

As an example, rotation by 212� is equivalent to rotation by

180� followed by a further rotation by 32�.

This fact can be exploited in order to parallelise rota-

tions as follows. The source image is an 8-bit greyscale

image. The external board RAMs are 36-bits wide, and

hence, storing a single image is a waste of the word widths.

Instead, what can be done is to store the four orthogonal

base rotations (0�, 90�, 180� and 270�) concatenated in a

single RAM word. Since the host computer can easily

construct the other three rotations from a standard image,

there is no real computational cost to be considered.

Table 2 shows that any orthogonal rotation can be obtained

with no more than simple calculations that can be per-

formed extremely quickly on a host PC. Now when a

rotation by angle h is carried out, the RAM word that is

output can be spliced to give the relevant pixel for the

rotations by h, h + 90�, h + 180� and h + 270�. This

effectively quadruples performance with only minimal

impact on area. (The area impact is only as a result of

increasing the size of the registers.)

The construction of the orthogonal rotations occurs on

the host PC, and only once per frame. While this takes

4 9 N2 reads on the PC (ignoring the effects of caching),

the resultant concatenated image is rotated 45 times instead

of the 180 that would be needed for a standard image, in

order to construct a full trace. This saves over 9 million

cycles per trace, at a cost of 3 9 N2 extra cycles on the PC

(for which cycle times are much shorter). Hence the

overhead is minimal.

Since all images are also masked, the four mask rota-

tions are also stored in the RAM. With four 8-bit image

words and four 1-bit masks, the total wordlength is 36-bits

which matches the RAM perfectly. The makeup of a single

RAM word is shown in Fig. 5. Loading an image onto the

board over USB requires the data to be sent in single bytes,

this means a 256 9 256 pixel image takes 256 9 256 9

5 = 327,860 cycles to be transferred from the PC to the

board RAM.

In order to compute the rotations, the system proceeds as

follows. The input angle is used to address sine and cosine

lookup tables (stored in BlockRAMs). The resultant values

are then used to compute the standard Cartesian rotation

equations:

x0 ¼ x cos h� y sin h ð2Þ

y0 ¼ x sin hþ y cos h: ð3Þ

Table 2 Base orthogonal rotation coordinates

Rotation x y

0� x y

90� y N - x

180� N - x N - y

270� N - y x

240 J Real-Time Image Proc (2007) 2:235–248

123

The x and y coordinates obtained from this computation are

used to read specific pixels from the source image in off-

chip RAM. Recall that these source pixels are in fact a set

of four concatenated orthogonal base rotations. When one

of these concatenated ‘‘pixels’’ is read, it is spliced into its

four separate parts and each of those is used to build a

separate rotated image. This means that in N2 cycles, four

separate rotations are completed.

The calculations are carried out by using an 8-bit fixed-

point calculation. Nearest neighbour approximation is used

whereby each sample point takes the value of its nearest

pixel; this avoids the more complex circuitry and sched-

uling required for bilinear or bicubic approximation. The

result is that a complete rotation of an N 9 N image is

complete in N2 clock cycles.

The resultant rotated images stream through the system

in raster scan format. This is where each row is transmitted,

one pixel at a time, followed by the next row and so on.

This makes the subsequent blocks simpler since there is no

complex buffering or ordering to be considered.

Most Radon transform implementations use sub-pixel

interpolation; this is done primarily to preserve accuracy in

order to allow the original image to be obtained through the

inverse transform. In the case of the trace transform, there

is no defined inverse, rather the transform is used to map an

image to an alternate domain. While the point in the

transform domain to which a pixel is mapped will depend

on the type of interpolation used, consistency between

different images is of greatest importance. Furthermore,

subsequent stages in trace transform applications thus far

throw away much of the transformed data, instead using it

to construct a simpler representation. As an example,

consider the face authentication application in [17]; the

trace image is thresholded and the outline converted to a

shape. In such a situation, fine numerical accuracy is of

little bearing. Furthermore, when used for a recognition

task, it is effectively a closed system, where both reference

and candidate images will be processed in an identical

fashion. Further accuracy discussions are presented in

Sect. 5.5.

4.5 Functional blocks

The computation of results for the trace transform occurs in

the functional blocks. Each block must process the output

of the rotation block, computing the results of applying the

appropriate calculation to each row of the input, and then

pass this result on to be stored in the result RAM. A few

aspects of the implementation should be noted here. Firstly,

the input to the functional blocks is the raster scan of the

rotated image. This means that a row of N pixels, clocked

at one pixel per cycle, is followed immediately by the N

pixels of the subsequent row. To assist in keeping the data

aligned, a ‘‘new row’’ signal is also passed by the rotation

block. Each rotation is processed independently, so there is

a short gap in processing between subsequent rotations.

This is needed to allow for functional blocks with different

latencies to process the correct data at the same time.

A second point of importance is to recall that the output

of the rotation block is four rotations rather than one. Each

functional block therefore splices these data and computes

results for each of the four rotations independently. This

means that all the computation datapaths and registers are

duplicated four times. The control circuitry is kept com-

bined for compactness and synchronisation purposes.

Finally, it is important that each functional block makes

use of the mask associated with each pixel to decide

whether it is used in the calculation. Recall that masked-out

pixels are ignored in the Trace transform.

When the results for each row are ready, they are stored

in an output buffer and a ‘‘result ready’’ signal is passed to

the Aggregator. Since the board RAMs have a 36-bit

wordlength, the widths of the data paths are tailored to

ensure that the final result fits within this limit.

In order to take advantage of the flexibility afforded by

programmable logic, the functionals should be designed

such that they are reprogrammable in some way. Since

many functionals that might be used share a common basic

structure, it is possible to create a single functional that

can, with some configuration, compute multiple possible

functional results. In order to afford this flexibility, on-chip

BlockRAMs are used as lookup tables for the basic arith-

metic functions within each block. This allows for

alternative functions to be defined. Furthermore, a config-

uration register is optionally available to select from

multiple possible datapaths within each block. This is

discussed in detail in Sect. 5.

4.6 Aggregator

The Aggregator polls the functionals in a round-robin

fashion awaiting a ‘‘new result’’ signal. It is preferable that

the polling is ordered such that the functional that finishes

first is the first polled. This would provide the most effi-

cient use of the storage time window. When received, it

proceeds to store the four results from the current func-

tional in a serial manner. This is done to avoid having a

large data bus between each of the functionals and the

aggregator. Since there is only a new result every N cycles

Fig. 5 Structure of a single word in external RAM

J Real-Time Image Proc (2007) 2:235–248 241

123

(256 in this implementation), there is sufficient time to read

each result from each functional in series. The results are

stored in an on-board RAM addressed using a concatena-

tion of functional number, rotation and row number. The

contents of this RAM can then be read by the host PC over

USB and the results used in further stages of processing.

4.7 Initialisation

Before the system can commence operation, all signals

need to be initialised and parameters, such as the number of

angles and lines to consider, set. The major step in the

initialisation step is to define the configuration of each of

the functional blocks. As mentioned in the previous sec-

tion, the functional blocks are designed to be flexible and

thus use a configuration register to select a specific data-

path and BlockRAMs to define arithmetic operations.

A typical functional block may contain two or three lookup

RAMs; these are used to implement functions such as x, x2,

cos(x) and so on. For each Functional Block, the lookup

RAMs must be pre-loaded with the relevant values to

enable the correct functional to be computed. The config-

uration register must also be set.

Since there may be 8–10 functionals on the chip at one

time, a large number of RAMs must be initialised and

doing so from one central location would thus be inefficient

since signals would have to be routed to more than 80

locations (since there are effectively four functionals in

each block) from the initialisation block. Rather, the sys-

tem reads the initialisation values from the PC via USB and

stores them in one of the board RAMs. From there, the data

is streamed by a distributor onto an initialisation bus. This

bus is accessed by a dedicated unit beside each Functional

Block that only acts upon the instructions relevant to its

own functional.

The initialisation process only needs to occur at the

beginning of a processing run. The time taken depends on

the number of Block RAMs that need to be initialised with

each requiring 514 cycles to complete this step. At

80 MHz, this translates to just over 640 ns per Block

RAM.

5 Flexible functional blocks

An initial system, complete with three basic fixed func-

tional blocks was implemented as a proof of concept and

detailed in [5]. It computed functionals 1, 2 and 4 from

Table 3, processing captured video in real-time at 26 fps

for 256 9 256 pixel frames. However, the scope of a

hardware implementation is more significant than just a

fixed implementation. Using Programmable Logic for the

implementation of the trace transform carries with it a

further benefit aside from hardware acceleration: flexibil-

ity. By exploiting some of the heterogeneous resources

provided on today’s FPGAs, an architecture can be

designed. In this section, we present a much more flexible

set of basic functional blocks that leverage the FPGA’s

flexibility in order to allow for a wide range of different

functionals to be implemented.

Modern FPGAs afford the designer a plethora of het-

erogeneous resources that can be employed in a hardware

design. Hard-wired multipliers that can compute a wide

multiplication in a single cycle are ideal for many Signal

Processing applications; specialised DSP blocks are com-

pletely tailored to this domain. There are also small on-chip

memories which serve as ideal resources for use in buffers,

and for managing data flow and complex computations. On

the Xilinx Virtex II chip used here, there are 18 9 18-bit

multipliers and 18Kb Block-RAMs. These RAMs are dual-

ported and so can be read twice in a single cycle and can be

set-up in multiple width and depth arrangements. Some of

their common uses include hashing, FIFOs, buffers, lookup

tables and more.

It is worth briefly mentioning the sorts of functionals

that have been used in trace transform implementations to

date. In [16, 17] the authors design a face authentication

system, based on the trace transform. They use the trace

transform for authentication in two ways. Firstly, the traces

constructed are directly compared to each other using the

weighted trace transform (WTT); this, however, shows

mediocre performance. The second method is the shape

trace transform (STT), where the resultant traces are

threshold and the resultant shapes compared rather than the

traces themselves. This method proved much more accu-

rate. The functionals used for both are shown in Table 3.

These were selected due to pre-existent work that showed

their performance in texture classification. Of the 22

functionals listed, numbers 1, 2, 7, 9, 11, 12, 13, 14, 20, 21

and 22 were found to be useful for the STT.

By using the heterogeneous resources available on a

modern FPGA, it is possible to design a small number of

flexible functional blocks that can compute the majority of

functionals in Table 3, in which similar ones have been

grouped together. By designing a functional block that can,

after reconfiguration, compute any member of a group, or

further possibilities, flexibility can be afforded to the sys-

tem. Thus, a few generalised blocks can allow the

implementation of a whole range of functionals, saving on

area, and providing a wider array of functional

possibilities.

The resources that most assist in this endeavour are the

on-chip BlockRAMs, used as lookup tables. A lookup

RAM contains pre-computed values for some function

stored at each location. For example, for a lookup RAM to

242 J Real-Time Image Proc (2007) 2:235–248

123

be used in computing cos(x), the contents of each memory

location would have to contain the value of cos(addr),

where addr is the address of the RAM word. Thus when

value a is applied to the address input of the lookup, cos(a)

emerges at the data output. Note that the RAMs are in fact

used as ROMs in this situation, however, they are still

referred to as RAMs because they retain their write capa-

bility. This write capability is what allows us to exploit

them for adding flexibility. Since these RAMs can be

configured with data at runtime, there is no need to re-

synthesise the design in order to change the RAM contents,

and thus the function computed by each lookup.

Now consider that a wide range of functions can be

implemented in this fashion, and it becomes clear that a

functional block with lookup RAMs incorporated can

implement a wide array of different functionals. Some of

the arithmetic functions that can be computed in this

manner include x; x2;
ffiffiffi

x
p
; lnðxÞ; sinðxÞ; to name but a few.

The only limitation is that the input value must be bound

since the depth of the RAM must be predetermined.

A small increase in the range of an input can impact the

resources used dramatically. The on-chip BlockRAMs on a

Xilinx Virtex II are 18 Kb in size, and can be configured in

a number of ways, between 512 9 36-bits to 16 K 9 1-bit

[18]. The specific configuration must be set in advance.

Fortunately, for the purposes of this system, the input

pixels are adequately represented in 8-bits. As a result, and

to simplify the datapaths, the BlockRAMs are set up to

store 16-bit wide lookup values. This provides sufficient

range for some of the larger numbers but also good fixed-

point accuracy for the smaller numbers.

In the following sections, three different generalised

functional blocks are presented. Each of them can imple-

ment a number of functionals listed in Table 3 as well as

some others obtained by changing the lookup functions.

Block diagrams are shown for each type, though for sim-

plification, only a single datapath is shown whereas, as

mentioned previously, each functional block actually pro-

cesses four rotations in parallel. The signal wordlengths are

shown on the connections. Each lookup table is imple-

mented on a single Block RAM. In reality, since four

rotations are needed, four Block RAMs would be required

for each lookup. However, given that the BlockRAMs on

the target FPGA can be set up to be dual-ported, only two,

are in fact needed per lookup table. This is why the hard-

ware resource usage results, shown in Table 4, show four

times the number of multipliers and double the number of

Block RAMs, when compared to the diagrams.

Table 3 The trace functionals

T [17]
No. Functional Details

1 Tðf ðtÞÞ ¼
R1

0
f ðtÞdt Radon transform

2 Tðf ðtÞÞ ¼
R1

0
jf ðtÞj

1
2dt

h i2

3 Tðf ðtÞÞ ¼
R1

0
jf ðtÞj4dt

h i1
4

4 Tðf ðtÞÞ ¼
R1

0
jf ðtÞ0jdt f(t)0 = (t2 - t1),(t3 - t2),…,(tn - tn-1)

5 T(f(t)) = mediant{f(t),|f(t)|} Weighted median

6 T(f(t)) = mediant{f(t),|f(t)0|}

7 Tðf ðtÞÞ ¼
R n=2

0
jFff ðtÞgðtÞj4dt

h i
1
4 F means taking the Discrete Fourier Transform

8 Tðf ðtÞÞ ¼
R1

0
d
dtMff ðtÞg
�

�

�

�dt M means taking the Median over a length

3 window, and d
dt means taking the difference

of successive samples

9 Tðf ðtÞÞ ¼
R1

0
rf ðtÞdt r = |l - c|; l = 1,2,...,n; c = medianl{l,f(t)}

10 Tðf ðtÞÞ ¼ mediant

ffiffi

r
p

f ðtÞ; jf ðtÞ0j
1
2

n o

11 Tðf ðtÞÞ ¼
R1

0
r2f ðtÞdt

12 Tðf ðtÞÞ ¼
R1

c�
ffiffi

r
p

f ðtÞdt c* signifies the nearest integer to c

13 Tðf ðtÞÞ ¼
R1

c� rf ðtÞdt

14 Tðf ðtÞÞ ¼
R1

c� r2f ðtÞdt

15 Tðf ðtÞÞ ¼ mediant�ff ðt�Þ; jf ðt�Þ
1
2jg f(t*) = {f(tc*),f(tc*+1),...,f(tn)}

16 Tðf ðtÞÞ ¼ mediant�frf ðt�Þ; jf ðt�Þ
1
2jg l ¼ c�; c � þ1; . . .; n; c ¼ medianlfl; jf ðtÞj

1
2g

17 Tðf ðtÞÞ ¼
R1

c� ei4 logðrÞ ffiffi

r
p

f ðtÞdt
�

�

�

�

18 Tðf ðtÞÞ ¼
R1

c� ei3 logðrÞf ðtÞdt
�

�

�

�

19 Tðf ðtÞÞ ¼
R1

c� ei5 logðrÞrf ðtÞdt
�

�

�

�

20 Tðf ðtÞÞ ¼
R1

c

ffiffi

r
p

f ðtÞdt r = |l - c|; l = 1,2,...,n;

21 Tðf ðtÞÞ ¼
R1

c rf ðtÞdt c ¼ 1
S

R1
0

ljf ðtÞjdt; S ¼
R1

0
jf ðtÞjdt

22 Tðf ðtÞÞ ¼
R1

c r2f ðtÞdt

J Real-Time Image Proc (2007) 2:235–248 243

123

Note that in the figures, each circuit element takes a

single cycle to run and that the dashed parts are optional,

determined by the configuration register. ‘‘D’’ is a single

cycle delay register. Intermediate registers have been

omitted for clarity.

5.1 Type A functional block

This functional block is able to compute functionals 1, 2

and 4 from the original list of 22. A block diagram is

shown in Fig. 6.

The block takes an input pixel then applies a function, l1
to it. Optionally, function l2 is applied to a one cycle

delayed version of the input pixel and the absolute differ-

ence is taken; the actual datapath is decided by the

configuration register. Each of the resultant values is then

summed and at the end of the row, the final result is

optionally squared.

5.2 Type B functional block

This functional block is more complex than Type A; it

implements functionals 9, 11, 12, 13 and 14 from Table 3,

which depend on the weighted median calculation. The

weighted median is implemented using an efficient hard-

ware block that can compute medians for very large

windows using a cumulative histogram [6]. Since the

median block can only return a result after a whole row has

been processed, the current implementation uses the result

from the previous row in each calculation. Lookup l1 offers

flexibility in modifying the skew of the median calculation

with the default being
ffiffi�p : It is clear from the implemen-

tation results that this functional block uses significant

resources. The reason for this is that each of the four angles

must have its own median calculation circuit, and each of

these is quite resource intensive.

The functional computes the intermediate values c and r

as described in row nine of Table 3. Note that the value c is

only updated once per row (shown shaded in the figure).

Function l2 is then applied to r and l3 to f(t). These results

are then multiplied before being summed in an accumulator

(Fig. 7).

5.3 Type C functional block

This functional block implements functionals 20, 21 and 22

of the initial list. The system follows similar design to the

Type B block, except that c is computed as described in

row 21 of Table 3. Note that the values c and S are only

updated once per row (Fig. 8).

5.4 Functional coverage

These three functional types cover 10 of the 11 functionals

required by the STT for face authentication [17]. Further-

more, by using alternative look-up functions in the Block

RAMs, it is possible to compute additional functionals.

5.5 Accuracy considerations

Before discussing the accuracy of the architecture, it is

worth reiterating what was mentioned in Sect. 4.4. The

trace transform is used within a closed system, primarily

for recognition tasks. Furthermore, the transform is not

used as an encoding tool, nor is its inversion defined,

hence, its accuracy need only be considered as much as is

required by subsequent blocks in the specific application.

Therefore, fine numerical accuracy is of a lesser concern

than with Radon transform implementations.

Table 4 Synthesis results

Unit Slices Multipliers BlockRAMs

Framework 1,300 4 2

Type A functional 800 4 6

Type B functional 17,500 4 22

Type C functional 1,300 8 6

Total available 33,792 144 144

Fig. 6 Type A functional block

244 J Real-Time Image Proc (2007) 2:235–248

123

The accuracy of this implementation is affected by two

factors. The first is the use of nearest-neighbour approxi-

mation in the rotation block. The second is the use of

constrained wordlengths in the functional blocks. These

two factors are combined in the discussion of accuracy in

this section. The comparison is made to a Matlab imple-

mentation that uses an identical rotation engine (with

Nearest Neighbour approximation) but computes func-

tionals using floating point values.

With the Type A functional block, the accuracy for the

three defined functionals was found to be 100% for the

functionals defined above when compared to the software

implementation.

For the Type B functional block, the use of the median

result from the previous row in the calculation introduced

some inaccuracy. The mean relative error was 2% with

52% of samples having zero relative error and 97% having

less than 10% relative error.

For the Type C functional block, the use of values of the

c variable from the previous row caused error, but with a

different profile to that of the Type B functional block. In

this case, the error had a more even spread, and there were

a number of positions where the relative error was very

large. About 28% of pixels had zero error, while 86% had

less than 10% relative error. About 0.66% of positions had

greater than 100% relative error, however.

It is important to note that these errors have little

effect on the trace images when treated as images. The

outliers are very few in overall terms and are spread

sparsely at certain points where there is already high

contrast. It depends largely on the next step in processing

as to what constitutes acceptable error. Figure 9 shows

traces computed using floating point arithmetic on the

left and the equivalent computed in hardware on the

right.

Note that the errors for the type A and B functional

blocks, as a result of using one-row delayed intermediate

can be overcome by adding a single full line latency to the

whole system. While 256 cycles may, at first, seem sig-

nificant, recall that a complete trace takes over 3 million

cycles to compute, and so it is a relatively low cost. There

is no other way of overcoming this issue, since these

functionals produce results that depend on some property

of the whole row being computed in advance. In this case,

the errors were found to be tolerable for the types of pro-

cessing expected to follow, and so the extra latency was not

added.

Replacing the nearest neighbour approximation in soft-

ware with bicubic interpolation resulted in very small

discrepancies. For all functional types, the mean relative

error in the resultant trace image was below 1%. Over 75%

of pixels in the output trace images for all functionals had

zero error. Those pixels with more significant error were at

the periphery of the trace image, and in pixels with lower

values, which would not contribute to subsequent steps in

the recognition process, due to thresholding (see Sect. 4.4).

Finally, the errors due to nearest neighbour approximation

fell in the same areas as the errors shown in Fig. 9, which

represent the lines that intersect with the borders of the

masked object of interest.

Fig. 7 Type B functional block

Fig. 8 Type C functional block

J Real-Time Image Proc (2007) 2:235–248 245

123

6 Performance and area results

Before discussing the results of implementing the trace

transform in hardware, an overview of the operating

parameters is needed. Recall that the source image is stored

in an off-chip SRAM; pipelining the reads means that a

pixel can be extracted every cycle. A single 256 9 256

image contains 65,536 pixels, and so it would take this

number of cycles to read. As such, a new rotation is

complete every 65,536 cycles plus a few cycles used to fill

and flush the pipeline. With a rotation angle step size of 2�,

180 rotations are needed for a full set of results. Since 4

rotations are computed in parallel, the actual number of

rotation operations is 45. Hence, assuming a rotation

latency of 65,560 cycles (to include the margins mentioned

above) a full set of rotations is complete in just under

3 million clock cycles. Each of the functionals instantiated

runs in parallel, and computes results as the pixels stream

through, so they do not add to the cycle length or

throughput. The latency of the system is only as long as

required by the functionals with greatest latency.

The tool used to synthesise the design, Xilinx ISE 8.1,

gives final area and speed results that quantify the effi-

ciency of the design. The area of a design is typically

measured in terms of logic usage. On a Xilinx FPGA, the

most basic unit is a Slice which includes two four-input

Look-Up Tables (LUTs) and some other logic. The FPGA

fabric also includes Block RAMs and embedded 18 9 18

bit multipliers. These are the three common types of

available resources in a modern FPGA, and usage figures

for each give a measure for area.

Table 4 shows the area results for each of the units in

the design. Multiple combinations of functionals were

implemented and results for single functional blocks cal-

culated from those combined implementations. Due to the

modular, fully pipelined nature of the design, there was no

performance penalty associated with instantiating multiple

functionals. An example implementation with three func-

tionals was synthesised and run on the RC300 board, and

further combinations tested for timing.

All units and combinations were successfully synthe-

sised to run at 79 MHz. This limitation is enforced by the

board libraries that are used to access resources on the

board. Since each full trace takes 3 million cycles, this

means the full system can process 256 9 256 pixel ima-

ges, producing traces at 26 frames per second; this satisfies

the real-time requirement of the proposed system. Note that

multiple traces are produced in parallel per image.

0.005

0.01

0.015

0.02

50

100

150

200

250

100

200

300

400

2

4

6

8

x 10
4

Fig. 9 Trace images obtained

using floating point arithmetic

(left), the equivalents using the

hardware architecture (centre),

and error images with

percentage range (right)

246 J Real-Time Image Proc (2007) 2:235–248

123

Table 5 shows a comparison between hardware and

software in computing a single functional. As a software

reference an optimised MATLAB implementation is used

that is running on a Pentium 4 at 2.2 GHz with 1 GB of

memory. It was coded making full use of MATLAB’s

vector operations and avoiding the use of loops. Using the

Matlab compiler yielded very minimal gains in perfor-

mance, so it was not incorporated in these figures. While

the absolute performance gain may not be representative of

a highly optimised software implementation, the important

observation is that the performance of the hardware func-

tional blocks is not affected by the type of functional,

whereas the software will reflect the complexity of the

functional in its runtime. It is also important to note that

these numbers are for a single functional. In the hardware

implementation, additional functionals are computed in

parallel, resulting in an even greater performance boost.

Consider a system with three functionals—one of each

type. The software implementation would have a runtime

equivalent to the sum of the functionals’ runtimes, whereas

the hardware system would still take an amount of time

equal to one functional to complete. Increasing the number

of functionals further, would magnify this difference.

The number of functionals that can be implemented in

hardware is limited by two factors. Firstly, the resource

requirements of a functional block and the resources

available on the target device must be taken into account.

Clearly, the number of functionals possible in an imple-

mentation depends entirely on the combination of

functional block types required.

The second factor is timing-related. A full trace com-

putation takes just under 3 million cycles to complete, and

since the input and output memories are double-buffered, it

is necessary for the data transfer to and from the board to be

completed in this time. The loading of input data from the

PC takes 327,860 clock cycles as detailed in Sect. 4.4. Each

functional produces a trace image that is 256 9 256 pixels

in size, with each pixel being 32 bits wide. Hence reading a

trace image in bytes over USB takes 256 9 256 9

4 = 262,144 cycles. This means that the maximum num-

ber of functionals that can be accommodated in this

implementation is b(3M - 327,680)/262,144c = 10. This

limitation is only due to the use of the USB port to transfer

data. An FPGA board with a wider and/or faster interface to

the host PC would alleviate this problem.

7 Conclusion

This work has shown how exploiting the heterogeneous

resources on modern FPGAs enables the acceleration of

complex algorithms such as the Trace transform. By ana-

lysing the algorithm in detail and making some

computational simplifications it is possible to tailor the

implementation to hardware. At the same time, the on-chip

BlockRAMs are exploited to provide a degree of flexibility,

allowing an arbitrary set of trace transform functionals to

be computed using generalised functional blocks. The

speedup over software becomes more pronounced, when

multiple functional blocks are implemented, since in soft-

ware this increases execution time; in this parallel

architecture, multiple functionals are computed in the same

time as a single functional, so performance is not affected.

Maintaining a point-to-point approach, by taking a source

image from one board RAM and depositing the results in

another makes the system flexible in that the input and

output data can be either processed by other blocks within

the hardware or using a host PC.

This work can be extended in a number of ways. Firstly,

further generalised functional blocks, defined outside the

functionals proposed thus far can be implemented. By

following the same methods in constructing flexible func-

tionals, a wide array of additional functionals can be

computed. Since the functionals that are most useful

depend entirely on the application domain, it is clear that

the ability to identify effective functionals from a large

pool is a great strength. Since the hardware system func-

tions with a host PC, it is possible to make the host PC

control the functional exploration work. These results can

then be used to identify functionals that match to the cri-

teria required by the specific application. Finally, extending

the system to take advantage of the runtime partial

reconfiguration that is available on modern devices would

represent a logical extension to the flexibility presented

thus far.

References

1. Brady, M.L., Yong, W.: Fast parallel discrete approximation

algorithms for the Radon transform. In: Proceedings of ACM

Symposium on Parallel Algorithms and Architectures, pp. 91–99

(1992)

2. Celoxica ltd (2004) URL http://www.celoxica.com/

3. Chandrasekaran, S., Amira, A.: High speed/low power architec-

tures for the finite Radon transform. In: Proceedings of

International Conference on Field Programmable Logic and

Applications (FPL), pp. 450–455 (2005)

4. Deans, S.: The Radon Transform and Some of its Applications.

Wiley, London (1983)

5. Fahmy, S., Bouganis, C.S., Cheung, P., Luk, W.: Efficient real-

time FPGA implementation of the trace transform. In:

Table 5 Running times and speedup

Functional type S/W (ms) H/W (ms)

Type A functional 1,400 38.5

Type B functional 3,900 38.5

Type C functional 2,600 38.5

J Real-Time Image Proc (2007) 2:235–248 247

123

http://www.celoxica.com/

Proceedings of Field Programmable Logic and Its Applications

(2006)

6. Fahmy, S., Cheung, P., Luk, W.: Novel FPGA-based imple-

mentation of median and weighted median filters for image

processing. In: Proceedings of Field Programmable Logic and Its

Applications (2005)

7. Frederick, M.T., VanderHorn, N.A., Somani, A.K.: Real-time

H/W implementation of the approximate discrete Radon trans-

form. In: Proceedings of IEEE International Conference on

Application-Specific Systems, Architectures and Processors,

pp. 399–404 (2005)

8. Kadyrov, A., Petrou, M.: The trace transform as a tool to invar-

iant feature construction. In: Proceedings of 14th International

Conference on Pattern Recognition, vol. 2, pp. 1037–1039 (1998)

9. Kadyrov, A., Petrou, M.: The trace transform and its applications.

IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 811–828 (2001)

10. Kadyrov, A., Petrou, M.: Object signatures invariant to Affine

distortions derived from the trace transform. Image Vis. Comput.

21, 1135–1143 (2003)

11. Kadyrov, A., Petrou, M.: Affine parameter estimation from the

trace transform. IEEE Trans. Pattern Anal. Mach. Intell. 28(10),

1631–1645 (2006)

12. Mitra, A., Banerjee, S.: A regular algorithm for real time Radon

and inverse radon transform. In: Proceedings of International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 105–108 (2004)

13. Petrou, M., Kadyrov, A.: Affine invariant features from the trace

transform. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 30–44

(2004)

14. Shapiro, V.A., Ivanov, V.H.: Real-time Hough/Radon transform:

algorithm and architectures. In: Proceedings of IEEE International

Conference on Image Processing (ICIP), vol. 3, pp. 630–634 (1994)

15. Shieh, E., Current, K.W., Hurst, P.J., Agi, I.: High-speed com-

putation of the Radon transform and backprojection using an

expandable multiprocessor architecture. IEEE Trans. Circuits

Syst. Video Technol. 2(4), 347–360 (1992)

16. Srisuk, S., Petrou, M., Kurutach, W., Kadyrov, A.: Face

authentication using the trace transform. In: Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition, 2003, vol. 1, pp. 305–312 (2003)

17. Srisuk, S., Petrou, M., Kurutach, W., Kadyrov, A.: A face

authentication system using the trace transform. Pattern Anal.

Appl. 8(1–2), 50–61 (2005)

18. Xilinx, Inc.: Virtex-II Platform FPGA Handbook (2000)

Author Biographies

Suhaib A. Fahmy Graduated with and MEng in Information Sys-

tems Engineering in 2003 from Imperial College London. Since then

has been researching acceleration of image- and video-processing

algorithms on FPGA platforms. Submitted a PhD thesis on Hard-

ware Acceleration of Scene Understanding at Imperial College

London. Now working as a Research Fellow at the Centre for

Telecommunications Value-Chain Research (CTVR) in Trinity

College, Dublin.

Christos-Savvas Bouganis Received first degree in Computer

Engineering and Informatics from University of Patras, Greece in

1998. Completed an MSc course in Signal Processing and Commu-

nications at Imperial College London, UK in 1999. Received Ph.D.

degree from Imperial College London in computer vision in 2003.

Currently Lecturer in the Department of EEE at Imperial College

London.

Peter Y.K. Cheung Professor in Digital Systems and Head of the

Circuits and Systems Research Group, EEE Department, Imperial

College London.

Wayne Luk Professor and Head of the Custom Computing Research

Group in the Department of Computing, Imperial College London.

248 J Real-Time Image Proc (2007) 2:235–248

123

	Real-time hardware acceleration of the trace transform
	Abstract
	Introduction
	Introducing the trace transform
	Computational complexity

	Related work
	Hardware implementation of the trace transform
	Target platform
	System framework
	Top level control
	Rotation block
	Functional blocks
	Aggregator
	Initialisation

	Flexible functional blocks
	Type A functional block
	Type B functional block
	Type C functional block
	Functional coverage
	Accuracy considerations

	Performance and area results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

