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ABSTRACT

The Trace Transform is a novel image transform that is able
to exhibit useful properties such as scale and rotation invari-
ance and occlusion robustness. As a result, it is particularly
suited to a variety of classification and recognition tasks in-
cluding image database search, token registration, activity
monitoring, character recognition and face authentication.
The main obstacle to the widespread use of the transform
is its high computational complexity. This has precluded
a detailed investigation of transform parameters. This pa-
per presents an architecture and implementation of a Trace
Transform engine on a Virtex-II FPGA. By exploiting the in-
herent parallelism in the algorithm and the use of optimised
functional blocks, a huge performance gain is achieved, ex-
ceeding realtime video processing requirements for a 256 x
256 image.

1. INTRODUCTION

The study of image recognition relies heavily on properties
in 2D shape and texture. Indeed, the extraction of features
from an image has been used extensively in image classi-
fication and matching. However, many of these feature ex-
traction methods focus primarily on properties seen from the
human perspective. It is, though, useful to expand the hori-
zon, using features which may not have meaning to humans,
but which perform well in characterising complex images.
With this in mind, Kadyrov and Petrou proposed the Trace
Transform in [1] and developed it further in [2, 3, 4]. The
transform is a redundant representation of an image, from
which features can be extracted. It is a generic transform in
the sense that the mathematical definition is extensible.
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The strength of the transform lies in its ability to extract
features that are robust to affine transformations, occlusion
and even non-linear deformations. In fact, careful selec-
tion of the transform functionals [2] can allow not just ro-
bustness, but recovery of transformation coefficients, which
would allow an affine-transformed image to be returned to
its original state.

The Trace Transform has proved to be a very power-
ful tool, showing excellent results in image database search,
industrial token registration, activity monitoring, character
recognition and face authentication [5, 6]. The primary ob-
stacle to further application investigation has been the com-
putational complexity of the algorithm.

FPGAs provide an ideal platform for accelerating the
Trace Transform through exploitation of the inherent paral-
lelism existent within the algorithm. Furthermore, the flex-
ibility of the platform suits the generic nature of the trans-
form, since alternative functionals can be swapped in an out
with ease. Acceleration of the Trace Transform allows for
further investigation of the transform in terms of both func-
tionals and applications.

We present in this paper the first hardware implementa-
tion of the Trace Transform. Our architecture is:

e fast: with performance exceeding real-time process-
ing requirements;

e simple: occupying a very small area on the FPGA;

o flexible: allowing us to investigate Trace functionals
thoroughly.

2. ALGORITHM

2.1. Overview

It is important before considering our implementation, that
we introduce the algorithm briefly so as to clarify the prin-
ciples that will be discussed in this paper. The Trace Trans-
form of an image is a transformation from the spatial domain



Fig. 1. Parameters of a Trace line

to a domain with parameters ¢ and p. Each (¢, p) point in
the transformed image is the result of applying a defined
functional on the intensity function of a line that crosses the
original image tangential to an angle ¢ and at a distance p
from the centre (see Figure 1). The resultant representation
is an ng X n, image where ny is the number of angles con-
sidered and n,, the maximum number of lines across the im-
age for each angle. An image can be traced with any number
of functionals, each producing a corresponding Trace. Any
functional can be used to reduce each trace line to a single
value. The simplest functional, the sum of pixel intensities
along the lines, yields the Radon Transform [7] of an image.
An example of a transformed image is shown in Figure 2.

It may be easier to consider drawing multiple parallel
lines across an image. This can be done for any angle. Then
a functional can be applied to the pixel intensities in each
line to yield a value for the (¢, p) point in the new domain.
How the corresponding line pixels are selected is decided by
the specific implementation. Standard interpolation meth-
ods including nearest-neighbour and bi-cubic can be used.
The functional can be one of many proposed in the initial
paper, or any other form of function, that reduces the sam-
ple vector to a single value. This might include sum, median,
mode, sum of differences, RMS, etc. Table 1 shows some of
the 22 functionals proposed by the Trace Transform authors.
These were chosen for their strength in texture classification
and their robustness to different forms of image transforma-
tion. It is clear that functionals some are computationally
more intensive than others, and they also vary in nature. Ac-
celerating these functionals as well as fully pipelining them
can yield some significant performance boosts.

For feature extraction, further steps are needed, as shown
in Figure 2. Firstly, a “diametrical” functional (D) is applied
to the columns of the Trace image, reducing the space to a
single vector. Finally, a “circus” functional (C) is applied to
this vector to yield a single value feature. By combining a
number of functionals at each stage, numerous features can
be extracted. We are focusing solely on the first step of the
Trace Transform since this is where most of the computa-
tional complexity lies; the diametrical and circus functionals

are applied fewer times.
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Fig. 2. An image, its trace, and the subsequent steps of fea-
ture extraction

Conceptually, the algorithm can be thought of as consist-
ing of two separate parts: the line tracer and the functional
blocks. The line tracer takes the parameters ¢ and p and out-
puts the pixel intensities along the corresponding line. The
functional blocks each take these pixel intensities and apply
the relevant functional to them.

2.2. Computational Complexity

There are a number of parameters of the transform that can
be adjusted. Firstly, the number of angles to consider, n4.
In the extreme case, we may consider all lines that inter-
sect the image at any angle down to 1 degree increments or
lower. It is however possible to consider larger increments,
and this will reduce the computational complexity. It is also
possible to vary the distance between successive lines, 1/n,,.
Again, in the extreme case, this could be a single pixel in-
crement from one line to the next. Thus fora N x N image,
there would be a worst-case of v/2 - N lines for each an-
gle. It is further possible to vary the sampling granularity,
n¢, along the lines, with the worst-case being to read every
pixel, resulting in a maximum of v/2- N pixels per line. It is
important to note however, that these parameters will affect
the performance of the algorithm, and an in-depth study is
needed to determine the trade-offs involved.

The following parameters are used in discussing compu-
tational complexity:

e n4: the number of angles to consider;

e n,: the number of distances (inverse of the interline
distance);

e n;: the number of points to consider along each trace
line;

e n7: the number of Trace functionals;

e ('4: the operations required for trace line address gen-
eration;
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Table 1. Example Trace Functionals

e Cr = % (Cyy + Cio + -+ + Cyn): the average op-
erations per sample for each functional.

Firstly, for the address generation, each of ny4 angles re-
quires Cy operations. Secondly, for each of ny functionals,
we are required to process n; points on each of the n,, lines
for each of the nyg angles. If each pixel uses on average Cr
operations, we require a total of ngn,n:nCr operations
for the Trace.

Therefore the total computational complexity is given by

(D).

ﬂ¢C¢ + TL¢TLpTLt7”LTCT (1)

For an N x N image, these parameters may have values:
ng = 180, n, ~ N, ny ~ N. This yields (2).

180 x Cy + 180 x N? x np x COr 2)

Considering that a standard system may include 8 to 10
functionals, and that functionals are not necessarily compu-
tationally simple in and of themselves, the high computa-
tional complexity is clear. Clearly the values of Cy and Cr
depend on the implementation platform, as software on a
PC, these values are likely to be high, while with custom
designed hardware, the values may approach 1 as the design
becomes more pipelined. It is also clear that parallelisation
of angles, line accesses and functionals has the potential to
reduce computational complexity significantly. Hence with-
out parallelisation, the algorithm becomes too complex for
mainstream use.

3. ACCELERATION OF THE TRANSFORM

3.1. Framework

From the previous section, there are a number of areas where
it is possible to accelerate the transform. Firstly, the rota-
tions can be accelerated through some simplification of the
line tracing algorithm. Furthermore, it is possible to pro-
cess multiple rotations in parallel. Next, the functionals can
be accelerated in and of themselves; by applying standard
arithmetic principles and parallelising within the function-
als, we can optimise them for speed. Finally, we can run

multiple functionals in parallel. These four areas of accel-
eration should see significant performance gains over a soft-
ware implementation.

It is important to note however, that all these propos-
als will be subject to the limitations of the implementation
platform. As an example, though multiple parallel rota-
tions sound promising, we must consider that with our im-
age stored in a single bank of single-ported onboard RAM,
we can only access one address location per cycle. With par-
allel functionals, we must pay close attention to the storing
of results, since many large data buses are undesirable, and
there may be insufficient connectivity to write all the results
in parallel.

3.2. Functionals

The aim of this research is to construct a flexible framework
for further investigation of Trace Transform functional prop-
erties. As such, the key to this implementation is the scal-
ability of the architecture. Since the functions vary signif-
icantly as shown in Table 1, each family of similar func-
tionals must be accelerated individually. For the purposes of
designing this framework, we selected some of the simpler
ones, as a proof of concept. We have previously published
a novel algorithm for weighted-median calculation [8]. Me-
dian and weighted median are used in 14 of the 22 origi-
nally proposed functionals. Given that a functional only has
to produce a result at the end of each line, there is sufficient
time for a large number of complex functionals, as long as
they are well pipelined.

4. PROPOSED ARCHITECTURE

4.1. General Overview

Our implementation consists of a few simple blocks. The
Top-Level Control block simply oversees communication
between the other blocks. Tthe Rotation Block produces
an output that is the raster-scan of the input image rotated
by an angle, specified by the Top-Level Control Block. Fol-
lowing this, each Functional Block reads the rotated image
and calculates the results for each line. Finally, the Aggrega-
tor polls each of the functional blocks in turn before storing
the results in the output RAM. The overall architecture is
shown in Figure 3.
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Fig. 3. Architecture Overview

4.2. Top-Level Control

The Top-Level Control block simply initialises each of the
blocks, before sending the first rotation angle to the Rota-
tion Block. When the last result for each rotation is ready,
the most latent functional sends a signal, informing the Top-
Level Control block to initiate the next rotation and so on.
Once all angles are completed, the full result can be read
from the output SRAM.

4.3. Rotation Block

As detailed previously, the line tracer should sample pixel
values in the original image that fall along the designated
trace line. Hence, this functional unit should be able to pro-
duce a set of addresses from which to read pixel values in
the original image, given ¢ and p as inputs. However, given
that we know that we wish to trace the image at all values of
those inputs (within our sampling parameters), we are able
to simplify the process. Rather than trace the image in such a
manner, we can rotate the image itself, then sample in rows.
This would simplify our circuitry somewhat by applying the
trigonometric rotation functions once over the whole image,
and allowing the subsequent blocks to have clearly ordered
inputs.

An important caveat must be stated here. We have as-
sumed that the input image is masked and when rotated will
not suffer from detrimental cropping. Since face images in a
face authentication system are always masked ellipses, this
is a reasonable assumption. It is important to note that the
Trace Transform itself only performs well when the subject
of interest is masked; background noise is highly detrimen-
tal to its performance. Hence this assumption is valid for a
Trace Transform implementation in any domain.

The line tracer now simply takes an angle as its input and
produces a rotated version of the original image at its output.
To simplify the system further, and negate the need for an
image buffer inside the system, we configure the line tracer
to produce the output in raster-scan format. Thus it reads
from the source image out of order. This also precludes the
need for any data addresses to pass through the system, since
the address structure is inherent in the data.

Since we are working in hardware, we may also consider

doing multiple rotations in parallel. However given that the
image is stored in on-board RAM, we would require dupli-
cates of the input image in other RAMs in order to achieve
this, as well as further rotation blocks running in parallel.
There is however a small trick that we use to quadruple our
performance without increasing area. If we consider that a
rotation by any multiple of 90 degrees is simply a rearrange-
ment of addressing, which can be implemented in software
or through minimal hardware, we can then deduce that any
rotation above 90 degrees can be implemented as simply a
rotation by a multiple of 90, then the remaining angle. To
clarify this point, a rotation by 132 degrees is the same as a
90 degree rotated image being rotated through 42 degrees.
Furthermore, given that we have ample wordlength in our
external RAMS, we simply store the four orthogonal rota-
tions (0°, 90°, 180°, 270°) in a single word. Then we cal-
culate four rotations in parallel by using the line tracer to
address the RAM, then splicing the resultant word. This
effectively turns our single-ported RAM into a four-ported
one.

The Rotation Block is implemented as follows: an on-
board RAM contains the source image. This source image
is, in fact, all four primary rotations and their respective
masks concatenated as shown in Figure 4. Since the on-
board RAMs available to us have a 36 bit wordlength, it is a
perfect fit.

«—270—

180 —

Fig. 4. Image RAM word

The block takes an angle as its input. This is used to in-
dex lookup tables containing sine and cosine values, which
are used to implement the standard cartesian rotation equa-
tions in (3), fully pipelined.

2 =xcos® —ysinh; y =xsinh+ycoshd (3)

These equations all use simple 8 bit fixed point
wordlengths. Nearest-neighbour approximation is used to
avoid more complex circuitry. The resultant output of the



block is a raster-scan of the rotated image still in its 36 bit
concatenated form. This is fed to the functional blocks in
parallel, where the computation occurs.

4.4. Functional Blocks

The Functional Blocks follow a standard design. They await
a “start” signal to indicate the first pixel of a rotation is arriv-
ing, before beginning to compute the results. The Functional
Block splices the incoming signal into the four constituent
rotations and masks. The mask corresponding to each pixel
determines whether it is considered in the calculation. Un-
masked pixels are simply ignored in the calculation. Since
the image size is fixed, each Functional Block keeps track
of the current row number, and position within the row, to
avoid the use of many control signals. When the end of each
row is reached, its stores its results in an output buffer and
sends a “new result” signal to the Aggregator.

The result wordlength depends on the functional, though
all results can be individually scaled if necessary. Note
that each of the functional blocks is actually duplicated four
times, once for each of the orthogonal rotations. We only
implement three functional blocks here to prove the concept.
This architecture will be used for algorithm exploration, and
so we will be implementing a large library of blocks to be
incorporated in different configurations.

No. Functional
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Table 2. Trace Functionals

4.4.1. Functional 1

This is the simplest of the functionals, and simply sums all
the pixels in each trace line. The Trace Transform using this
functional is the equivalent of the Radon Transform. The
corresponding equation is shown in (4). Figure 5 shows the
schematic diagram of the design.

T(f(t) = f(t) @
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endline
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Fig. 5. Functional 1

4.4.2. Functional 2

This functional sums the absolute differences between adja-
cent pixels in each trace line. The corresponding equation is
shown in (5). Figure 6 shows the schematic diagram of the
design.

T(f(1) =D _If' () (5)
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Fig. 6. Functional 2

4.4.3. Functional 3

This functional is the square of the sum of the square roots
of the pixels in each trace line. The square root was imple-
mented using a lookup table since the pixel intensities are
only 8 bits wide. The square operation was implemented
using the embedded multipliers. The corresponding equa-
tion is shown in (6). Figure 7 shows the schematic diagram
of the design.
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Fig. 7. Functional 3
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4.5. Aggregator

The Aggregator polls the functionals in a round-robin fash-
ion awaiting a “new result” signal. When received, it pro-
ceeds to store the four results from the current functional in
a serial manner. This is done to avoid having a large data
bus between the two units, since each result could be up
to 24 bits in size. Since there is only a new result every
256 cycles, this still gives us sufficient time to read each re-
sult from each functional in series. The results are stored in
another on-board RAM addressed using a concatenation of
functional number, rotation and row number. The contents
of this RAM can then be read by a host computer and the
results used in further processing.



5. IMPLEMENTATION RESULTS

This design was implemented on a Celoxica RC300 board,
using the DK Handel-C compiler. The board hosts a Xilinx
Virtex-2 FPGA as well as on-board ZBT SRAMs. A host
PC stores the input frames from a video device, or a series
of images in one on-board RAM. The result of the Trace
Transform is then read from another of the board’s RAMs
with display done on the PC. Synthesis results are shown in
Table 3. The resultant clock-speed of 80MHz is only limited
by development board libraries. This high speed was pri-
marily due to the fully-pipelined nature of the design. Sig-
nificant use of the channel communications provided for in
Handel-C was made. The flexibility and power of this High-
level language made the design simple to prototype.

Synthesis Results

Clock Speed 8OMHz
Frame Rate 26fps
Slices 2,070
BlockRAMs 6

Embedded Mults 8

Table 3. Synthesis Results

In comparison, a highly optimised MATLAB equivalent
in software, running on a Pentium-4 2.2GHz, took just over
3 seconds to complete the same calculations. This hardware
architecture thus gives over a 75 times speed-up. This ac-
celeration increases with the number of functionals, as more
functionals slow down the software version while not affect-
ing the speed of hardware implementation.

The architecture completes four orthogonal rotations of
a 256 x 256 image in 65,536 cycles. Each of these 65,536
pixels is passed to the functional blocks in order, with a new
row starting every 256 cycles. In the last cycle of each row,
the functional copies the results for each of the four orthog-
onal rotations to output buffers and continues with the next
row. The Aggregator waits for a result to arrive at the first
functional. It takes 7 cycles to store this result into the output
RAM, then it continues with the other functionals in order,
storing each of the results in the external RAM. It is free un-
til the next results arrive, 256 cycles after the previous one.
Once the last result is stored for a rotation, the Aggregator
instructs the rotation block to start another rotation, and so
the process continues.

The implementation serves as a flexible framework for
Trace Transform applications. The simplicity of the archi-
tecture belies its power. More functionals can be added with
ease. The only theoretical limit is where the functional result
storage latency exceeds the time between successive row re-
sults. Given that for a 256 x 256 image, a new result comes
in every 256 cycles, and that each functional result takes 7
cycles to store, this allows us space for 36 functionals. As-

suming these functionals are each optimised and pipelined,
they will not affect the overall latency of the system or its
clock speed. Considering the original Trace Transform pro-
posal included 22 functionals, some of which are redundant,
this is a promising result. It is also important to note that the
image size is flexible, since the system computes everything
on a raster-scan stream of pixels.

6. CONCLUSION

We have shown how to accelerate the Trace Transform
through parallelisation at various levels. The resultant im-
plementation meets realtime requirements for a 256 x 256
pixel video stream. Using the framework presented here,
it is our intention to embark on a detailed investigation of
functional properties when applied to face authentication.
By investigating a large combination of functionals, we aim
to identify those that have the greatest discriminatory and
similarity-grouping properties. We aim to use the system to
run tests with thousands of faces in order to select and fine
tune functionals for a full face authentication system.
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