
NOVEL FPGA-BASED IMPLEMENTATION OF MEDIAN AND WEIGHTED MEDIAN
FILTERS FOR IMAGE PROCESSING

Suhaib A. Fahmy§, Peter Y. K. Cheung§ and Wayne Luk‡

§Department of Electrical and Electronic Engineering, Imperial College London, UK
{s.fahmy, p.cheung}@imperial.ac.uk

‡Department of Computing, Imperial College London, UK
wl@doc.ic.ac.uk

ABSTRACT
An efficient hardware implementation of a median filter is
presented. Input samples are used to construct a cumulative
histogram, which is then used to find the median. The re-
source usage of the design is independent of window size,
but rather, dependent on the number of bits in each input
sample. This offers a realisable way of efficiently imple-
menting large-windowed median filtering, as required by
transforms such as the Trace Transform. The method is then
extended to weighted median filtering. The designs are syn-
thesised for a Xilinx Virtex II FPGA and the performance
and area compared to another implementation for different
sized windows. Intentional use of the heterogeneous re-
sources on the FPGA in the design allows for a reduction
in slice usage, and high throughput.

1. INTRODUCTION

The median filter is a non-linear filter that has been used
successfully in a variety of domains. Its strength lies in
its ability to filter out impulsive noise without destroying
the properties of the underlying signal. In the image pro-
cessing domain, this is manifested in edges remaining in-
tact, while using linear filters (such as Gaussian filters)
would cause edges to become blurred. Given an input se-
quence x1, x2, x3, · · · , of l-bit numbers, we define a win-
dow of size 2N + 1 centred on the ith value as Wi =
{xi−N , xi−N+1, · · · , xi, · · · , xi+N−1, xi+N}. The output
of the median filter, yi, is thus the median of Wi; the middle
value in the sorted list.

The weighted median is an extension of the normal me-
dian, where each input sample is given a weight, to de-
termine how much that sample is able to determine the
result. Weights can be fractional but are most usually
integer values, as this simplifies the calculations. The
input sequence becomes (x1, w1), (x2, w2), (x3, w3), · · · ,
where xi are the input samples and wi are the corre-
sponding weights. An integer weight would simply cor-
respond to having wi copies of sample xi taken into ac-

count in the median calculation. As an example the se-
quence (1, 3), (2, 1), (3, 5), (4, 2), (7, 2) is equivalent to the
sequence 1, 1, 1, 2, 3, 3, 3, 3, 3, 4, 4, 7, 7. It is important to
note that for the weighted median, the size of the window is
actually the sum of weights rather than the number of tuples
received. So for the above sequence it is 13 and not 5.

1.1. The Trace Transform

The motivation for designing an efficient implementation of
median filters for large windows comes mainly from our
research on hardware implementation of the Trace Trans-
form [1, 2]. This is a recently developed transform in which
functionals are calculated on lines crossing an image at dif-
fering angles and distances from the origin. The Trace
Transform is used to give an alternative representation of the
image, useful for recognition and authentication systems. In
each case, the number of sample points can be over 100, de-
pending on the size of the image in question. Furthermore,
the number of samples of interest can vary as the lines cross
the image at varying angles. Hence a scalable method of
median calculation is needed, which must also cope with
variable window size.

2. RELATED WORK

Median filters have been implemented in a variety of ways.
[3] provides a very good review of the area. There are two
main methods, the first is to maintain the input sample list
in its original order, then pass it through a sorting network.
The median value is then simply extracted from the correct
output. The other method involves sorting the samples as
they enter the system. Of the first approach, the simplest
implementation is the bubble sorting grid, where a grid of
dual input sorters each swap their inputs to propagate the
higher valued samples upwards, and lower valued samples
downwards (or vice-versa). The median is simply the mid-
dle sample of the grid output. An example of this architec-
ture is shown in Figure 1. This method is regular yet its

0-7803-9362-7/05/$20.00 ©2005 IEEE 142

hardware requirements increase in proportion to the square
of the window size and hence it is not scalable to larger win-
dows. For a window of size 2N +1, we require N(2N +1)
dual input sorters and 2N + 1 registers.

Fig. 1. A simple 11-sample bubble-sorting circuit layout.
The large blocks are compare-swap units that swap their in-
puts if necessary to propagate the larger values upwards and
the smaller ones downwards. The small blocks are registers.
Note that the shaded blocks are not required for median cal-
culation.

For small windows, simplifications can be made[4], where
the columns, then rows are each sorted using a triple-input
sorter. Then only one diagonal needs to be sorted to give
the median. This saves on hardware requirements. Kara-
man et al.[5] propose a change to the standard sorting net-
work by dealing with samples in a bitwise manner, needing
only single bit sorters, however their implementation is still
proportional to N2 in area. The strength of regular array
architectures is that they can be pipelined down to a sin-
gle compare-swap stage. This means high throughput and
frequency. Other methods that use fewer building blocks of
higher complexity are described in [6, 7, 8]. Another method
is that of threshold decomposition, as used in [9], however
the architecture proposed relies on the window being of size
3×3 and uses 3-input adders and so is not scalable to large
windows.

The principle of histogram-based median filtering is well
established and known, having been mentioned in the basic
textbooks on image processing. We have found two refer-
ences to this method in the literature, [10] and [11], how-
ever both deal with software implementations running on
general-purpose processors. We present here, what we be-
lieve to be the first implementation and analysis in hardware
of the proposed method. The high degree of parallelism that
can be had in hardware is what makes this method so attrac-
tive as compared to a sorting structure.

3. PROPOSED ARCHITECTURE

3.1. General Overview

The proposed architecture works by constructing a cumu-
lative histogram of the input data. This is done by main-

taining a count for occurrences of each possible input value.
Since the application domain is video processing, we have
assumed 8-bit unsigned numbers (l = 8). This means there
are 28 = 256 possible input values, and so a rank of 256 bins
is used. To construct a histogram, when an input value is
received, the corresponding bin is incremented. For a cumu-
lative histogram, the corresponding bin and all subsequent
bins must be incremented. Hence, the value stored in the fi-
nal bin will always be equal to the number of input samples
received. For example, if the median is to be calculated over
a window of 101 elements, i.e. 2N +1 = 101, N = 50, then
the 51st (or generally the (N + 1)th) element in the ordered
list is the result. Using the histogram, it is only required to
find which bin this 51st value lies in. This gives the median
of the input samples, since the 51st ordered element must lie
in the bin whose count is the first to reach 51 or surpass it.

To implement this, the content of each bin is compared
to the median index (in this example, 51), giving a 0 if the
bin count is smaller, and a 1 if it is equal or larger. Hence
the result for all bins before the one containing the median
will be 0, and all the others will be 1. A priority encoder can
then be used to isolate the index of the first bin in the series
of 1’s. This gives the median of the input samples.

To implement this in hardware requires a register to keep
a count for each possible input value. Hence we need 256
registers to store the counts. For all the registers to be up-
dated in parallel, each register also needs an incrementer
and a multiplexor (to decide whether or not to increment
the stored value). This gives us the design for a bin node
processor as shown in Figure 2. 256 (or in the general case
2l) of these are required in the proposed system.

Fig. 2. A bin node processor

We then require a circuit to decide which of these 256
bins to increment for any given input value. One possible
approach is to instantiate a comparator for each bin, and to
compare the input sample value to the index of each bin.
However, this would be costly in terms of hardware. An-
other approach would be to let each bin check the previous
one, and if that is being incremented, then it should incre-
ment too. However this would slow the system down mas-
sively, since that signal would need to propagate through
256 stages in the worst case, all in one clock cycle.

A more efficient method is to use embedded block-RAMs
on the FPGA to store the patterns in a ROM. We would
need a 256 × 256-bit ROM to decode the 8-bit number to

143

Address Contents
0 0xFFFFFFF. . . FFFFF
1 0x7FFFFFF. . . FFFFF
2 0x3FFFFFF. . . FFFFF
3 0x1FFFFFF. . . FFFFF
4 0x0FFFFFF. . . FFFFF
5 0x07FFFFF. . . FFFFF
...

...
253 0x0000000. . . 00007
254 0x0000000. . . 00003
255 0x0000000. . . 00001

Table 1. ROM contents

a 256-bit signal, where each bit represents the select input
shown in Figure 2, to the corresponding bin. Each bit of
the output addresses a single bin node processor. The access
patterns stored in the rom, ensure that the correct proces-
sors are enabled for any given input sample. This decoding
method saved over 500 slices in the basic implementation.
The circuit overview is shown in Figure 3. The contents of
the ROM are shown in Table 1.

Fig. 3. Histogram-based median filter architecture

3.2. Sliding Window Implementation

To implement this algorithm for sliding windows, a small
addition is made. A FIFO buffer must be used to store the
samples for the window over which the median must be
found. When a new sample is received and the window is
full, the oldest sample is removed from the FIFO. Updating
the histogram involves decrementing the cumulative count
of the bin corresponding to this sample and all subsequent
bins. At the same time, the bin corresponding to the new
input sample and all subsequent bins must be incremented.
This can all be done in one cycle, by simply leaving any bins
that are included in both sets alone, since they must be in-
cremented and decremented at the same time. Bins that are
only enabled by the access pattern of the new sample are in-

cremented, while bins enabled only by the access pattern of
the removed sample are decremented. The new node design
is shown in Figure 4.

Fig. 4. A bin node for the sliding window implementation.
sIncDec is simply a concatenation of the two bits from the
ROM lookup

On-chip Block-RAMs are particularly useful for this ar-
chitecture. Since these RAMs are dual-ported on our target
architecture, we are able to extract the enable signals for
both the new and oldest samples in parallel. These can then
be processed to determine which bin is incremented. This is
illustrated in Figure 5.

Fig. 5. Application to sliding windows. The arrows beside
the bins show the access patterns for the oldest (-) sample
and new (+) sample. The leftmost example shows a new
sample value of 4 arriving while the oldest sample is of value
7. Only bins 4 to 7 need to be incremented, all others keep
their current values. The rightmost example shows a new
sample of value 8 arriving, while the oldest sample is of
value 2. Only bins 2 to 8 need to be decremented; the others
are left alone.

To implement this, all we require is a simple 2-input, 2-
output lookup-table to determine the resultant action. This
is shown in Table 2. This small logic function must be im-
plemented for each bin. There is however one caveat; that is,
that as the window is filling with values the first time, we do

144

OldEn NewEn Inc Dec
0 0 0 0
0 1 1 0
1 0 0 1
1 1 0 0

Table 2. Extra sliding window logic. The signals OldEn
and NewEn are the enable signals for the bin resulting from
the ROM lookup of the oldest sample and new sample re-
spectively. Inc and Dec are signals instructing the bin to
increment or decrement respectively.

not require any subtractions to take place, since this would
mean that our histogram will never fill up with values. As
such, we append a single valid bit to each input sample. This
propagates through the FIFO mentioned above and emerges
at the final stage of the FIFO only when one full window of
values has been received. This bit is ANDed with the bin
subtraction control signal, so no subtraction can take place
until it emerges. The architecture is shown in Figure 6.

3.3. Extension to Weighted-Median

To implement weighted median in the proposed architecture,
small changes to the architecture in Figure 6 are needed.
Firstly, another input signal is introduced to provide the weights.
Instead of a simple incrementer, each bin processor must
now add the weight value. For bins enabled by the access
pattern corresponding to sample falling outside the window,
we simply subtract the weight of that sample. For those bins
enabled by both access patterns, we simply add the differ-
ence of the two weights (while being careful to maintain
the sign). For those bins enabled only by the access pattern
for the new sample, we simply add the new sample’s cor-
responding weight. This architecture is illustrated in Figure
7. The three signals fed into each of the bins are the weight
of the new input sample, the difference in weights and the
weight corresponding to the sample falling outside the win-
dow.

The rank of the median is not known in advance for
weighted median. Consider the expansion of the sequence
shown in Section 1, and it becomes clear that the number of
’real’ samples received is equal to the sum of the weights.
Hence, the index of the median must be half of that, which
is simply a right shift in hardware. In the proposed archi-
tecture, the difference of the two weights is simply added to
a register on each clock cycle. This maintains the current
weight sum. This is right shifted to divide by two and fed
into each of the bins, and used for the comparison.

The word-length of each bin register must be wide enough
to accommodate the maximum sum of the weights to pre-
vent overflow. There must be some constraint put on the
input weights to prevent overflow in any case.

4. IMPLEMENTATION RESULTS

All designs were initially implemented using the Celoxica
Handel-C compiler. This allowed for rapid design and test-
ing of these closely related and parameterised designs. The
target device was a Xilinx Virtex II 6000, as found on the
Celoxica RC300 development board. For comparison, an
alternative implementation of the median filter based on the
sorting grid mentioned in Section 2 was synthesised. Subse-
quently, both designs were synthesised in VHDL using Syn-
plicity Synplify and Mapped and Placed-and-Routed using
Xilinx ISE. We found that using Handel-C was acceptable
for the sorting-grid architecture. However, due to the extra
control signals that Handel-C inserts into a design, and the
high level of parallelism in our architecture, routing delays
were causing our circuit to have a high clock period. For
our architecture we saved over half the area and reduced our
clock period by over 60% by using VHDL. Part of the reason
for the large area saving, is that Synplify inferred simple up-
down counters for the histogram nodes for the non-weighted
median filter, which can be implemented very efficiently in
the Virtex II FPGA.

4.1. Synthesis Results

The proposed system was synthesised for various window
sizes, as was the sorting-grid architecture. The synthesis re-
sults are shown in Table 3 and the graph in Figure 8. The
circuit is able to run at 72MHz, computing one median per
clock cycle. The area usage of the sorting grid architecture
increases with N2 while the proposed architecture has a con-
stant area requirement. The slight variation in the number of
slices used in the implementations of the proposed archi-
tecture, is due to the change in the length of the FIFO that
stores the input samples. Not all window sizes were imple-
mented on our architecture because the slice count is almost
independent of window size. The crossover point, where the
proposed architecture becomes more area-efficient than the
grid sorter is at a window size of approximately 27. It is im-
portant to note that even though other architectures are more
efficient than the sorting grid architecture, their complexi-
ties are O(N) or higher. This contrasts with our architecture
which has a constant complexity independent of N . Consid-
ering that we may require window sizes of 100 samples or
more for the Trace Transform, it is clear that the proposed
architecture is highly efficient.

Furthermore, the proposed architecture deals elegantly
with varying window sizes. Recall that the count stored in
the final bin is equal to the number of samples received by
the system. This number can simply be right shifted to di-
vide by 2, then used to find the median.

The weighted median architecture was also synthesised
and used only 4,548 slices for a 51 sample window, an in-
crease of 50%. Recall that weighted median is a much more

145

Fig. 6. Architecture of the sliding window median filter

Fig. 7. Architecture of the weighted median filter

146

Window Size Sorting Grid Proposed
9 328 2774

13 708 –
17 1232 –
21 1900 3038
25 2712 –
29 3688 –
33 4768 3035
37 6012 –
41 7400 3042
45 8932 –
51 – 3040

Table 3. Synthesis results for area in Virtex II Slices.

complex function, yet the area impact using this architecture
is not excessive.

10 15 20 25 30 35 40 45 50

1000

2000

3000

4000

5000

6000

7000

8000

Window Size

V
irt

ex
 2

 S
lic

es

Implementation Results

Sorting Grid
Proposed

Fig. 8. Graph of synthesis results

5. CONCLUSION

We have presented an alternative implementation of median
filtering for arbitrarily large windows. The architecture is
immune to changes in window size, the area being deter-
mined solely by the bit width. This allows for a flexible
window-size that can change from one calculation to the
next. Use of heterogeneous FPGA resources allow the cir-
cuitry to be simplified. The area requirement was compared
to that of another architecture, showing the efficiency of this
method for larger windows. An extension to weighted me-
dian calculation was also shown, that had modest impact
on area. The presented method is elegant in its flexibility
with regards to window size. Of course for very small win-
dows, like a 9-sample 3×3 window, other techniques may be
faster, however for large windows, or systems where flex-

ibility is needed, or for weighted median calculation, our
method is both fast and compact.

6. ACKNOWLEDGEMENT

This work was partially supported by the Research Coun-
cils UK Basic Technology Research Programme “Reverse
Engineering the Human Visual System” GR/R87642/02.

7. REFERENCES

[1] A. Kadyrov and M. Petrou, “The Trace Transform and its ap-
plications,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 23, no. 8, pp. 811–828, 2001.

[2] M. Petrou and A. Kadyrov, “Affine invariant features from
the Trace Transform,” IEEE Transactions on Pattern Analysis
and Machine Intelligence., vol. 26, no. 1, pp. 30–44, 2004.

[3] D. Richards, “VLSI median filters,” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 38, no. 1, pp.
145–53, 1990.

[4] G. Bates and S. Nooshabadi, “FPGA implementation of a me-
dian filter,” in Proceedings of IEEE TENCON ’97 IEEE Re-
gion 10 Annual Conference. Speech and Image Technologies
for Computing and Telecommunications, 2-4 Dec. 1997, vol.
vol.2. Brisbane, Qld., Australia: IEEE, 1997, pp. 437–40.

[5] M. Karaman, L. Onural, and A. Atalar, “Design and imple-
mentation of a general-purpose median filter unit in CMOS
VLSI,” IEEE Journal of Solid-State Circuits, vol. 25, no. 2,
pp. 505–13, 1990.

[6] H.-S. Yu, J.-Y. Lee, and J.-D. Cho, “A fast VLSI implemen-
tation of sorting algorithm for standard median filters,” in
Twelfth Annual IEEE International ASIC/SOC Conference,
15-18 Sept. 1999. Washington, DC, USA: IEEE, 1999, pp.
387–90.

[7] C.-T. Chen, L.-G. Chen, and J.-H. Hsiao, “VLSI implementa-
tion of a selective median filter,” IEEE Transactions on Con-
sumer Electronics, vol. 42, no. 1, pp. 33–42, 1996.

[8] L. Breveglieri and V. Piuri, “Digital median filters,” Journal
of VLSI Signal Processing Systems for Signal, Image, and
Video Technology, vol. 31, no. 3, pp. 191–206, 2002.

[9] A. Burian and J. Takala, “VLSI-efficient implementation of
full adder-based median filter,” in 2004 IEEE International
Symposium on Circuits and Systems, 23-26 May 2004, vol.
Vol.2. Vancouver, BC, Canada: IEEE, 2004, pp. 817–20.

[10] G. Angelopoulos and I. Pitas, “A fast implementation of two-
dimensional weighted median filters,” in Proceedings of 12th
International Conference on Pattern Recognition, 9-13 Oct.
1994, vol. vol.3. Jerusalem, Israel: IEEE Comput. Soc.
Press, 1994, pp. 140–2.

[11] L. Hayat, M. Fleury, and A. Clark, “Two-dimensional median
filter algorithm for parallel reconfigurable computers,” IEE
Proc. Vision, Image and Signal Processing, vol. 142, no. 6,
pp. 345–50, 1995.

147

